Survivability in hierarchical telecommunications networks under dual homing

Date
2014
Authors
Karaşan, O. E.
Mahjoub, A. R.
Özkök, O.
Yaman, H.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
INFORMS Journal on Computing
Print ISSN
1091-9856
Electronic ISSN
1526-5528
Publisher
Institute for Operations Research and the Management Sciences (I N F O R M S)
Volume
26
Issue
1
Pages
1 - 15
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

The motivation behind this study is the essential need for survivability in the telecommunications networks. An optical signal should find its destination even if the network experiences an occasional fiber cut. We consider the design of a two-level survivable telecommunications network. Terminals compiling the access layer communicate through hubs forming the backbone layer. To hedge against single link failures in the network, we require the backbone subgraph to be two-edge connected and the terminal nodes to connect to the backbone layer in a dual-homed fashion, i.e., at two distinct hubs. The underlying design problem partitions a given set of nodes into hubs and terminals, chooses a set of connections between the hubs such that the resulting backbone network is two-edge connected, and for each terminal chooses two hubs to provide the dual-homing backbone access. All of these decisions are jointly made based on some cost considerations. We give alternative formulations using cut inequalities, compare these formulations, provide a polyhedral analysis of the smallsized formulation, describe valid inequalities, study the associated separation problems, and design variable fixing rules. All of these findings are then utilized in devising an efficient branch-and-cut algorithm to solve this network design problem.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)