Show simple item record

dc.contributor.authorArslan F.en_US
dc.date.accessioned2016-02-08T10:37:03Z
dc.date.available2016-02-08T10:37:03Z
dc.date.issued2000en_US
dc.identifier.issn0002-9939
dc.identifier.urihttp://hdl.handle.net/11693/24972
dc.description.abstractWe give a criterion for checking the Cohen-Macaulayness of the tangent cone of a monomial curve by using the Gröbner basis. For a family of monomial curves, we give the full description of the defining ideal of the curve and its tangent cone at the origin. By using this family of curves and their extended versions to higher dimensions, we prove that the minimal number of generators of a Cohen-Macaulay tangent cone of a monomial curve in an affine l-space can be arbitrarily large for l ≥ 4 contrary to the l = 3 case shown by Robbiano and Valla. We also determine the Hubert series of the associated graded ring of this family of curves and their extended versions. © 2000 American Mathematical Society.en_US
dc.language.isoEnglishen_US
dc.source.titleProceedings of the American Mathematical Societyen_US
dc.subjectCohen-macaulay ringen_US
dc.subjectMonomial curveen_US
dc.subjectTangent coneen_US
dc.titleCohen-macaulayness of tangent conesen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage2243en_US
dc.citation.epage2251en_US
dc.citation.volumeNumber128en_US
dc.citation.issueNumber8en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record