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Abstract— The current state-of-the-art error control of the
multilevel fast multipole algorithm (MLFMA) is valid for any
given error threshold at any frequency, but it requires a
multiple-precision arithmetic framework to be implemented.
In this work, we use asymptotic approximations and curve-fitting
techniques to derive accurate closed-form expressions for the
error control of MLFMA that can be implemented in com-
mon fixed-precision computers. Moreover, using the proposed
closed-form expressions in conjunction with the state-of-the-art
scheme, we report novel design curves for MLFMA that can be
used to determine achievable error limits, as well as the minimum
box sizes that can be solved with a given desired error threshold
for a wide range of machine precision levels.

Index Terms— Error analysis, low-frequency breakdown, mul-
tilevel fast multipole algorithm (MLFMA), multiple-precision
arithmetic.

I. INTRODUCTION

THE multilevel fast multipole algorithm (MLFMA), which
is a hierarchical extension of the fast multipole method,

is a popular full-wave electromagnetic solver that can be
applied to the solution of extremely large problems due to its
O(N log N) complexity for N unknowns. This relatively low
complexity is achieved by diagonalizing the translation opera-
tor that enables the computation of interactions between basis
and testing functions in a group-by-group manner [1], [2].
Due to the limited and fixed machine precision of most
computing platforms, the diagonalized form of the translation
operator becomes numerically unstable as the truncation num-
ber of the infinite summation over spherical Hankel functions
increases beyond a certain threshold. This is the well-known
low-frequency breakdown problem of MLFMA [3].

In one of our previous publications in the context of
multiple-precision arithmetic, we have proposed an error con-
trol scheme for MLFMA that is valid at all frequencies,
which can also take into account the machine precision
of the computing platform, bringing a whole new outlook
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on MLFMA simulations [4]. Given the box size and the
desired relative error threshold, the proposed scheme can
provide the optimum truncation numbers and the minimum
required machine precision levels at all frequencies for the
first time in the literature, whereas the previous methods were
limited to only high-frequency problems [5]–[8] or modified
implementations [9].

In this work, we address two important shortcomings of the
state-of-the-art error control of MLFMA, namely, the difficulty
in implementing [4] and lack of intuitive observations and
design guidelines for the universal error control of MLFMA.
First, the error control scheme we present in [4] requires the
computation of the diagonalized Green’s function for different
orders of spherical harmonics, which may or may not be han-
dled by the native precision of the computing platform. Hence,
accurate implementation of [4] for computing the truncation
numbers requires a reconfigurable multiple-precision frame-
work, such as the one given in [10]. This presents a challenge
as a multiple-precision environment may not be available to
the practitioners of MLFMA. Even if a multiple-precision
environment is available, the increase in implementation com-
plexity may not be desirable. Second, although the previously
reported truncation numbers and machine precision levels
in [4] provide accurate and important information about the
error control, they may not be intuitive for the practitioners
who would design their solvers from the ground up according
to [4] but may not want to use a multiple-precision framework.
Therefore, we believe that insightful and intuitive design
curves for the error control of MLFMA that is valid for a
wide range of frequencies are sorely needed.

As a response to the above shortcomings, the contribution
of this article is twofold. First, we provide simple closed-form
expressions for error control at low frequencies (or small
boxes) for the first time in the literature in the form of curve-fit
and asymptotic formulas. Together with the widely used excess
bandwidth formula (EBF) in [5] that is valid for large boxes,
our proposed expressions provide a complete error control
scheme that can be implemented in common fixed-precision
computers without any need for a multiple-precision imple-
mentation. Second, we present novel design curves for the low-
est possible errors that can be attained with a given machine
precision and the minimum translation distances and box sizes
that can be computed with a given error threshold, using our
novel closed-form expressions in conjunction with the machine
precision estimation techniques in [4]. We believe that the
proposed novel closed-form expressions and design curves
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will provide the practitioners of MLFMA with a rigorous and
intuitive guideline on how to implement MLFMA on both
fixed- and variable-precision platforms, such as CPUs, GPUs,
and FPGAs, of the state-of-the-art technology.

The rest of this article is organized as follows. Section II
briefly describes our previously reported error control scheme
and the commonly used EBF. Section III introduces our
proposed expressions for error control at low frequencies.
Section IV presents the results of our analyses of achievable
error limits and presents design curves for accurate error
control of MLFMA. Concluding remarks are provided in
Section V. An e−iωt time convention, where ω = 2π f and f is
the operating frequency, is assumed and suppressed throughout
this article.

II. ERROR CONTROL SCHEME OF MLFMA

Spherical wave expansion of the free-space Green’s function
can be derived using Gegenbauer’s addition theorem as

exp(ik| �w + �v |)
4π | �w + �v |

= ik

4π

∞∑
t=0

(−1)t(2t + 1) jt(kv)h
(1)
t (kw)Pt (ŵ · v̂), (1)

where Pt is the Legendre polynomial of order t; jt and h(1)t

are the spherical Bessel and Hankel functions of the first
kind, respectively. Note that (1) is only valid for w = | �w| >
v = |�v|, where �w and �v represent the translation and shift
vectors, respectively. MLFMA uses the diagonal form of the
Green’s function given in (1) by transforming the spherical
waves as integrals over the plane-wave spectrum [1].

