• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      RPA approach to non-linear transport in quantum dots

      Thumbnail
      View / Download
      196.6 Kb
      Author
      Tanatar, Bilal
      Moldoveanu, V.
      Date
      2009
      Source Title
      International Journal of Modern Physics B
      Print ISSN
      0217-9792
      Electronic ISSN
      1793-6578
      Publisher
      World Scientific
      Volume
      23
      Issue
      20-21
      Pages
      4414 - 4421
      Language
      English
      Type
      Article
      Item Usage Stats
      113
      views
      96
      downloads
      Abstract
      An accurate theoretical treatment of electron-electron interactions in mesoscopic systems is available in very few cases and approximation schemes are developed in most of the applications, especially for many-level quantum dots. Here we present transport calculations within the random-phase approximation for the Coulomb interaction using the Keldysh Green's functions formalism. We describe the quantum dot systems by a tight-binding Hamiltonian. Our method is similar to the one used by Faleev and Stockman [Phys. Rev. B 66 085318 (2002)] in their study of the equilibrium properties of a homogeneous 2D electron gas. The important extension at the formal level is that we combine the RPA and the Keldysh formalism for studying non-linear transport properties of open quantum dots. Within the Keldysh formalism the polarization operator becomes a contour-ordered quantity that should be computed either from the non-interacting Green functions of the coupled quantum dot (the so-called G0W approximation) either self-consistently (GW approximation). We performed both non-selfconsistent and self-consistent calculations and compare the results. In particular we recover the Coulomb diamonds for interacting quantum dots and we discuss the charge sensing effects in parallel quantum dots.
      Keywords
      Coulomb blockade
      Nonlinear transport
      Quantum dots
      Permalink
      http://hdl.handle.net/11693/22653
      Collections
      • Department of Physics 2299
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy