• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Theoretical study of germanium nanoclusters: significance of surface passivation

      Thumbnail
      View / Download
      3.7 Mb
      Author(s)
      Niaz, Shanawer
      Gülseren, Oǧuz
      Hussain, Safdar
      Anwar-ul-Haq, Muhammad
      Badar, Manzoor Ahmad
      Khan, Muhammad Aslam
      Date
      2022-03-07
      Source Title
      European Physical Journal Plus
      Electronic ISSN
      2190-5444
      Publisher
      Springer
      Volume
      137
      Issue
      316
      Pages
      1 - 13
      Language
      English
      Type
      Article
      Item Usage Stats
      7
      views
      3
      downloads
      Abstract
      By employing PBE and B3LYP, we report a density functional theory (DFT) and TDDFT investigation of X-terminated Ge nanoclusters (where X = bromine (Br), chlorine (Cl), fluorine (F), hydrogen (H), Amino (NH2) and hydroxyl (OH)). This research reveals that surface conditions considerably change the cohesive, structural, optical, and electronic properties of germanium nanoclusters, which plays a key role in the development of nano-devices, for instance, FETs, sensors, etc. We demonstrate that full coverage of nanocluster’s surface with the above-mentioned passivants/functional groups can reduce the HOMO–LUMO gap (and optical gap), for example, up to 1 eV of [110] Ge nanoclusters of 1.5 nm diameter. The following order of magnitude of the electronic gap is observed: H > NH2 > F > Cl > OH or Br. Partial density of states and graphical representation of HOMO and LUMO show that the Br and OH groups significantly lower gap energies, which is confirmed while observing the clear dominance of Br and OH near the HOMO compared with the Ge atoms. Moreover, in addition to the electronic/optical gap, the binding/cohesive energy of OH and Halide-terminated Ge nanoclusters exhibit greater stability compared with other passivants/functional groups.
      Permalink
      http://hdl.handle.net/11693/111564
      Published Version (Please cite this version)
      https://doi.org/10.1140/epjp/s13360-022-02502-3
      Collections
      • Department of Physics 2550
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy