Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study
Date
2010Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
1098-0121
Publisher
American Physical Society
Volume
81
Issue
2
Pages
024107-1 - 024107-6
Language
English
Type
ArticleItem Usage Stats
133
views
views
227
downloads
downloads
Abstract
This study of elastic and plastic deformation of graphene, silicene, and boron nitride BN honeycomb nanoribbons under uniaxial tension determines their elastic constants and reveals interesting features. In the course of stretching in the elastic range, the electronic and magnetic properties can be strongly modified. In particular, it is shown that the band gap of a specific armchair nanoribbon is closed under strain and highest valance and lowest conduction bands are linearized. This way, the massless Dirac fermion behavior can be attained even in a semiconducting nanoribbon. Under plastic deformation, the honeycomb structure changes irreversibly and offers a number of new structures and functionalities. Cagelike structures, even suspended atomic chains can be derived between two honeycomb flakes. Present work elaborates on the recent experiments C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 2009 deriving carbon chains from graphene. Furthermore, the similar formations of atomic chains from BN and Si nanoribbons are predicted.