Show simple item record

dc.contributor.authorMa W.-X.en_US
dc.contributor.authorPekcan, A.en_US
dc.date.accessioned2016-02-08T09:52:09Z
dc.date.available2016-02-08T09:52:09Z
dc.date.issued2011en_US
dc.identifier.issn0932-0784
dc.identifier.urihttp://hdl.handle.net/11693/21860
dc.description.abstractThe Kadomtsev-Petviashvili and Boussinesq equations (u xxx - 6uu x)x - ut x ± uyy = 0, (u xxx - 6uu x)x + u xx ± u tt = 0, are completely integrable, and in particular, they possess the three-soliton solution. This article aims to expose a uniqueness property of the Kadomtsev-Petviashvili (KP) and Boussinesq equations in the integrability theory. It is shown that the Kadomtsev-Petviashvili and Boussinesq equations and their dimensional reductions are the only integrable equations among a class of generalized Kadomtsev-Petviashvili and Boussinesq equations (u x1x1x1 - 6uu x1) x1 + σ M i, j=1 a iju xixj = 0, where the a i j's are arbitrary constants and M is an arbitrary natural number, if the existence of the three-soliton solution is required. © 2011 Verlag der Zeitschrift für Naturforschung, Tübingen.en_US
dc.language.isoEnglishen_US
dc.source.titleZeitschrift fur Naturforschung - Section A Journal of Physical Sciencesen_US
dc.subjectHirota's Bilinear formen_US
dc.subjectIntegrable equationsen_US
dc.subjectThree-soliton conditionen_US
dc.titleUniqueness of the Kadomtsev-Petviashvili and Boussinesq Equationsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematics
dc.citation.spage377en_US
dc.citation.epage382en_US
dc.citation.volumeNumber66en_US
dc.citation.issueNumber6-7en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record