Structural, electronic, and magnetic properties of 3d transition metal monatomic chains: First-principles calculations

Date
2008
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
1550-235X
Electronic ISSN
Publisher
American Physical Society
Volume
77
Issue
21
Pages
214413-1 - 214413-12
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In this paper we investigated structural, electronic, and magnetic properties of 3d (light) transition metal atomic chains using first-principles pseudopotential plane-wave calculations. Infinite periodic linear, dimerized linear, and planar zigzag chain structures, as well as their short segments consisting of finite number of atoms have been considered. Like Cu, the periodic, linear chains of Mn, Co, and Ni correspond to a local shallow minimum. However, for most of the infinite periodic chains, neither linear nor dimerized linear structures are favored; to lower their energy the chains undergo a structural transformation to form planar zigzag and dimerized zigzag geometries. Dimerization in both infinite and finite chains is much stronger than the usual Peierls distortion and appears to depend on the number of 3d electrons. As a result of dimerization, a significant energy lowering occurs which, in turn, influences the stability and physical properties. Metallic linear chain of vanadium becomes half-metallic upon dimerization. Infinite linear chain of scandium also becomes half-metallic upon transformation to the zigzag structure. An interplay between the magnetic ground state and the atomic as well as the electronic structure of the chain has been revealed. The end effects influence the geometry, the energetics, and the magnetic ground state of the finite chains. Structure optimization performed using noncollinear approximation indicates significant differences from the collinear approximation. Variation of the cohesive energy of infinite- and finite-size chains with respect to the number of 3d electrons is found to mimic the well-known bulk behavior. The spin-orbit coupling of finite chains is found to be negligibly small.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)