New formulations of the hop-constrained minimum spanning tree problem via Miller-Tucker-Zemlin constraints
Author
Akgün, I.
Tansel, B. Ç.
Date
2011Source Title
European Journal of Operational Research
Print ISSN
0377-2217
Electronic ISSN
1872-6860
Publisher
Elsevier
Volume
212
Issue
2
Pages
263 - 276
Language
English
Type
ArticleItem Usage Stats
125
views
views
233
downloads
downloads
Abstract
Given an undirected network with positive edge costs and a natural number p, the Hop-Constrained Minimum Spanning Tree problem (HMST) is the problem of finding a spanning tree with minimum total cost such that each path starting from a specified root node has no more than p hops (edges). In this paper, we develop new formulations for HMST. The formulations are based on Miller-Tucker-Zemlin (MTZ) subtour elimination constraints, MTZ-based liftings in the literature offered for HMST, and a new set of topology-enforcing constraints. We also compare the proposed models with the MTZ-based models in the literature with respect to linear programming relaxation bounds and solution times. The results indicate that the new models give considerably better bounds and solution times than their counterparts in the literature and that the new set of constraints is competitive with liftings to MTZ constraints, some of which are based on well-known, strong liftings of Desrochers and Laporte (1991).
Keywords
Graph theoryInteger programming
Spanning trees
Hop constraints
Miller–Tucker–Zemlin constraints