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Analytic Expressions for the Ultimate Intrinsic
Signal-to-Noise Ratio and Ultimate Intrinsic Specific

Absorption Rate in MRI

E. Kopanoglu,'? V. B. Erturk," and E. Atalar'?

The ultimate intrinsic signal-to-noise ratio is the highest pos-
sible signal-to-noise ratio, and the ultimate intrinsic specific
absorption rate provides the lowest limit of the specific absorp-
tion rate for a given flip angle distribution. Analytic expressions
for ultimate intrinsic signal-to-noise ratio and ultimate intrin-
sic specific absorption rate are obtained for arbitrary sample
geometries. These expressions are valid when the distance
between the point of interest and the sample surface is smaller
than the wavelength, and the sample is homogeneous. The
dependence on the sample permittivity, conductivity, temper-
ature, size, and the static magnetic field strength is given in
analytic form, which enables the easy evaluation of the change in
signal-to-noise ratio and specific absorption rate when the sam-
ple is scaled in size or when any of its geometrical or electrical
parameters is altered. Furthermore, it is shown that signal-to-
noise ratio and specific absorption rate are independent of the
permeability of the sample. As a practical case and a solution
example, a uniform, circular cylindrically shaped sample is stud-
ied. Magn Reson Med 66:846-858, 2011. © 2011 Wiley-Liss,
Inc.

Key words: ultimate intrinsic SNR; ultimate intrinsic SAR; quasi-
static

INTRODUCTION

In magnetic resonance imaging (MRI), increasing signal-to-
noise ratio (SNR) improves the quality of acquired images,
resulting in an easier diagnosis. Therefore, numerous stud-
ies have been conducted to maximize SNR in the form
of understanding the main noise sources in MRI experi-
ments and minimizing their contributions. The main noise
sources in an MRI experiment can be classified as the
preamplifier, the coil, and the sample (1). Preamplifier
noise is small when ultra-low-noise amplifiers are uti-
lized (2). Coil noise is also small in most applications (3).
Although it becomes dominant when low-field imaging
and/or small coils are used, its effect can be minimized
using superconductor or low temperature wires (4-6).
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Consequently, in the majority of MRI applications, sample
noise becomes the dominant factor in the determination of
the SNR of images.

Because the SNR of an image depends on many factors,
it may not serve as a good measure of coil performance. As
an alternative, intrinsic SNR (ISNR) has been defined by
removing the imaging parameter-dependent components
and making it dependent only on the coil structure and
the geometric and electromagnetic properties of the sam-
ple of interest. Therefore, the lowest upper bound on ISNR,
which is called ultimate ISNR (UISNR) (7), provides a solid
reference for coil performance evaluations.

On the other hand, minimization of the specific absorp-
tion rate (SAR) is fundamental in decreasing the adverse
effects on patients, and similar to UISNR, a relative mea-
sure of the lowest possible SAR, the ultimate intrinsic
SAR (UISAR) has been defined (8). Furthermore, UISNR
and UISAR are related due to two reasons: first, the
transmission field and receiver sensitivity of a coil are
related through the reciprocity principle (9,10); second, the
absorbed power in the sample that is used for SAR cal-
culations is a function of the same loss mechanism that
is responsible for the thermal noise in the UISNR calcu-
lations. This topic will be explained in more detail in
Section Ultimate Intrinsic Specific Absorption Rate and
Appendix A.

The semianalytic and analytic methods (which refer to
methods for which computational implementation is and
is not needed, respectively) in the literature for the cal-
culation of UISNR and UISAR are limited to semi-infinite
planar, spherical, and cylindrical sample geometries (7,8,
11-26). The main reason behind this limitation is the lack
of appropriate basis functions that are used to express the
electromagnetic field inside a sample. It is known that the
choice of basis functions affects the computation time and
the numerical error (8,11). The use of basis functions whose
functional form resemble the exact field decreases the nec-
essary number of modes and, hence, the computation time.
However, such basis functions are hard to find when the
sample shape is arbitrary. Nevertheless, plane waves and
cylindrical and spherical harmonics can still be employed
for arbitrary geometries. However, the required number of
modes and consequently the computation time increase
significantly for such basis functions. Furthermore, these
methods will be more prone to error (which will be referred
to in Section A Practical Implementation: Cylindrical Sam-
ples). Thus, finding an appropriate set of basis functions for
an arbitrary geometry is difficult.

Throughout the years, numerous studies have been con-
ducted in the literature about UISNR and UISAR. Ocali and
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Atalar (7) concentrated on elliptical cylinders, whereas, in
other work, the sample geometry was a cylinder with a cir-
cular cross section (12). A cylindrical geometry was also
investigated by Vesselle and Collin (13). Ohliger et al. (14)
adapted the UISNR theory to parallel imaging to investigate
the effect of acceleration for an elliptical cylindrical sam-
ple. Wiesinger et al. (15,16) studied a spherical geometry
when parallel MRI was used and showed that UISNR could
be approached using loop coils (16). Coil performance
maps, which measure the performance of actual coil arrays
with respect to UISNR, were shown in (11) for the case of
a cylindrical sample with a circular cross section for par-
allel MRI. Schnell et al. (17) investigated the performance
of various practical geometries for infinite half-space and
cylinder cases. UISNR and UISAR were studied by Lat-
tanzi et al. for cylindrical and spherical samples (8,18-20).
Eryaman et al. found the optimum SAR distribution for a
given flip angle distribution (21). All of these studies used
semianalytic methods to calculate UISNR and UISAR. In
the obtained expressions, various mathematical functions
such as Bessel functions or operations such as integrations
or matrix multiplications exist. As the static magnetic field
strength and sample-related parameters are used as argu-
ments of these functions and operations, the effect of these
parameters on UISNR and UISAR is not explicit in these
studies.

On the other hand, there are analytic studies in the lit-
erature that show explicitly the dependence of UISNR and
UISAR on sample-related parameters and the static mag-
netic field strength. In analytic studies, Hoult and Lauter-
bur (22) obtained the SNR limits for a spherical geometry,
and Wang et al. (23) and Reykowski (24,25) found the ulti-
mate SNR limits of circular and square loop coils when
the sample was a dielectric half-space or a dielectric cylin-
der, respectively. An analytic expression for UISNR when
the point of interest is the center of a cylinder was found by
Kopanoglu et al. (26). However, all of these studies (analytic
and semianalytic) were restricted to spherical, cylindrical,
and semi-infinite planar samples only. As a result, there is
no method in the literature that provides intuitive informa-
tion (i.e., shows explicitly the dependence of UISNR and
UISAR on the sample parameters and other variables) about
the UISNR and UISAR for an arbitrarily shaped sample.

Motivated by this, we present analytic expressions to
approximate UISNR and UISAR values for arbitrary sample
geometries. To derive the analytic expressions, we define
a shape and a size factor that are specific to the MRI
experiment. The shape factor depends on the coil config-
uration, the shape of the sample, and the relative position
of the point of interest (POI) in the sample. However, it is
independent of sample parameters, including the size, per-
mittivity, permeability, conductivity, temperature, nucleus
ofinterest, and the static magnetic field strength. The shape
factor can be calculated either using numerical methods, or
CAD tools, or analytic methods. The expressions for UISNR
and UISAR are derived by finding the maximum value of
the shape factor, which is for the optimal coil configuration.
Our expressions explicitly show how UISNR and UISAR
depend on the main magnetic field and on the sample-
related parameters mentioned above. It is also shown that
UISNR and UISAR are independent of the permeabil-
ity of the sample. These expressions are valid when the
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distance between the coil and the POI is smaller than the
wavelength, which is referred to as the quasi-static limit
throughout the article. As a practical case and a solution
example, UISNR and UISAR expressions are presented for
auniform and electrically small sample in the shape of a cir-
cular cylinder. Using this example solution, it is shown that
the error is below 1%, 10%, and 25%, when the coil-POI
distance is smaller than one-tenth, one-fifth, and one-third
of the wavelength, respectively.

THEORY
Quasi-Static Limit

In this article, the “quasi-static limit” means that, the dis-
tance, rs, between the source and observation points is
electrically small (i.e., with respect to the wavelength, 1))
such that the phase and amplitude variations of the elec-
tromagnetic field due to wavelength and conductivity are
negligible along this distance. This condition corresponds
to |krs] < 1 (i.e., rs « 1/]k|), where k = wg.,/j€\/1 —jtand
is the complex wavenumber, tand = o/(wge) is the loss
tangent, and ¢, | and o are the permittivity, permeability,
and conductivity of the sample, respectively. Finally, note
that throughout this article, the operating frequency is wo,
which is the Larmor frequency, and is related to the static
magnetic field strength, By, via wg = yBp where vy is the
gyromagnetic ratio.

A collection of two opposite charges that lie close to each
other in space is called an electric dipole, whereas a small
loop coil is called a magnetic dipole (27), and they are the
most basic radiating elements in electromagnetics. Hence,
any current distribution can be expressed as a collection of
either electric or magnetic dipoles or both. When their field
expressions are used without any simplifications, an elec-
tric dipole can be replaced by a group of magnetic dipoles
and vice versa (17). However, in the quasi-static limit, the
expressions can be simplified by retaining only the terms
that contribute the most, which then requires the utiliza-
tion of both types of dipoles to form a complete set of basis
functions. Note that in the quasi-static limit, the electric
and magnetic fields of an electric dipole vary with 1/r2
and 1/r2, whereas it is 1/r? and 1/r3, respectively, for the
magnetic dipole. Because the magnetic field is the source
signal and the electric field contributes to noise in MRI, the
ratio of |H/E| should be maximized for maximum SNR.
At the quasi-static limit, |H/E| varies with rs for electric
dipoles and with 1/rs for magnetic dipoles and, therefore,
approaches 0 for the former and oo the latter as the sample
size becomes smaller. As a consequence, magnetic dipoles
are the meaningful choice of radiating elements (without
any need for electric dipoles). Furthermore, it was previ-
ously shown (15,23) that magnetic dipoles can be employed
to approach UISNR. Hence, magnetic dipoles will be used
as coil elements for UISNR and UISAR calculations in the
following sections.

A special case that should be considered here is when
the sample size is comparable with the wavelength but the
distance between the POI and the surface is much smaller
than the wavelength. In such a case, it is well known that
the optimum coil structure will be a group of coils that are
as close to the POI as possible. Due to two reasons, namely,
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the decay of the field of magnetic dipoles with distance and
the conductivity of the sample, the RF power will decay to
negligible levels away from the POI into the sample. This
decay distance will be in or close to the quasi-static regime.
Hence, this behavior renders our formulation presented in
the following sections to be valid for this special case. This
argument will be supported with simulation results in the
Results section.

Electromagnetic Field Expressions and Absorbed Power

The forward-polarized received magnetic field (please refer
to Appendix A for the definition) and the electric field
inside a homogeneous sample, generated by a group of
small loop coils (magnetic dipoles) that are on the boundary
of the sample, can be expressed at the quasi-static limit:

T a* h —jkrm
Hi(w) =) —Infn(6, d)e (1]

m ~m

2f2 (6, p)]e /kim

(2]

Zwou—l [R50, ) + §fm(6. d) +

where the field expressions of a single loop coil are taken
from (27). The hat symbol denotes a unit vector, a is the
radii of the loop coils, m is the loop coil index, 1, is the
distance between the mth loop’s center and the POI, and
I, is the current passing through the mth coil. In Egs. 1-
2, fg(e, 9), f2(8, 9), (6, ¢) and fE(6, ¢) are functions of the
spherical variables, 6 and ¢. These functions, which rep-
resent the angular weights due to the position of the POI
as well as the location and orientation of the mth coil, are
not given here because this is a general solution, and exact
forms of such functions require well-defined geometries. It
should be kept in mind that any electromagnetic field dis-
tribution should satisfy the boundary conditions. For our
formulation, as the sources lay on the surface of the sample,
the boundary conditions are satisfied through the sources.
Although putting coils on the surface of the sample is not
feasible, equivalent sources that are away from the sample
can be found anytime using the Equivalence Principle (27).
Because kr;; < 1 in the quasi-static limit, the exponential
terms e /= can be neglected.

The total absorbed power in a linear medium with
conductivity o is given in (28) as the following:

P = c/ |E(r)|? dv. [3]
v

where V is the sample volume. Note that the electric
and magnetic fields are in root-mean-squared (rms) units.
Equation 3 can be cast into the following form:

P =owipta*rtp [4]
where

N

> L (grna) (pmo)

1 dv

" /1) (taf1)? 1%

(5]
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and the symbol * denotes the complex conjugate. Note that
in Eq. 5, all coil-to-POI distance terms (r, and ry,) are nor-
malized with r. Here r is the size factor of the sample and
can be chosen as a fundamental dimension of the sample.
For example, if the sample is a cylinder, r may represent
its radius; if the sample is a cube, then r may represent the
length of one of its edges. As the coil-to-POI distance terms
(r, and ry) are also dependent on the size of the sample,
rm/r and r,/r are normalized distances. Hence, the integral
is over a unit volume with the same shape as the sample,
and as a result, the parameter p has units of current squared
and is independent of the sample size. Let Hf(ry) be the
forward-polarized magnetic field at the POI where ry is the
position vector of the POI Then the rotating magnetic field
magnitude per square-root of the total absorbed power at
the POI can be defined by the following equations:

_ |Hir/[;°]| (6]
=m0ujﬁf2m e, 17
zswoiﬁf” (8]

where
Z ] fm 6, ¢) [9]

is a unitless function that depends on the POI, the shape of
the sample and the coil structure. Note that S is indepen-
dent of the size and electrical parameters of the sample,
and it will be called the shape factor throughout the paper.
Although choosing different fundamental dimensions for
the size factor affects the normalization in Egs. 5 and 9, and
therefore scales the value of the shape factor, this scaling
is canceled in Eq. 8 by the scaling of the size factor. Hence,
the value of &, which will be used for UISNR and UISAR
calculations, remains the same. For some coil structures,
the shape factor may also include electric dipole terms;
however, toward reaching UISNR and UISAR at the quasi-
static limit, these terms should be avoided as explained in
Section Quasi-Static Limit. For an arbitrary sample shape,
finding the maximum value of S can be carried out either
analytically, by CAD tools or by using optimization meth-
ods that have been previously shown (7,8). The importance
of the shape factor is that it is independent of the static
magnetic field strength, the imaging parameters and the
parameters of the sample such as the permittivity, per-
meability, conductivity, size, and temperature. Hence, the
dependence of UISNR and UISAR on these parameters
can be shown analytically, as will be done in the follow-
ing sections. The rotating magnetic field is the signal that
is used to reconstruct the images, and the total absorbed
power is related to both the noise in acquired images and
the heating in the sample; hence, & can be converted to
UISNR and UISAR as will be shown in the succeeding
sections.
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Ultimate Intrinsic Signal-to-Noise Ratio

The SNR of an image is defined point-by-point in (3,7) as
the following:

SNR = ¥T [10]

where

V/NxN,NEX .
ﬁw(n, Ty, Ty, )

[11]

and

_ \/E(DOMMO }Hr|

~ VakgTP TtV
In Eq. 11, Y contains the imaging parameters, where F
is the overall system noise figure (in terms of power), V
is the voxel volume in cubic meters, NEX is the num-
ber of image repetitions, Ny is the number of readout
points, Ny is the number of phase encoding steps, BW is
the baseband receiver bandwidth and the weight function
w(Ty, Ty, T;, o) contains the effects of the flip angle a and
the relaxation time constants Ty, To, TZ*. In Eq. 12, ¥ is the
ISNR of the coil at hand (3,7), where M, is the magnetiza-
tion density per voxel after a 90° pulse, kg is the Boltzmann
constant and T is the sample temperature. Note that ISNR
is defined point-by-point, and the ISNR of a POI at ry is
independent of the imaging parameters. The static mag-
netic field By is assumed to be along the z-axis without loss
of generality. Finally, Hi and P are the forward-polarized
received magnetic field and the total noise power, respec-
tively, where both are in root-mean-squared (rms) units. It
should be kept in mind that for SNR calculations, the mag-
nitude of the received forward-polarized magnetic field,
defined in Electric Field Expressions inside the Sample
section in Appendix B, is used. Using Eqs. 6 and 8 in Eq. 12
yields the following:

[12]

V2M,
VakgTo
Employing the definition of M, as given in reference (22)

to show explicitly the dependence on the static magnetic
field yields Eq. 14:

ISNR = Sr%5, [13]

Ny* P L(L, + 1)

J18Kk3

where N is the number of nuclear spins per unit volume, #
is the reduced Planck constant, and I, is the quantum spin
number for the nucleus of interest. Note that although the
terms of the fraction are nucleus-dependent (ex: H*, Na™,
etc.), they are independent of the sample and the coil. Fur-
thermore, S is the only term in Eq. 14 that depends on the
coil geometry, the POI and the shape of the sample with
the dependence on the coil geometry being due to the sum-
mations in Egs. 1 and 2 over the coil structure. Finding the
optimum coil structure that achieves UISNR corresponds
to finding the maximum value of S. Hence, an analytic
expression for the UISNR can be obtained from Eq. 14 as
the following:

ISNR = SByT 196705725, [14]

UISNR = cNy*L(I, + 1)SmaxBo T %67 %%r72%,  [15]
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where ¢ = 5.11 x 107%° is a constant with units J®°K%s2.
When searching for the optimum coil structure, the opti-
mization can be made either for a specific magnetic field
value at a certain POI or for a field distribution in a cer-
tain region. Note that the shape factor is the only term
in Egs. 14 and 15, and these two cases will most proba-
bly yield different coil structures and therefore different
Smax values. However, the other terms in Egs. 14 and 15
will be unaffected. Hence, Eq. 15 is valid for both opti-
mization cases. Equation 15 provides intuitive information
about how the UISNR and therefore the SNR depend on the
size, permittivity, conductivity and temperature of the sam-
ple, and the static magnetic field strength. Furthermore,
the dependence on the gyromagnetic ratio of the imaged
nucleus and the available spin density (N) are explicitly
given, and itis shown that SNR and UISNR are independent
of the permeability of the sample.

Assuming that the number of voxels is unchanged, it
can be easily shown that the dependence of the imaging
parameters on the size of the sample is T o r®, as the
voxel volume is the only size-dependent term in Y. Hence,
SNR = TV « r®®</NEX, and to obtain the same SNR
level from two identical samples that only differ in size,
the required total imaging time is given by Ty o 1/r.

When the size of the imaged sample becomes smaller, a
very small coil is sufficient to image the sample, in which
case, the total absorbed power will be limited to very low
levels. As a result, the UISNR approaches infinity, which
can be seen from Eq. 15 by taking the size term (i.e., r)
to zero. However, a single voxel would simultaneously
approach zero more rapidly (i.e., V o« r?), making the SNR
limit finite.

Ultimate Intrinsic Specific Absorption Rate

SAR is defined as the absorbed power by the sample per
certain mass of sample. Regulatory limits are defined for
1-g, 10-g and whole-body-averaged and organ-averaged
absorbed power for the head, torso, and extremities (29,30).
As mentioned in the Introduction section, the absorbed
power that is used for SAR calculations is the same power
that creates noise during signal reception. Hence, a sim-
ilar analysis can be conducted for SAR. However, there
are two fundamental differences, which do not prevent
a relation between SAR and SNR but should be taken
into account. First, the transmitted pulse may have a time
dependent envelope. Furthermore, the received forward-
polarized magnetic field is used for SNR calculations,
whereas the transmitted forward-polarized magnetic field
should be used for SAR. However, it is well known that
a coil’s forward transmission field is equal to its forward
reception field when the direction of the static magnetic
field is flipped from the positive to the negative z-direction.
Hence, the mirrored version of a transmission coil with
respect to the z-axis is a receiver coil with the same shape
factor. As a result, the forward transmission magnetic field
can be replaced by the forward reception magnetic field
without any inconvenience. Neglecting the field transients,
the transmitted RF pulse (in the rotating frame, denoted by
rot) and the electric field can be expressed as the following
equations:
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oty (r,8) = [Hi ()] g(0) [16]

E(r,t) = E(r)g(t) [17]

where Hft (r) and g(t) are the phasor domain representations
of the magnetic field and the time-dependent envelope of
the transmitted RF signal, respectively (the derivations are
given in Appendix A). Note that the envelope function is
assumed to generate a small bandwidth when compared to

the Larmor frequency. The magnetic field mtﬁ;(r, t) leads
to a flip angle distribution through the relation:

a(r, t) = yu|H (r)[g [18]
where g = fOTR g(t)dt is the time integral of the RF enve-
lope g(t) (please refer to Appendix A for details). The
time-averaged power is given by the following equations:

1 [T =

pav_ L /// o[E(r, )2 dv dt [19]
Tr Jo v
02

=5p [20]
Tg
where P is the time-independent power defined in Eq. 3,
and g2 = fOTR |g(t)|? dt is the time integral of the square
of the RF envelope. Using the definitions given in Egs.
6 and 16-20, the SAR can be expressed as the following
equations:

pav
SAR = [21]
Msample
2 2
— Zgi (Lﬁ) [22]
E msampleTR YUE

The SAR can be separated into two parts, one that contains
the imaging parameters and one that is independent of the
imaging parameters, the latter being the Intrinsic SAR:

SAR = ISAR® [23]
where
3.2
o=22 [24]
g8 Tr
and
1
ISAR = [25]

EZYZ Hzmsample

Note that, because the quasi-static assumption has not yet
been used, this ISAR definition is valid for any case. The
physical interpretation of the ISAR definition is described
as follows. The envelope of the transmitted signal and the
flip angle are imaging parameters that affect the SAR. ISAR,
on the other hand, is the total absorbed power per total sam-
ple mass for unit flip angle at a specific position ry when
the integral of the RF envelope and its square are equal to
one. Hence, it is independent of the imaging parameters
a, g, and g2. Note that, ISAR is dependent on the position
ro because unit flip angle is assumed at ry. Because the
location of the unit flip-angle is known, SAR and ultimate-
SAR can be calculated from ISAR and UISAR, respectively.

Kopanoglu et al.

Although, choosing an alternative unit flip-angle position
scales the ISAR and UISAR; values of SAR and ultimate-
SAR do not change. Similar to the ISNR, ISAR depends
only on the static magnetic field strength, the coil and
the sample. Therefore, it can be used for comparing coil
performances.

Although the concept of ultimate-ISAR was previously
studied (8), a proportional expression was given for UISAR
instead of an exact formulation. Hence, this is the first time
ISAR is defined.

At the quasi-static limit, by using Eq. 8, ISAR can be
expressed:

2.5
oBir

ISAR = ————
Insample’sZ

[26]

The only parameter in Eq. 26 that depends on the POI
location, the shape of the sample and the coil structure is
the shape factor. Hence, finding the UISAR corresponds to
maximizing the shape factor, which leads to the expression:

2.5
oBjr

UISAR = .
msampleSIznax

[27]

Maximization of the shape factor is an optimization pro-
cess, similar to obtaining UISNR from ISNR. Hence, some
constraints should be set. This can be accomplished by aim-
ing at a certain flip angle at a specific position or for a flip
angle distribution among many points inside the sample.
Methods for minimizing the SAR for a flip angle distribu-
tion or magnetic field distribution among many points have
been shown previously (8,21). Note that the constraints
should be normalized with the flip angle value used for
ISAR definition, yu|Hft[r0]|, to be consistent.

An important point is that as long as the specified field
and SAR distributions are consistent with each other, the
Smax values of UISNR and UISAR will be the same. Equa-
tion 27 provides intuitive information about the depen-
dence of UISAR on the static magnetic field strength and
the sample parameters including permittivity, conductiv-
ity, and size. Furthermore, it is shown that UISAR and
therefore SAR are independent of the permeability of the
sample.

PRACTICAL IMPLEMENTATION: CYLINDRICAL
SAMPLES

In various MRI applications, such as small animal, human
extremity and phantom imaging, the sample that will be
imaged can be modeled by a circular cylinder (Fig. 1).
Therefore, a uniform, electrically small and conductive
cylindrical sample is studied as a practical case. To arrive
at the UISNR and UISAR equations of the cylindrical sam-
ple, two different cases are considered: when the POl is on
the axis of the cylinder and when the POI is very close to
the surface. Note that single point optimizations are made
for both cases. For the POI at the center, an analytic solu-
tion is obtained similar to (26). When the POI is very close
to the surface, the problem is equivalent to a semi-infinite
planar sample case and is replaced with the latter to find
UISNR and UISAR equations for the semi-infinite planar
case. Then the two cases are combined using asymptotic
methods into two equations for UISNR and UISAR of the
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FIG. 1. Geometrical structure of the studied practical sample. Ry,
L, o, ¢, and p are the radius, length, conductivity, permittivity, and
permeability of the sample, respectively. p is the radial distance from
the axis of the cylinder to the POI. The region titled “coil” shows a
possible location of the RF coil for better visualization of the struc-
ture, not the exact shape or position. d is defined as d = 1 — p/Rp.
d = 1 corresponds to the axis of the sample, whereas d = 0 and
d = 0.5 correspond to the surface and the half-way point between
the surface and the axis of the cylinder, respectively.

cylindrical sample. For all of these cases, the resulting
UISNR and UISAR expressions are in the same form as Egs.
15 and 27.

Analytic expressions for UISNR and UISAR in a cylindri-
cal sample when the POl is on the axis are found as follows:
For a cylindrical sample aligned with the z-axis, the elec-
tric and magnetic field components along the z-axis are
expressed using the cylindrical wave expansion as given
in Ref. (31) and in Egs. B.1 and B.2. Then the transverse
components of the electric and magnetic fields are derived
from the z components in Eq. B.3 with the aid of Maxwell’s
Equations (32). The received forward-polarized magnetic
field is defined in Eq. B.5, and the total absorbed power is
given in Eq. B.9. The minimum noise power for a preset
signal strength is obtained using the Lagrange Multipliers
Method (33) in Power Definition section in Appendix B
(Eqg. B.22). By substituting Eq. B.23 into Eq. 13, an analytic
UISNR expression can be obtained for the cylindrical sam-
ple when the POl is on the axis of the cylinder. Similarly, by
using Egs. 25 and B.23 together, an analytic UISAR expres-
sion can be achieved. The shape and size factors, (i.e., S
and r) are obtained as S = 1.035 and r = Ry, where Ry
is the radius of the cylinder. In (24), Reykowski found a
similar expression with & = 0.9545 and r = Ry.

When the POI approaches the surface, an extremely con-
fined field distribution created by a minute coil close to the
POI is sufficient to create a signal at the POI. In that case,
the effective sample seen by the coil will be a semi-infinite
plane. By employing the semianalytic method given in
Ref. (12), the size factor r is found to be equal to the dis-
tance between the POI and the surface, and the shape factor
S is obtained as 0.466 for a semi-infinite planar sample.
However, as mentioned in the introduction, the choice of
basis functions affects the numerical error, and therefore
the results, significantly. Because we performed a cylin-
drical wave expansion for a planar structure, the required
number of modes is very high, and the shape factor has a
numerical error ~10%. In Ref. (23), this sample shape was
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also studied and the analytical result presented (23) corre-
sponds to a shape factor value of S = 0.423. For the rest of
our derivations, this shape factor will be used.

By employing asymptotic methods, the results for the
semi-infinite planar and cylindrical samples can be com-
bined into two equations given by the following:

UISNR = cNy*L(I, + 1)S3 By T~ 5605 R 2
oB2R}

Mgample (Slcg;lx) s

where anyalx = 0.953,/1 + (0.723/d)5. Note that the above

equations are in the same form as Eqs. 15and 27. d = 1—rp/
Ry is defined as the normalized distance between the POI
and the surface of the sample (which is normalized with
respect to the radius of the sample), and ry is the radial
distance between the POI and the axis of the cylinder. Note
that d is a parameter between 0 and 1, and it is independent
of the size of the sample.

(28]

UISAR = [29]

RESULTS

The analytic UISNR expression is compared with the semi-
analytic method presented by Celik et al. (12). The percent
error in the analytic expression is defined as the following:

UISNRg.a,

error% = 100 [30]
where UISNR; . denotes Celik’s semianalytic method solu-
tions, and UISNR, denotes the analytic expression given
in Eq. 28. For arriving at the analytic expressions, it was
assumed in Section Quasi-Static Limit that the distance
between the surface and the POI is smaller than 1/|k|.
To observe the effect of this assumption on the error, the
error curves in Figures 3 and 4 are plotted with respect to
the normalized distance between the POI and the surface
with respect to the wavelength. The wavelength and the
wavenumber are related by the following equation:

27 1
= = )
Mk} wo/meR{,/1 —jtans}

Figure 2 shows the behavior of UISNR when the loca-
tion of the POl is varied radially. Note that the vertical axis
is in logarithmic scale for better understanding, and the
UISNR values are normalized with respect to the value on
the axis of the sample. The first important point is that the
triangles, which show the data points obtained with Celik’s
method (12) stop at d = 0.15. This is because the semian-
alytic method is vulnerable to numerical error when the
POI approaches the surface. Note that because this method
is used as the reference with which the error rates are calcu-
lated, the range of d values for this and the succeeding plots
are limited. Similarly, Reykowski did not calculate UISNR
for d < 0.15 due to numerical error either (25). Instead, an
analytic expression was obtained using asymptotic meth-
ods (25) that is employed here. Although the semianalytic
methods fail, Reykowski’s and our analytic expressions
yield robust calculations for any POI location. The advan-
tage of our analytic expression over Reykowski’s method
is that the dependence of UISNR on the geometrical and

[31]
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FIG. 2. UISNR values normalized with respect to the UISNR on the
axis of the cylinder. The horizontal axis shows the distance between
the POI and the surface normalized with respect to the radius of the
cylinder, i.e.,d = 1—p/Ry. The distributions are valid for any sample
parameter and field strength, as long as the distance between the
POI and the surface is smaller than the wavelength, i.e., dRg <« .

electrical properties of the sample are given explicitly for
any POI location, whereas in Reykowski’s method (24,25),
the dependence on sample properties is given only when
the POl is at the center. Although our expression has some
error when the POI is at the middle region of the sample,
the error drops to negligible levels toward the axis and the
surface of the sample. The maximum error was calculated
to be less than 10% in our formulation.

Another important point for Fig. 2 is that the UISNR
increases steeply toward the surface of the sample,
approaching infinity at the surface. This is expected
because when the POI is very close to the surface, a minute
coil is sufficient to image the POIL With such a coil, the
absorbed power is confined to an extremely small region
around the POI, increasing the SNR significantly.

Figure 3 shows the error in the analytic expression given
in Eq. 28 for various loss tangent values. It should be noted
that loss tangent can be converted to conductivity using the
formulation given in Section Quasi-Static Limit. Although
they do not correspond to any tissues at MRI frequencies,
tan(8) = 0.1 and tan(3) = 100 values are employed to illus-
trate the limits of the error curves. Increasing or decreasing
the loss tangent beyond these values does not alter the
curves significantly, and leads to numerical error in the
semianalytic method given in Ref. (12). The error curves are
independent of the main magnet strength and the electrical
parameters of the sample, but they depend on the combi-
nation of these parameters. Therefore, as long as the loss
tangent is the same, the error behaviour is the same. Hence,
any curve can correspond to an infinite number of permit-
tivity, conductivity and frequency combinations. One of
these combinations for the tan(8) = 1.4 curve is a static
magnetic field strength of 1.5 T, a conductivity of 0.4 S/m
and a relative permittivity of 80, which are average human
body parameters at 64 MHz (34,35). For these parameters
and an error margin of 20%, the obtained UISNR expres-
sion is valid as long as dRy < /4, which corresponds to
a POI depth of ~15 cm. For this plot, the POI is assumed
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FIG. 3. The error in the analytic UISNR expression calculated by
Eqg. 30. The horizontal axis is the distance between the POl and
the surface in terms of the wavelength (i.e., a value of 0.1 means the
distance is one-tenth of the wavelength); hence, the curves represent
the error behavior regardless of the field strength. The curves are for
various loss tangent values. tan(3) = 0.1 and tan(3) = 100 curves
are the approximate limits even though they do not correspond to
any tissue parameters at MRl frequencies. Although tan(s) = 1.4 and
tan(8) = 2.1 curves can represent an infinite number of permittivity,
conductivity, and frequency combinations, two examples are ¢ =
0.4S/m and ¢ = 0.6 S/m, respectively, for a relative permittivity of
80and By =1.5T.

to be on the axis of the cylinder; however, the effect of the
location of the POI is insignificant, as will be discussed in
the succeeding paragraph.

For various sample sizes and POI locations, the error in
the analytic UISNR expression is shown in Fig. 4, where the

100,
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o w (=0.5
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dR /A

FIG. 4. The error in the analytic UISNR expression calculated by
Eqg. 30. The horizontal axis is the distance between the POI and the
surface in terms of the wavelength (i.e., a value of 0.1 means the
distance is one-tenth of the wavelength); hence, the curves repre-
sent the error behavior regardless of the field strength. The curves
illustrate the behavior of the error when the POI location is altered
inside the sample.
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Table 1
Parameters for Some Tissues in the Human Body for 1.5T and 3T
Static Magnetic Field Strengths (35)

1% Error  10% Error  25% Error
€r o Bo IS distance distance distance
(F/m)  (S/m) (M) (cm) [cm] [cm] [cm]
80 0.4 1.5 404 2.7 8.9 15.5
60 0.5 3.0 239 1.6 5.0 8.5
110 0.5 1.5 34.9 2.3 7.7 13.0
70 0.7 3.0 216 1.5 4.7 8.1
80 0.6 15 375 2.7 9.2 38.0
60 0.8 3.0 222 1.6 5.2 10.5

The first two rows are for liver tissue, the third and fourth rows are
for brain tissue, and the last two rows are for muscle tissue. The
columns are for relative permittivity, conductivity, static magnetic
field strength, wavelength, and the distances at which the error of
Eqg. 28 is 1%, 10%, and 25%, respectively. When calculating the
error, a cylindrical sample composed of only one type of tissue is
assumed.

horizontal axis is the ratio of the distance between the POI
and the surface to the wavelength (i.e., electrical length). It
can be seen that the error is only slightly affected when the
POI location varies. Evaluating this slight change with the
behavior of the error given in Fig. 3, it can be concluded that
the effect of the loss tangent is much higher than the POI
location, and the electrical length rather than the metric
distance between the POI and the surface is a determin-
ing factor. Another important point is that if the POI is at
the center, i.e., d = 1, a sample with radius Ry = /2 has
50% error when the analytic expression is used. For the
same sample, when d = 0.15 however, dRy/\ = 0.075, and
the error is negligible. This supports the argument that the
obtained expressions are valid for samples that are compa-
rable with the wavelength if the distance between the POI
and the surface is much smaller than the wavelength.

In Table 1, the error in Eq. 28 is given for human brain,
muscle and liver tissue parameters (35). Note that a cylin-
drical sample that is composed of only one type of tissue
is assumed for the calculations. It is known from Figs. 3
and 4 that when the distance between the surface and the
POI is smaller than %/10, the error is negligible. However,
for SNR calculations in MRI, larger error margins such as
10% or 25% can be employed. When the distance between
the surface and the POI is close to \/5, the error becomes
10%. When the error margin is 25%, the expressions can
be used at distances up to slightly above %/3, as shown in
Table 1. As an example, when a cylindrical sample with
liver parameters is imaged, UISNR of a point at a depth of
15cm can be calculated with less than 25% error. When
a similar sample with muscle properties is imaged, the
expressions yield less than 25% error even at a distance
of one wavelength. However, it should be kept in mind
that these are example calculations. In real-life, the human
body is neither cylindrical nor homogeneous, and the tis-
sue parameters may differ from person to person; hence,
these error rates may be different.

DISCUSSION AND CONCLUSIONS

In this study, analytic expressions for the UISNR and
UISAR were derived. The expressions are valid as long as
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the distance between the surface and the POI is smaller
than the wavelength, which is referred to as the quasi-static
limit. The expressions are independent of the shape of the
sample that is to be imaged.

In the course of arriving at the analytic expressions, size
and shape factors of a sample and coil geometry are defined.
The shape factor depends on the geometrical shape of the
sample and the coil structure. Hence, it is specific to the coil
and sample combination. Finding the maximum value of
the shape factor for all theoretically possible coil structures
yields the UISNR and UISAR from the ISNR and ISAR ofthe
sample of interest. The size factor, which is independent
from the coil geometry and the sample’s shape, explicitly
shows the scaling of ISNR and ISAR (hence UISNR and
UISAR) with any variations in the size of the sample. The
shape factor is defined for the first time to the best of our
knowledge. Although the dependence on the size factor
was previously shown for specific geometries, it is defined
for an arbitrarily shaped sample for the first time.

The derived expressions explicitly show the dependence
of UISNR and UISAR on the static magnetic field strength
and sample properties including the size, permittivity, con-
ductivity, and temperature. Furthermore, it is shown that
UISNR and UISAR are independent of the permeability of
the sample.

Using the relations between SNR and ISNR and those
between SAR and ISAR that are given in the article, the
dependence of SNR and ultimate-SNR and that of SAR and
ultimate-SAR on the shape and size factors and any of the
other affecting parameters can be obtained easily.

The strongest aspect of the expressions given in this arti-
cle comes into picture when there is a known value for
SNR, SAR, UISNR, or UISAR that is obtained by experi-
ment or by simulation. Then, these parameters can easily
be calculated for a similar sample shape when any affecting
parameter is altered.

Previous studies of UISNR and UISAR in the litera-
ture use optimization methods to find the UISNR and/or
UISAR for either certain field/SAR distributions in the
sample or certain field/SAR values at specific points. The
given expressions in this article are valid for both cases.
Furthermore, UISNR and UISAR were defined in the lit-
erature to form coil performance maps to evaluate coil
performances and determine room for improvement. The
proposed expressions can be employed for this purpose as
well.

For specific geometries of interest, the dependence of
UISNR on the size of the sample, i.e., r~2%, was shown.
Hoult and Lauterbur (22) show the same dependence for
a spherical sample for low frequencies, in which the size
factor is the radius of the sphere. For a semi-infinite pla-
nar sample at the quasi-static limit, Wang et al. (23) show
that UISNR has the same dependence in which the size
factor is the distance of the POI to the surface of the sam-
ple. For a cylindrical sample, Macovski (36) has shown that
the noise generated is proportional to rZ+/I, where 1y is the
radius, and / is the length of the cylinder. This corresponds
to the ISNR part of the SNR formulation scaling with —2.5th
power of the size of the cylinder. Furthermore, the ultimate
SNR was shown to vary with the —2.5th power of the radius
of a cylindrical sample when the POl is at the center (24,26).
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These five studies show the same dependence on the size of
the sample with our formulation but for specific geometries
of interest.

The main limitation of the expressions given in this arti-
cle is that the samples are assumed to be homogeneous
during the derivations. Hence, it should be kept in mind
that in real-life scenarios, samples are generally not homo-
geneous. Furthermore, if the distance between the POI and
the surface is not in the quasi-static limit, the method
introduces some error.
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APPENDIX A: ROTATING MAGNETIC FIELD DEFINITION
Phasor Domain

Assuming that the static magnetic field is along the z-
axis, a general expression for the transverse magnetic field
is H(t) = X/2|Hx| cos(wot — Wx) + §v/2|Hy| cos(wot — ry)
where Hy = |Hyle™¥x and H, = |Hyle Vv are the root
mean square (rms) phasors of the magnetic field compo-
nents along the X and ¥y axes, respectively, with |H| and
|Hy | being the magnitudes and ¥ and 1, being the phases
of the x and y components. With respect to the z-axis, this
magnetic field can be separated into its left-hand and right-
hand rotating components. During RF transmission, the
right-hand-polarized component does not affect the spins,
and only the left-hand component is of interest, which can
be written as the following:

O H, X cos(wot — Yx) — ¥sin(wot — Yy)
() = |Hy| 7z
| y cos(wot — V) + X sin(wot — Py) (A1)

NG

where the subscript ; and the superscript ! denote for-
ward and transmission, respectively, meaning that this field
excites the spins when used in transmission mode (37).
In the phasor domain, the vector for the rms forward-
polarized magnetic field can be written as H} = El}Hft where
é; = (X + j¥)/+/2 is the forward-polarized unit vector (38),
and the peak scalar forward-polarized transmission field
H{ is given by H{ = Hy — jH,. The rms field is given by the
following:

Hy—jHy _Hy—jHy _jy
V2 V2

In Eq. A.2, H, and Hy are the magnetic field components
along p and ¢ axes of the cylindrical coordinate system,
which are related to the cartesian coordinate counterparts
by H, = Hycos(¢) + Hysin(¢) and Hy, = —Hysin(¢) +
Hy cos(¢). Similarly, the right-hand-polarized magnetic

Hf = [A.2]
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field during transmission is denoted by H} where the sub-
script ; denotes reverse-polarization. The reverse-polarized
rms magnetic field and the associated unit vector are given
by the following equation:

H — Hy + jHy _ H, + jH, ot
r V2 V2

and ﬁi = (X — j¥)/+/2. However, in signal reception, the
forward-polarized unit vector is given by a; = [X cos(wot) +
jlsin(wot]]/ﬂ for correct signal demodulation. Hence, in
the phasor domain, the forward- and reverse-polarized unit
vectors for reception are given by a; = (X —j§)/+/2 and & =
(X + j§)/+/2. Hence, the corresponding field expressions
become the following:

Hy+jHy _ Hy+jHy

T __
f V2 V2 A3
o = Hy _ij _ Hp —jH¢ e o .
r V2 V2

Rotating Frame

For SNR calculations, a time-independent analysis can be
conducted, whereas for SAR calculations, the envelope of
the transmitted signal should also be considered. Letting
g(t) represent the envelope of the transmitted RF signal,
the transmitted forward-polarized magnetic field can be
expressed as the following:

X cos(wot — Ux) — ¥ sin(wot — Vx)
V2
y cos(wot — Py ) + X sin(wet — Py)

NG

It is common practice to call the x-axis the real axis, and
the y-axis the imaginary axis, as suggested by the Argand
diagram. Then by letting ¢t = 0 to transform the lab frame to
the rotating frame, the magnetic field in the rotating frame
is the following:

H; (1) = |Hylg(t)

+ [Hylg() [A.4]

‘Hxleiwx "’]‘|Hy|6'ill]y

ot Hy(t) = 7 g() [A.5]
_ H; +jH;
= 7\/5 gl(t) [A.6]
= (H}) g(®) [A.7]

Hence, using the definitions given in (1), the flip angle is
defined in terms of the phasor domain rms magnetic field
as Eq. A.8:

gt dt [A.8]

alr, ) = yu|Hf| /

pulse

APPENDIX B: CYLINDRICAL SAMPLES

In this section, the rotating magnetic field magnitude per
square-root of the total absorbed power for a cylindrical
sample will be found using cylindrical basis functions.
The reasons for the choice of basis functions are two-
fold. First, the accuracy increases because the functions are
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more suitable to the geometry of interest (as mentioned in
the Introduction). Second, it is shown that starting with a
full-wave solution and then making a quasi-static assump-
tion leads to the same dependence on sample properties
as starting with the quasi-static assumption and using the
corresponding basis functions.

Electric Field Expressions inside the Sample

Consider a circularly cylindrically shaped, isotropic and
homogeneous sample with the complex propagation con-
stant k = \/—jwop(o + jowoe). Z-components of the electric
and magnetic fields inside this sample can be found by
solving the source-free Helmholtz Equation, yielding the
following equations (31):

E,(p,¢,2) = Z ZAmn/m (kpp)e™ e T2 [B.1]
H,(p,¢,2) = Z Z —~BumnJm(k,p)e™ 152 [B.2]

m=—00 N=—00

where m and n are the rotational and longitudinal mode
numbers, respectively, L is the sample length, k, =

k? — (2mtn/L)? is the radial propagation constant, and the
Jm(kyp) terms are cylindrical Bessel functions of the first
kind and order m with Ap, and Bp,, being the correspond-
ing field coefficients. Y, (k,p) terms (Bessel functions of the
second kind and order m), which are also solutions to the
Helmholtz equation, cannot be included because the region
of interest in this study includes p = 0 and Y;,(0) — oo.
Using Egs. B.1-B.2 and applying Maxwell’s equations as
given in Ref. (32), the transverse field components can be
obtained and put into matrix form:

E(p,¢,z) = Z Z [p 4) z]leEmnamnelmd)eﬂ 4tz
- [B.3]
where
]27[11 , mk?
] ( ] O_,pkg]m(kpp)
Enn(p, d,2) = | 2nnm jk?
——Jm(k,p) (Ko p)
Lok? Jmlop) g gInlle [B.4]
L ]m(kpp) 0 3x2
a _ -Amn]
o -an 2x1

and o/ = o + jwee. In B.3, Ey, contains the cylindrical
expansion functions for the electric field in f),cf),i direc-
tions for modes (m, n), and a;,, contains the corresponding
coefficients.

Implementing the magnetic field components derived
using Maxwell’s Equations from Eq. B.2 into A.3, the
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total forward-polarized magnetic field (in reception) can
be found:

o0 o0 1
Hi(p,¢,2) =
f(P¢ ) n;mm;mﬂkp
2 va
X (jo,Amn‘f' zn mn)]m+1(k p)el(mﬂ be ST
= Z Z bunamn [B.5]
where
1 27tn 2nn
bn = —— |jo' | T (kp)el ™ 006 [BL6
e T maten [B.6]

are the rotating magnetic field expansion functions. Sim-
ilarly, the forward-polarized rotating magnetic field in
transmission can be obtained:

o0 o0

1
Hft(P,d),Z]: Z Z E
n=—00 Mm=—00 (3

- <i<f’Amn - than Jino1 Ky )/ V022 [B.7]

Power Definition

Using Eq. B.3 in Eq. 3, the absorbed power in a uniform
cylindrical sample becomes the following:

L/2 2n prRy
/ / / oE"(p.$.2) - E(p, 6, 2)pdpdddz [B.8]
0

L/2 Jo

where superscript H denotes the Hermitian (i.e., complex
conjugate transpose) operator and “-” is the standard dot
product (28). In Eq. B.8, there are four summations, namely
over m, n, m’’, and n’ such that cross-correlation terms can
be calculated. However, due to the exponential functions
along z and ¢ in Eq. B.3, the correlation of two electric field
modes (m, n) and (m’, n’) is zero, unless m = m’ and n = r/,
which leads to k, = k;. Thus, the summations over m and
n are sufficient. Furthermore, the exponential terms can-
cel out due to the Hermitian operation. The integrals can
be interchanged with the summations over the modes and
after making some algebraic manipulations the absorbed
power is expressed as the following:

0 L/2 p2n pRo

PO AN

0 0

H
= 2. 2 @mRmam
— m=—00

all g Emnamn)opdpdd dz

mn-mn

[B.9]

where Ry, is @ 2 x 2 matrix and is given by the expression:
L/2 2n rRy
R [ L
LzJo  Jo

Ro
= chL/ EgnEmnpdp.
0

nEmnopdpd¢ dz.

[B.10]
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To maximize SNR and/or minimize SAR, § = Hf /«/1E
should be maximized. Thus, either the absorbed power
should be minimized, or the signal (i.e., the rotating mag-
netic field Hf) should be maximized. In this study, the mag-
netic field at the POI is fixed, and the minimum possible
power is found with the Lagrange Multipliers Method (33)
using the same approach that was previously employed
in Refs. (7,12). The resulting expression for the minimum
absorbed power is Eq. B.11:

-1
Poin = |: Z Z bmnRI_n;bgnj| |Hfr}2.

N=—00 m=—00

[B.11]

Implementing Enn(p, ¢, z) from Eq. B.4 into B.10 and using
the resulting expression with by, from B.6 in B.11, the
minimum absorbed power can be expressed as Eq. B.12:

-1
— Z Z [Jmsa( ppl Guum(m, n) |Hr|2
Pnin [PV 47[0L|k |2 Gden( m, n) f
[B.12]
where
Gnum (m, n)

1 4 2nn\* 2nn Zs,‘ )
—EQ(m—l,n] [Ikl +<T) +2<T> Rk }}

1 . (27mn\* 2nn\* . .,
+5QUm+1,n) [|1<| +<T> _2<T> Rk }}

2
+ Q(mn, n) 2k, [B.13]
@amm:%wwﬁQmem—Lm
+ Q(m,n)Q(m+1,n)+2Q(m — 1,n)Q(m + 1,n)] [B.14]
and
Ro
QUm.n) = f mlkop) 2 dp, [B.15]
0

with 9{k?} being the real part of k2. Using the following
identity [given in (39)]:

Ro
Jn (ko) (kop)p dp

0
=0 {kp]m (k; p)]m+l (kpp)
[B.16]

Q(m, n) is found in closed-form as the following:
N R
49k, 15k, }
X {kp]m (k; Ho)]m+1 [kpBO)

where J{k,} is the imaginary part of k,. Performing a
series expansion for each Bessel function and making

Q(m, n) =

— K, Jm(ky Ro)ms1 (K; Ro) }

= K} Tkl i1 (K5 0)} o
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some algebraic manipulations, Q(m, n) can be expressed
as Eq. B.17

00 00 4b+2a+2|m|

51 kH

02

a=0 b

(a+1)?
“ b T mb rar DbTarismy B

It should be kept in mind that k, is a function of n in B.17.
If the object is smaller than the wavelength (L <« %), the
conductivity is not very high [a valid assumption for sam-
ples that are imaged using MRI (34,35)] and n # 0, then
the longitudinal propagation constant 2rnn/L becomes very
large in magnitude compared to the wavenumber k. Hence,
the approximation k, >~ —j2nn/L can be made. To guaran-
tee that the electromagnetic field decays as it propagates
in the transverse plane away from the axis of the sample,
the negative branch of the square root is chosen. On the
other hand, when n = 0, the field propagates only radi-
ally, yielding k, = k. In this case (i.e., n = 0), due to the
assumptions that Ry « L <« ) and |k,Ro| < 1, retaining
only the first terms of the summations (@ = b = 0) in B.17
yields converged results. Expressing L/Ry as ¢, Q(m, n) is
obtained:

R2f(m, n) ifn#0
Q(m,n) = o 2/m| 1
Roremil _—____~  _ ifn=o0
o 20Z] Qmpaimp
[B.18]
where

1 00 00 xn 4b+2a+2|m|
mn
)= zzzg( )

a=0

8 (a+1)?
BB+ m)b+a+1)(b+a+1+|m|)!

[B.19]

In most applications, the region of interest in MRI imaging
includes the axis of the object to be imaged. Furthermore,
it was previously shown that for external coils, UISNR is
lowest on the axis (12). To find the lowest upper bound
on the ISNR, the POI is selected to be on the axis of the
sample. On the axis of the object to be imaged, all rotational
modes of Hf (given by Egs. B.5-B.6 in Appendix B), except
m = —1, contribute to the noise (Power Definition section
in Appendix B, Egs. B.9-B.10) but not to the signal. Thus,
when the optimum field coefficients for the maximum SNR
on the axis are calculated, only the m = —1 mode has a
nonzero coefficient. Using this fact, the infinite summation
over m can be avoided by retaining only m = —1. As a
result, the minimum absorbed power on the axis (p = 0)
can be expressed:

1
Prin,axis = G(wOM)ZHg ) |HH2 [B.20]

2n=—o0 (=1, 1)
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where

(f(0,n) + f(=2,n) + 2f(-1,n))
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2
h(—l,n]=ic <T) (f(=1,n)f(0,n) + f(—1,n)f (-2, n) + 2f(0, n)f (-2, n))’

For a lossy medium (i.e., o # 0), the electromagnetic
field decays as it propagates. For the range of conductivity
values that are encountered in MRI (34,35), the length at
which the electromagnetic field decays to negligible levels
is found to be L > 4Ry. Hence, if this condition is met, the
sample’s length does not affect the absorbed power and,
hence, the SNR. Furthermore, due to the factorial func-
tions in the denominator of Eq. B.19 and the order of the
denominator of Eq. B.21 being higher than the numerator,
the infinite summation over the longitudinal mode num-
ber n that appears in the denominator of B.20 converges
rapidly to a constant with a finite number of longitudinal
modes. The authors observed that the necessary number
of modes is ~ 25 when the POI is on the axis, which can
increase to above 200 when the POI approaches the surface.
Furthermore, when the POI moves away from the origin,
the required number of circumferential modes increases to
approximately 250 when the surface is approached. When
the POl is very close to the surface, numerical error is intro-
duced into the calculations because the expansion is for
cylindrical structures, and the effective medium seen is a
semi-infinite plane (which is addressed in Section Practical
Implementation: Cylindrical Samples). Even if the condi-
tion L > 4R, fails, the error it introduces remains below
5%. Replacing the summation in Eq. B.20 by the obtained
constant value, the minimum absorbed power expression
given by B.20 can be expressed:

2
Prin,axis = 0.93320(wop)*Ry |HF | [B.22]
Then, the rotating magnetic field magnitude per square-root

of total absorbed power at the POI, which was defined in
Eq. 6, can be expressed:

1 1
= Smax—=R,
max (DOM\/E 0

z5 [B.23]
0.93320(wo)?R3

where the shape factor is Spax = 1.035, and the size factor
is the radius of the cylinder.

