Show simple item record

dc.contributor.authorGuler, M. T.en_US
dc.contributor.authorBilican, I.en_US
dc.contributor.authorAgan, S.en_US
dc.contributor.authorElbuken, C.en_US
dc.date.accessioned2016-02-08T09:41:53Z
dc.date.available2016-02-08T09:41:53Z
dc.date.issued2015en_US
dc.identifier.issn0960-1317
dc.identifier.urihttp://hdl.handle.net/11693/21148
dc.description.abstractIn this paper, we present a very simple method to fabricate three-dimensional (3D) microelectrodes integrated with microfluidic devices. We form the electrodes by etching a microwire placed across a microchannel. For precise control of the electrode spacing, we employ a hydrodynamic focusing microfluidic device and control the width of the etching solution stream. The focused widths of the etchant solution and the etching time determine the gap formed between the electrodes. Using the same microfluidic device, we can fabricate integrated 3D electrodes with different electrode gaps. We have demonstrated the functionality of these electrodes using an impedimetric particle counting setup. Using 3D microelectrodes with a diameter of 25 μm, we have detected 6 μm-diameter polystyrene beads in a buffer solution as well as erythrocytes in a PBS solution. We study the effect of electrode spacing on the signal-to-noise ratio of the impedance signal and we demonstrate that the smaller the electrode spacing the higher the signal obtained from a single microparticle. The sample stream is introduced to the system using the same hydrodynamic focusing device, which ensures the alignment of the sample in between the electrodes. Utilising a 3D hydrodynamic focusing approach, we force all the particles to go through the sensing region of the electrodes. This fabrication scheme not only provides a very low-cost and easy method for rapid prototyping, but which can also be used for applications requiring 3D electric field focused through a narrow section of the microchannel.en_US
dc.language.isoEnglishen_US
dc.source.titleJournal of Micromechanics and Microengineeringen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0960-1317/25/9/095019en_US
dc.subject3D microelectrodesen_US
dc.subjectFlow-focusingen_US
dc.subjectMicrofabricationen_US
dc.subjectMicrofluidic electrical sensingen_US
dc.subjectParticle countingen_US
dc.subjectElectric fieldsen_US
dc.subjectEtchingen_US
dc.subjectFluid dynamicsen_US
dc.subjectFluidic devicesen_US
dc.subjectFocusingen_US
dc.subjectHydrodynamicsen_US
dc.subjectMicrochannelsen_US
dc.subjectMicroelectrodesen_US
dc.subjectMicrofabricationen_US
dc.subjectMicrofluidicsen_US
dc.subjectRadiation countersen_US
dc.subjectSignal to noise ratioen_US
dc.subjectElectrical sensingen_US
dc.subjectElectrode spacingen_US
dc.subjectEtching solutionsen_US
dc.subjectFlow focusingen_US
dc.subjectHydrodynamic focusingen_US
dc.subjectMicro-fluidic devicesen_US
dc.subjectParticle countingen_US
dc.subjectThreedimensional (3-d)en_US
dc.subjectElectrodesen_US
dc.titleA simple approach for the fabrication of 3D microelectrodes for impedimetric sensingen_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnologyen_US
dc.departmentNanotechnology Research Centeren_US
dc.citation.spage095019en_US
dc.citation.epage095019-11en_US
dc.citation.volumeNumber25en_US
dc.citation.issueNumber9en_US
dc.identifier.doi10.1088/0960-1317/25/9/095019en_US
dc.publisherInstitute of Physics Publishingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record