Show simple item record

dc.contributor.authorGürel, Leventen_US
dc.contributor.authorOğuz, U.en_US
dc.date.accessioned2016-02-08T10:33:16Z
dc.date.available2016-02-08T10:33:16Z
dc.date.issued2002en_US
dc.identifier.issn0048-6604
dc.identifier.urihttp://hdl.handle.net/11693/24710
dc.description.abstractThree-dimensional ground-penetrating radar (GPR) geometries are simulated using the finite difference time domain (FDTD) method. The GPR is modeled with a receiver and two transmitters with arbitrary polarizations in order to cancel the direct signals emitted by the two transmitters at the receiver. This GPR configuration is used to simulate scenarios involving single or multiple targets with arbitrary sizes. The buried objects are modeled as cylindrical disks. Perfectly matched layer absorbing boundary conditions are used to terminate the layered FDTD computational domain.en_US
dc.language.isoEnglishen_US
dc.source.titleRadio Scienceen_US
dc.subjectFinite difference time domain (FDTD) methoden_US
dc.subjectGround-penetrating radar (GPR)en_US
dc.subjectPerfectly matched layeren_US
dc.subjectSubsurface scatteringen_US
dc.subjectBoundary conditionsen_US
dc.subjectComputer simulationen_US
dc.subjectElectromagnetic wave emissionen_US
dc.subjectElectromagnetic wave polarizationen_US
dc.subjectGeophysicsen_US
dc.subjectRemote sensingen_US
dc.subjectTime domain analysisen_US
dc.subjectTransceiversen_US
dc.subjectArbitrary polarizationsen_US
dc.subjectGround penetrating radar systemsen_US
dc.titleTransmitter-receiver-transmitter configurations of ground-penetrating radaren_US
dc.typeArticleen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.citation.spage51en_US
dc.citation.epage57en_US
dc.citation.volumeNumber37en_US
dc.citation.issueNumber3en_US
dc.publisherWiley-Blackwell Publishing, Inc.en_US
dc.contributor.bilkentauthorGürel, Levent


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record