Peptide-mediated constructs of quantum dot nanocomposites for enzymatic control of nonradiative energy transfer

Date
2011
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Nano Letters
Print ISSN
1530-6984
Electronic ISSN
Publisher
American Chemical Society
Volume
11
Issue
4
Pages
1530 - 1539
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

A bottom-up approach for constructing colloidal semiconductor quantum dot (QDot) nanocomposites that facilitate nonradiative Förster-type resonance energy transfer (FRET) using polyelectrolyte peptides was proposed and realized. The electrostatic interaction of these polypeptides with altering chain lengths was probed for thermodynamic, structural, and morphological aspects. The resulting nanocomposite film was successfully cut with the protease by digesting the biomimetic peptide layer upon which the QDot assembly was constructed. The ability to control photoluminescence decay lifetime was demonstrated by proteolytic enzyme activity, opening up new possibilities for biosensor applications.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)