Synthesis and characterization of metallopeptide nanostructures

Date
2013
Editor(s)
Advisor
Güler, Mustafa Özgür
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Organic-inorganic hybrid structures play a number of distinguished roles in the living milieu. For instance, metal ions function as cofactors of enzymes and apatite mineralization in bone is driven by collagen nanofibers serve as both physical and chemical templates. These unique interactions in natural systems are examples for development of synthetic materials for many applications such as catalysts, artificial enzymes or materials for regenerative medicine etc. Manufacturing a catalyst at the nanoscale is important due to increased specific surface area and reduced diffusion path length. In this thesis, we demonstrated peptide based bioinspired nanomaterials. The self-assembled peptide nanofibers were utilized as templates for palladium nanoparticle formation. Functionalization of insoluble electrospun nanofibers with a heavy metal binding peptide sequence was utilized to remove toxic metal ions from water. In addition, peptide amphiphile nanofibers complexed with ZnII were used as enzyme mimics. The resulting nanostructures resemble natural bone alkaline phosphatase activity, which is a major enzyme for natural bone apatite formation.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)