• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The behavior of the I-V-T characteristics of inhomogeneous (Ni∕Au)-Al0.3Ga0.7N∕AlN∕GaN heterostructures at high temperatures

      Thumbnail
      View / Download
      673.6 Kb
      Author(s)
      Tekeli, Z.
      Altındal, S.
      Çakmak, M.
      Özçelik, S.
      Çalıikan, D.
      Özbay, Ekmel
      Date
      2007-09-12
      Source Title
      European Physical Journal: Applied Physics
      Print ISSN
      1286-0042
      Electronic ISSN
      1286-0050
      Publisher
      EDP Sciences
      Volume
      102
      Issue
      5
      Pages
      054510-8 - 054510-1
      Language
      English
      Type
      Article
      Item Usage Stats
      155
      views
      145
      downloads
      Abstract
      We investigated the behavior of the forward bias current-voltage-temperature (I-V-T) characteristics of inhomogeneous (Ni/Au)-Al0.3Ga0.7N/AlN/GaN heterostructures in the temperature range of 295-415 K. The experimental results show that all forward bias semilogarithmic I-V curves for the different temperatures have a nearly common cross point at a certain bias voltage, even with finite series resistance. At this cross point, the sample current is temperature independent. We also found that the values of series resistance (R-s) that were obtained from Cheung's method are strongly dependent on temperature and the values abnormally increased with increasing temperature. Moreover, the ideality factor (n), zero-bias barrier height (Phi(B0)) obtained from I-V curves, and R-s were found to be strongly temperature dependent and while Phi(B0) increases, n decreases with increasing temperature. Such behavior of Phi(B0) and n is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of the barrier heights (BHs) at the metal/semiconductor interface. We attempted to draw a Phi(B0) versus q/2kT plot in order to obtain evidence of the GD of BHs, and the values of (Phi) over bar (B0)=1.63 eV and sigma(0)=0.217 V for the mean barrier height and standard deviation at a zero bias, respectively, were obtained from this plot. Therefore, a modified ln(I-0/T-2)-q(2)sigma(2)(0)/2(kT)(2) versus q/kT plot gives Phi(B0) and Richardson constant A(*) as 1.64 eV and 34.25 A/cm(2) K-2, respectively, without using the temperature coefficient of the barrier height. The Richardson constant value of 34.25 A/cm(2) K-2 is very close to the theoretical value of 33.74 A/cm(2) K-2 for undoped Al0,3Ga0,7N. Therefore, it has been concluded that the temperature dependence of the forward I-V characteristics of the (Ni/Au)-Al0.3Ga0.7/AlN/GaN heterostructures can be successfully explained based on the thermionic emission mechanism with the GD of BHs.
      Permalink
      http://hdl.handle.net/11693/13407
      Published Version (Please cite this version)
      https://doi.org/10.1063/1.2777881
      Collections
      • Department of Electrical and Electronics Engineering 3702
      • Department of Physics 2397
      • Institute of Materials Science and Nanotechnology (UNAM) 1930
      • Nanotechnology Research Center (NANOTAM) 1063
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy