Show simple item record

dc.contributor.authorBrunelli J.C.en_US
dc.contributor.authorGürses M.en_US
dc.contributor.authorZheltukhin, K.en_US
dc.date.accessioned2016-02-08T10:35:36Z
dc.date.available2016-02-08T10:35:36Z
dc.date.issued2001en_US
dc.identifier.issn0129-055X
dc.identifier.urihttp://hdl.handle.net/11693/24874
dc.description.abstractWe give the Lax representations for the elliptic, hyperbolic and homogeneous second order Monge-Ampère equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge-Ampère equations. Local as well nonlocal conserved densities are obtained.en_US
dc.language.isoEnglishen_US
dc.source.titleReviews in Mathematical Physicsen_US
dc.titleOn the integrability of a class of Monge-Ampère equationsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage529en_US
dc.citation.epage543en_US
dc.citation.volumeNumber13en_US
dc.citation.issueNumber4en_US
dc.publisherWorld Scientific Publishing Co. Pte. Ltd.en_US
dc.identifier.eissn1793-6659


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record