• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Development of a non-immunological system for the study of the cellular localization of BRCA1 gene product in living cells

      Thumbnail
      View / Download
      10.0 Mb
      Author
      Çağatay, Tolga
      Advisor
      Yuluğ, Işık G.
      Date
      1997
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      93
      views
      39
      downloads
      Abstract
      BRCAl, is a familial breast and ovarian cancer susceptibility gene that has been cloned and shown to be either lost or mutated in families with breast and ovarian cancer. BRCAl, has been postulated to encode a tumor suppressor, a protein that acts as a negative regulator of tumor growth. To explore the biolo^cal function of BRCAl, several studies have been performed for the identification of cellular localization of BRCAl gene product. Results obtained from these immunofluorescent/ immunohistochemical studies generated two opposing views, cytoplasmic localization versus nuclear localization. Here, we describe a non-immunological system employing the Eukaiyotic Green fluorescent Protein (EGFP) tag for the study of the cellular localization of BRCAl gene product in living cells. Proteins carrying the green fluorescent protein (GFP) of Aequorea victoria provide a powerful system to analyze protein expression and targeting in living cells. Fusion proteins containing the GFP tag are therefore valuable tools to analyze nuclear trafficking in living cells. Here, we reporte the use of a mutant GFP, namely Eukaryotic Green Fluorescent Protein (EGFP), as a marker for the protein import into mammalian nuclei. We have analyzed the behavior of a protein domain of the BRCAl, that contains five putative nuclear localization signals (NLSs), in vivo using a chimera constructed from this polypeptide and the EGFP. This in vivo studies showed that EGFP was distributed uniformly throughout the cytoplasm and the nucleus. When EGFP was fused to NLSs containing domain of the BRCAl protein, fluorescent was predominantly detected in the nucleus, showing that these potential NLSs consensus sequences may destínate the full-lengh BRCAl producy into the nucleus of mammalian cell. This study has also shown that EGFP can be used as a potential fluorescent tag for visualization of gene expression and cellular protein localization in living cells.
      Permalink
      http://hdl.handle.net/11693/17887
      Collections
      • Dept. of Molecular Biology and Genetics - Master's degree 135
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy