Show simple item record

dc.contributor.authorHüsseinov, F.en_US
dc.contributor.authorSagara, N.en_US
dc.date.accessioned2016-02-08T09:35:18Z
dc.date.available2016-02-08T09:35:18Z
dc.date.issued2013en_US
dc.identifier.issn0176-1714
dc.identifier.urihttp://hdl.handle.net/11693/20790
dc.description.abstractThis paper studies the existence of Pareto optimal, envy-free allocations of a heterogeneous, divisible commodity for a finite number of individuals. We model the commodity as a measurable space and make no convexity assumptions on the preferences of individuals. We show that if the utility function of each individual is uniformly continuous and strictly monotonic with respect to set inclusion, and if the partition matrix range of the utility functions is closed, a Pareto optimal envy-free partition exists. This result follows from the existence of Pareto optimal envy-free allocations in an extended version of the original allocation problem. © 2013 Springer-Verlag Berlin Heidelberg.en_US
dc.language.isoEnglishen_US
dc.source.titleSocial Choice and Welfareen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00355-012-0714-yen_US
dc.titleExistence of efficient envy-free allocations of a heterogeneous divisible commodity with nonadditive utilitiesen_US
dc.typeArticleen_US
dc.departmentDepartment of Economics
dc.citation.spage923en_US
dc.citation.epage940en_US
dc.citation.volumeNumber41en_US
dc.citation.issueNumber4en_US
dc.identifier.doi10.1007/s00355-012-0714-yen_US
dc.publisherSpringeren_US
dc.identifier.eissn1432-217X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record