Show simple item record

dc.contributor.authorKerimov, A.en_US
dc.date.accessioned2016-02-08T10:19:08Z
dc.date.available2016-02-08T10:19:08Z
dc.date.issued2006en_US
dc.identifier.issn0217-9792
dc.identifier.urihttp://hdl.handle.net/11693/23782
dc.description.abstractWe consider models of classical statistical mechanics satisfying natural stability conditions: a finite spin space, translation-periodic finite potential of finite range, a finite number of ground states meeting Peierls or Gertzik-Pirogov-Sinai condition. The Pirogov-Sinai theory describes the phase diagrams of these models at low temperature regimes. By using the method of doubling and mixing of partition functions we give an alternative elementary proof of the uniqueness of limiting Gibbs states at low temperatures in ground state uniqueness region. © World Scientific Publishing Company.en_US
dc.language.isoEnglishen_US
dc.source.titleInternational Journal of Modern Physics Ben_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S0217979206034534en_US
dc.subjectContour modelen_US
dc.subjectExtreme Gibbs stateen_US
dc.subjectGibbs stateen_US
dc.subjectGround stateen_US
dc.subjectPartition functionen_US
dc.subjectPeierls conditionen_US
dc.subjectPirogov - Sinai theoryen_US
dc.titleOn the uniqueness of Gibbs states in the Pirogov-Sinai theoryen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage2137en_US
dc.citation.epage2146en_US
dc.citation.volumeNumber20en_US
dc.citation.issueNumber15en_US
dc.identifier.doi10.1142/S0217979206034534en_US
dc.publisherWorld Scientific Publishing Co. Pte. Ltd.en_US
dc.identifier.eissn1793-6578


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record