Show simple item record

dc.contributor.authorOstrovskii, I.en_US
dc.contributor.authorUlanovskii, A.en_US
dc.date.accessioned2016-02-08T10:34:36Z
dc.date.available2016-02-08T10:34:36Z
dc.date.issued2001en_US
dc.identifier.issn0764-4442
dc.identifier.urihttp://hdl.handle.net/11693/24804
dc.description.abstractA non-oscillating Paley-Wiener function is a real entire function f of exponential type belonging to L2(ℝ) and such that each derivative f(n), n = 0,1,2, . . . , has only a finite number of real zeros. We show that the class of such functions is non-empty and contains functions of arbitrarily fast decay on ℝ allowed by the convergence of the logarithmic integral. We also give a close to the best possible asymptotic (as n → ∞) estimate of the size of the smallest interval containing all real zeros of n-th derivative of a function f of the class. © 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.en_US
dc.language.isoEnglishen_US
dc.source.titleComptes Rendus de l'Académie des Sciences - Series I - Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/S0764-4442(01)02131-0en_US
dc.titleNon-oscillating Paley-wiener functionsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage735en_US
dc.citation.epage740en_US
dc.citation.volumeNumber333en_US
dc.citation.issueNumber8en_US
dc.identifier.doi10.1016/S0764-4442(01)02131-0en_US
dc.publisherElsevieren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record