Hydrogen-saturated silicon nanowires heavily doped with interstitals and substitutional transition metals

Date
2012
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Journal of Physical Chemistry C
Print ISSN
1932-7447
Electronic ISSN
Publisher
American Chemical Society
Volume
116
Issue
29
Pages
15713 - 15722
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We report a first-principles systematic study of atomic, electronic, and magnetic properties of hydrogen-saturated silicon nanowires (H-SiNW) that are heavily doped by transition metal (TM) atoms placed at various interstitial and substitutional sites. Our results obtained within the conventional GGA+U approach have been confirmed using a hybrid functional. To reveal the surface effects, we examined three different possible facets of H-SiNW along the [001] direction with a diameter of similar to 2 nm. The energetics of doping and resulting electronic and magnetic properties are examined for all alternative configurations. We found that except Ti, the resulting systems have a magnetic ground state with a varying magnetic moment. Whereas H-SiNWs are initially nonmagnetic semiconductor, they generally become ferromagnetic metal upon TM doping. They can even exhibit half-metallic behavior for specific cases. Our results suggest that H-SiNWs functionalized by TM impurities form a new type of dilute magnetic semiconductor potentially attractive for new electronic and spintronic devices on the nanoscale.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)