• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Superenhancers: Novel opportunities for nanowire optoelectronics

      Thumbnail
      View / Download
      5.2 Mb
      Author
      Khudiyev, T.
      Bayındır, Mehmet
      Date
      2014
      Source Title
      Scientific Reports
      Print ISSN
       
      Publisher
      Nature Publishing Group
      Volume
      4
      Pages
      7505 - 7505
      Language
      English
      Type
      Article
      Item Usage Stats
      129
      views
      89
      downloads
      Abstract
      Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.
      Keywords
      Core-shell Nanowires
      Solar-cells
      Light-absorption
      Optical-properties
      Large-scale
      Arrays
      Devices
      Design
      Photodetectors
      Fabrication
      Permalink
      http://hdl.handle.net/11693/12655
      Published Version (Please cite this version)
      http://dx.doi.org/10.1038/srep07505
      Collections
      • Department of Physics 2299
      • Institute of Materials Science and Nanotechnology (UNAM) 1775
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy