Show simple item record

dc.contributor.authorMoldoveanu V.en_US
dc.contributor.authorTanatar, B.en_US
dc.date.accessioned2016-02-08T09:56:03Z
dc.date.available2016-02-08T09:56:03Z
dc.date.issued2010en_US
dc.identifier.issn10980121en_US
dc.identifier.urihttp://hdl.handle.net/11693/22139
dc.description.abstractThe ratchet regime of unbiased double quantum dots driven out of equilibrium by an independently biased nearby detector has been theoretically studied using the nonequilibrium Keldysh formalism and the random-phase approximation for the Coulomb effects. When the detector is suitably biased the energy exchange between the two systems removes the Coulomb blockade on the double dot via inelastic interdot tunneling. The energy detuning determines whether the current flows in the same direction as the driving current (positive flow) or in the opposite direction (electronic counterflow). In both cases the intradot transitions lead to negative-differential conductance. Besides the ratchet contribution to the current we also single out a Coulomb drag component. © 2010 The American Physical Society.en_US
dc.language.isoEnglishen_US
dc.source.titlePhysical Review B - Condensed Matter and Materials Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.82.205312en_US
dc.titleInelastic transitions and counterflow tunneling in double-dot quantum ratchetsen_US
dc.typeArticleen_US
dc.departmentNANOTAM - Nanotechnology Research Center
dc.departmentDepartment of Physics
dc.citation.volumeNumber82en_US
dc.citation.issueNumber20en_US
dc.identifier.doi10.1103/PhysRevB.82.205312en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record