• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Functionalization of graphene nanoribbons

      Thumbnail
      View / Download
      1.3 Mb
      Author
      Sevinçli H.
      Topsakal, M.
      Çıracı, Salim
      Date
      2013
      Source Title
      NanoScience and Technology
      Print ISSN
      14344904
      Volume
      77
      Pages
      69 - 92
      Language
      English
      Type
      Article
      Item Usage Stats
      139
      views
      117
      downloads
      Abstract
      With the synthesis of a single atomic plane of graphite, namely, graphene honeycomb structure, a new perspective for carbon-based electronics is opened. The one-dimensional graphene nanoribbons (GNRs) have different band-gap values depending on their edge shape and width. In this contribution, we report our results showing that repeated heterostructures of GNRs of different widths form multiple quantum-well structures. The widths of the constituent parts as well as the bandgap, and also the magnetic ground state of the superlattices are modulated in direct space. We provide detailed analysis of these structures and show that superlattices with armchair edge shapes can be used as resonant tunneling devices and those with zigzag edge shape have unique features for spintronic applications. We also discuss another route of functionalizing 2D graphene, 1D GNR, and superlattices with 3d-transition metal (TM) atom adsorption. © Springer-Verlag Berlin Heidelberg 2013.
      Permalink
      http://hdl.handle.net/11693/21168
      Published Version (Please cite this version)
      http://dx.doi.org/10.1007/978-3-642-28424-3_4
      Collections
      • Department of Physics 2299
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy