• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Materials Science and Nanotechnology
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Molecular logic gates in the activity modulation of potential PDT agents & rational design of selective chloride sensors

      Thumbnail
      View / Download
      15.6 Mb
      Author(s)
      Erbaş-Çakmak, Sündüs
      Advisor
      Akkaya, Engin U.
      Date
      2013
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      224
      views
      67
      downloads
      Abstract
      Considering the time arrow of science, things are getting smaller and smarter as the information grows immensely. More is known about the molecular and genetic basis of diseases, and therapies become more personalized accordingly. In parallel, organic devices are becoming progressively intelligent. Molecular logic gates increase the flexibility in functionality of the Boolean logic operations, and allow the creation of demanding complex functionalities for different purposes. The missing link between the design of any kind of complex logic operation and assignment of a real function is addressed by our work. A dual-activatable photosensitizer acting as an AND logic gate enables a more selective photodynamic therapy with the use of biologically relavant concentrations of acid and glutathione. Additionally, with a combinatorial therapy and imaging approach, a proof of principle theranostic device with DEMUX logic behaviour is developed to select between singlet oxygen generation and emission in response to an address input (acid) in organic solvent. In another project, relay of information between two independent logic gates embedded into a physically constraining microenvironment was successfully demonstrated to report the activity of a pH-activatable photosensitizer as an enhanced emission. Independently, a series of highly selective fluorescent chloride anion sensors based on BODIPY-triazolophane conjugate are introduced with a surprisingly large dynamic response range.
      Keywords
      Photodynamic therapy
      logic gate
      activatable photosensitizer
      Cl− sensor
      Permalink
      http://hdl.handle.net/11693/16941
      Collections
      • Graduate Program in Materials Science and Nanotechnology - Ph.D. / Sc.D. 80
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy