Show simple item record

dc.contributor.authorCahangirov, S.en_US
dc.contributor.authorÇıracı, Salimen_US
dc.contributor.authorÖzçelik, V. O.en_US
dc.date.accessioned2016-02-08T09:38:41Z
dc.date.available2016-02-08T09:38:41Z
dc.date.issued2013en_US
dc.identifier.issn2469-9950
dc.identifier.urihttp://hdl.handle.net/11693/20960
dc.description.abstractA single graphene layer placed between two parallel Ni(111) surfaces screens the strong attractive force and results in a significant reduction of adhesion and sliding friction. When two graphene layers are inserted, each graphene is attached to one of the metal surfaces with a significant binding and reduces the adhesion further. In the sliding motion of these surfaces the transition from stick-slip to continuous sliding is attained, whereby nonequilibrium phonon generation through sudden processes is suppressed. The adhesion and corrugation strength continues to decrease upon insertion of the third graphene layer and eventually saturates at a constant value with increasing number of graphene layers. In the absence of Ni surfaces, the corrugation strength of multilayered graphene is relatively higher and practically independent of the number of layers. Present first-principles calculations reveal the superlubricant feature of graphene layers placed between pseudomorphic Ni(111) surfaces, which is achieved through the coupling of Ni-3d and graphene-π orbitals. The effect of graphene layers inserted between a pair of parallel Cu(111) and Al(111) surfaces is also discussed. The treatment of sliding friction under the constant loading force, by taking into account the deformations corresponding to any relative positions of sliding slabs, is the unique feature of our study. © 2013 American Physical Society.en_US
dc.language.isoEnglishen_US
dc.source.titlePhysical Review B - Condensed Matter and Materials Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.87.205428en_US
dc.titleSuperlubricity through graphene multilayers between Ni (111) surfacesen_US
dc.typeArticleen_US
dc.departmentDepartment of Physicsen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.citation.volumeNumber87en_US
dc.citation.issueNumber20en_US
dc.identifier.doi10.1103/PhysRevB.87.205428en_US
dc.publisherAmerican Physical Societyen_US
dc.contributor.bilkentauthorÇıracı, Salim
dc.identifier.eissn2469-9969


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record