Weighted-residual methods for the solution of two-particle Lippmann-Schwinger equation without partial-wave decomposition

Date
2014-01
Authors
Kuruoğlu, Z. C.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Few-Body Systems
Print ISSN
0177-7963
Electronic ISSN
1432-5411
Publisher
Springer
Volume
55
Issue
1
Pages
69 - 84
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Recently there has been a growing interest in computational methods for quantum scattering equations that avoid the traditional decomposition of wave functions and scattering amplitudes into partial waves. The aim of the present work is to show that the weighted-residual approach in combination with local basis functions give rise to convenient computational schemes for the solution of the multi-variable integral equations without the partial wave expansion. The weighted-residual approach provides a unifying framework for various variational and degenerate-kernel methods for integral equations of scattering theory. Using a direct-product basis of localized quadratic interpolation polynomials, Galerkin, collocation and Schwinger variational realizations of the weighted-residual approach have been implemented for a model potential. It is demonstrated that, for a given expansion basis, Schwinger variational method exhibits better convergence with basis size than Galerkin and collocation meRecently there has been a growing interest in computational methods for quantum scattering equations that avoid the traditional decomposition of wave functions and scattering amplitudes into partial waves. The aim of the present work is to show that the weighted-residual approach in combination with local basis functions give rise to convenient computational schemes for the solution of the multi-variable integral equations without the partial wave expansion. The weighted-residual approach provides a unifying framework for various variational and degenerate-kernel methods for integral equations of scattering theory. Using a direct-product basis of localized quadratic interpolation polynomials, Galerkin, collocation and Schwinger variational realizations of the weighted-residual approach have been implemented for a model potential. It is demonstrated that, for a given expansion basis, Schwinger variational method exhibits better convergence with basis size than Galerkin and collocation methods. A novel hybrid-collocation method is implemented with promising results as well.thods. A novel hybrid-collocation method is implemented with promising results as well.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)