REFERENCES

1. Prince JL, Links JM. Medical imaging signals and systems. Pearson
Prentice Hall: New Jersey; 2006.

2. Mueller OM, General Electric. Unconditionally stable ultra low noise
RF preamplifier. US Patent 4,835,485 (1989).

3. Edelstein WA, Glover GH, Hardy CJ, Redington RW. The intrinsic signal-
to-noise ratio in NMR imaging. Magn Reson Med 1986;3:604—618.

4. Seton HC, Hutchison JMS, Bussell DM. A 4.2 K receiver coil and SQUID
amplifier used to improve the SNR of low-field magnetic resonance
images of the human arm. Meas Sci Tech 1997;8:198-207.

5. Wright AC, Song HK, Wehrli FW. In vivo MR micro imaging with
conventional radiofrequency coils cooled to 77K. Magn Reson Med
2000;43:163-169.

ifn#0 [B.21]

ifn=o0.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Black RD, Early TA, Roemer RP, Mueller OM, Mogro-Campero A, Turner

LG, Johnson GA. A high-temperature superconducting receiver for
nuclear magnetic resonance microscopy. Science 1993;259:793-795.

. Ocali O, Atalar E. Ultimate intrinsic signal to noise ratio in MRL. Magn

Reson Med 1998;39:462—473.

. Lattanzi R, Sodickson DK, Grant AK, Zhu Y. Electrodynamic constraints

on homogeneity and radiofrequency power deposition in multiple coil
excitations. Magn Reson Med 2009;61:315-334.

. Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic

resonance experiment. ] Magn Reson 1976;24:71-85.

Hoult DI. The principle of reciprocity in signal strength calculations—a
mathematical guide. Concepts Magn Reson 2000;12:173-187.

Lattanzi R, Grant AK, Ohliger MA, Sodickson DK. Measuring practical
coil array performance with respect to ultimate intrinsic SNR: a tool for
array design and assessment. Proceedings of the 14th Annual Meeting
of ISMRM, Seattle, Washington, USA, 2006. p. 424.

Celik H, Eryaman Y, Altintas A, Abdel-Hafez IA, Atalar E. Evaluation
of internal MRI coils using ultimate intrinsic SNR. Magn Reson Med
2004;52:640-649.

Vesselle H, Collin RE. The signal-to-noise ratio of nuclear magnetic
resonance surface coils and application to a lossy dielectric cylinder
model-part I: theory. IEEE Trans Biomed Eng 1995;42:497-506.
Ohliger MA, Grant AK, Sodickson DK. Ultimate intrinsic signal-to-noise
ratio for parallel MRI: electromagnetic field considerations. Magn Reson
Med 2003;50:1018—1030.

Wiesinger F, De Zanche N, Pruessmann KP. Approaching ultimate SNR
with finite coil arrays. Proceedings of the 13th Annual Meeting of
ISMRM, Miami Beach, Florida, USA, 2005. p. 672.

Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate
SNR in parallel MR imaging. Magn Reson Med 2004;52:376—390.
Schnell W, Renz W, Vester M, Ermert H. Ultimate signal-to-noise-ratio of
surface and body antennas for magnetic resonance imaging. IEEE Trans
Antennas Proping 2000;48:418—428.

Lattanzi R, Grant AK, Sodickson DK. Approaching ultimate SNR and
ideal current patterns with finite surface coil arrays on a dielectric
cylinder. Proceedings of the 16th Annual Meeting of ISMRM, Toronto,
Ontario, Canada, 2008. p. 1074.

Lattanzi R, Sodickson DK. Dyadic Green'’s functions for electrodynamic
calculations of ideal current patterns for optimal SNR and SAR. Pro-
ceedings of the 16th Annual Meeting of ISMRM, Toronto, Ontario,
Canada, 2008. p. 78.

Lattanzi R, Grant AK, Polimeni JR, Ohliger MA, Wiggins GC, Wald
LL, Sodickson DK. Performance evaluation of a 32-element head array
with respect to the ultimate intrinsic SNR. NMR Biomed 2010;23:
142-151.

Eryaman Y, Tunc CA, Atalar E, Minimum SAR for RF shimming
by allowing spatial phase variation. Proceedings of the 17th Annual
Meeting of ISMRM, Honolulu, Hawaii, USA, 2009, p. 4777.

Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experi-
ment involving human samples. ] Magn Reson 1979;343:425-433.
Wang J, Reykowski A, Dickas J. Calculation of the signal-to-noise ratio
for simple surface coils and arrays of coils. IEEE Trans Biomed Eng
1995;42:908-917.

Reykowski A, Wright SM. The SNR of the idealized birdcage resonators
and the SNR limit for infinite cylinder arrays. Proceedings of the 3rd
Annual Meeting of ISMRM, Nice, France, 1995. p. 974.

Reykowski A. Theory and design of synthesis array coils for mag-
netic resonance imaging. Dissertation, Texas A&M University, December
1996.

Kopanoglu E, Erturk VB, Atalar E, A closed-form expression for ultimate
intrinsic signal-to-noise ratio in MRI, Proceedings of the 17th Annual
Meeting of ISMRM, Honolulu, Hawai’i, USA, 2009, p. 2975.

Balanis CA. Antenna theory analysis and design, 3rd ed. Wiley: New
Jersey, 2005.



858

28.

29.

30.

31.

32.
33.

Cheng DK. Fundamentals of engineering electromagnetics. Pearson
Addison Wesley: Massachusetts, 1993.

IEC, International Standard, Medical equipment — part 2: particu-
lar requirements for the safety of magnetic resonance equipment for
medical diagnosis, 2nd revision, 601-2-33. International Electrotechni-
cal Commission, Geneva, 2002.

FDA, Guidance for the Submission Of Premarket Notifications for
Magnetic Resonance Diagnostic Devices, November 14, 1998.
Schelkunoff SA. Electromagnetic waves. Bell Telephone Labs Series,
New York, 1943.

Pozar DM. Microwave engineering. 3rd Ed. Wiley: Massachusetts, 2005.
Thomas GB Jr, Finney RL. Calculus and analytic geometry. Addison
Wesley: Massachusetts, 1998.

34.

35.

36.
37.

38.

39.

Kopanoglu et al.

Geddes LA, Baker LE. The specific resistance of biological material—a
compendum of data for the biomedical engineer and physiologist. Med
Biol Eng 1967,5:271-293.

Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological
tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys
Med Biol 1996;41:2251-2269.

Macovski A. Noise in MRI. Magn Reson Med 1996;36:494—497.

Celik H, Uluturk A, Tali T, Atalar E. A catheter tracking method using
reversed polarization for MR-guided interventions. Magn Reson Med
2007;58:1224-1231.

Wright SM, Wald LL. Theory and application of array coils in MR
spectroscopy. NMR Biomed 1997;10:394—410.

McLachlan NW. Bessel functions for engineers. Oxford Engineering
Science Series; The Clarendon Press, Oxford, 1955.



