Show simple item record

dc.contributor.authorAkyol, A.en_US
dc.date.accessioned2016-02-08T09:45:29Z
dc.date.available2016-02-08T09:45:29Z
dc.date.issued2012en_US
dc.identifier.issn0218-2165
dc.identifier.urihttp://hdl.handle.net/11693/21380
dc.description.abstractWe enumerate and classify up to equisingular deformation all irreducible plane sextics constituting the so called classical Zariski pairs. In most cases we obtain two deformation families, called abundant and non-abundant. Four sets of singularities are realized by abundant sextics only, and one exceptional set of singularities is realized by three families, one abundant and two complex conjugate non-abundant. This exceptional set of singularities has submaximal total Milnor number 18. © 2012 World Scientific Publishing Company.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Knot Theory and its Ramificationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S0218216512500915en_US
dc.subjectPlane sexticen_US
dc.subjectSingularityen_US
dc.subjectZariski pairen_US
dc.titleClassical Zariski pairsen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.volumeNumber21en_US
dc.citation.issueNumber9en_US
dc.identifier.doi10.1142/S0218216512500915en_US
dc.identifier.eissn1793-6527


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record