Show simple item record

dc.contributor.authorKarsu Ö.en_US
dc.date.accessioned2016-02-08T09:35:50Z
dc.date.available2016-02-08T09:35:50Z
dc.date.issued2016en_US
dc.identifier.issn3050548en_US
dc.identifier.urihttp://hdl.handle.net/11693/20814
dc.description.abstractIn this paper we consider multi-criteria sorting problems where the decision maker (DM) has equity concerns. In such problems each alternative represents an allocation of an outcome (e.g. income, service level, health outputs) over multiple indistinguishable entities. We propose three sorting algorithms that are different from the ones in the current literature in the sense that they apply to cases where the DM's preference relation satisfies anonymity and convexity properties. The first two algorithms are based on additive utility function assumption and the third one is based on the symmetric Choquet integral concept. We illustrate their use by sorting countries into groups based on their income distributions using real-life data. To the best of our knowledge our work is the first attempt to solve sorting problems in a symmetric setting. © 2015 Elsevier Ltd. All rights reserved.en_US
dc.language.isoEnglishen_US
dc.source.titleComputers and Operations Research en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cor.2015.08.004en_US
dc.subjectDecision makingen_US
dc.subjectIntegral equationsen_US
dc.subjectProblem solvingen_US
dc.subjectChoquet integralen_US
dc.subjectConvexity propertiesen_US
dc.subjectDecision makersen_US
dc.subjectIncome distributionen_US
dc.subjectMulti-criteriaen_US
dc.subjectPreference relationen_US
dc.subjectSorting algorithmen_US
dc.subjectUtility functionsen_US
dc.subjectSortingen_US
dc.titleApproaches for inequity-averse sortingen_US
dc.typeResearch Paperen_US
dc.departmentDepartment of Industrial Engineering, Bilkent University, Ankara, Turkeyen_US
dc.citation.spage67en_US
dc.citation.epage80en_US
dc.citation.volumeNumber66en_US
dc.identifier.doi10.1016/j.cor.2015.08.004en_US
dc.publisherElsevier Ltden_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record