Using a truncation number of ρ for the infinite summation
in (1), the truncation error can be derived by assuming only
the (ρ + 1)th term’s dominant contribution as

�̂ ≈ k R(2ρ + 3)
∣∣∣ jρ+1(kv)h

(1)
ρ+1(kw)Pρ+1(ŵ · v̂)

∣∣∣, (2)

where R = | �w + �v |. In (2), the maximum error occurs
when the translation distance w is the smallest and the total
shift distance v is the greatest. Therefore, the maximum
error is achieved when a one-box-buffer scheme is used with
w = 2a, with a representing the box edge length, while
v = |[a a a]T| = a

√
3, where T represents the matrix

transpose.
Using the large argument approximation of the Bessel and

Hankel functions in (2), commonly used EBF [5]–[7] can
be derived to determine the truncation number for the one-
box-buffer scheme as

ρ ≈ ka
√

3 + 2.18(d0)
2/3(ka)1/3, (3)

where d0 � − log10(�d) is the desired digits of accuracy with
�d being the desired relative error threshold. Although being
a widely adopted method, (3) is only valid for large box
sizes or high-frequency problems due to the large argument
approximations.

With the recently introduced novel error control scheme [4],
the relative error of the free-space Green’s function for a given

truncation number ρ can be calculated using the large order
approximation of Bessel and Hankel functions [11] as

�̂ ≈ R√
wv

∣∣∣∣ Pρ+1(ŵ · v̂)ψ j
(
0.5ψh−iψ−1

h

)
√

tanh γ j tanh γh

∣∣∣∣, (4)

where ψ j and ψh are defined as

ψ j � exp
[
(ρ + 1.5)(tanh γ j − γ j)

]
, (5)

ψh � exp
[
(ρ + 1.5)(tanh γh − γh)

]
, (6)

with

γ j = sech−1

(
kv

ρ + 1.5

)
, (7)

γh = sech−1

(
kw

ρ + 1.5

)
. (8)

Unlike EBF, (4) cannot be solved for ρ in closed-form;
therefore, the truncation number is found numerically. Once
the truncation number is found from (4), the required machine
precision to compute the translation operator can be found with
the procedure outlined in [4], which is not repeated here for
brevity. However, an important assumption of this procedure
is worth repeating: The minimum machine precision with the
novel scheme is defined so that the machine precision is able to
handle each of the individual separate numbers and elementary
functions in the translation operator, as well as all of the
intermediate combinations (i.e., products, summations, and
integrations) before the computation of the final result. Hence,
the resulting minimum requirement for machine precision is
actually a supremum value of possible minimum precision
levels and assumes the worst case in terms of implementation.
In practice, the minimum machine precision requirement can
be further reduced by carefully tracking the magnitude range
of each number and intermediate function of the translation
operator for each problem and making sure that the registers
do not overflow or underflow during computations.

III. CLOSED-FORM EXPRESSIONS FOR ERROR CONTROL

AT LOW FREQUENCIES

Truncation numbers computed with (4) for a given desired
error threshold agree well with EBF for large box sizes and
high-frequency problems [4]. However, for small box sizes
and low-frequency problems, EBF fails as it relies on the
large-argument approximation of Bessel and Hankel functions.
On the other hand, the requirement for a multiple-precision
framework and a lack of closed-form solution complicates
the use of (4) for most implementations. Therefore, in this
section, we derive simplified closed-form expressions that do
not require a multiple-precision environment for small boxes
and low-frequency problems for the first time in the literature.
Together with widely used EBF at high frequencies as their
counterpart, the novel closed-form expressions allow easy
error control of MLFMA for all frequencies and translation
distances.

To simplify (2) for low-frequency problems where kw � 1
and kv � 1, we use the small-argument approximations of
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the Bessel and Hankel functions [11] as

Jt(z) = (z/2)t

(t + 1)! , (9)

H (1)
t (z) =

(−i

π

)
(t)!
(z/2)t

. (10)

Then, the conversion from cylindrical to spherical Bessel and
Hankel functions is performed using

jt(z) =
√
π

2z
Jt+0.5(z), (11)

h(1)t (z) =
√
π

2z
H (1)

t+0.5(z). (12)

For the simplification of the Legendre polynomials, we use
Rodrigues’ formula [11, (8.6.18)] and integration by parts to
calculate the root-mean-square (RMS) value over the range
ŵ · v̂ ∈ [−1, 1] to obtain√∫ 1

−1
P2

t (z)z. =
√

2

2t + 1
. (13)

Substituting (9)–(13) into (2), we obtain the approximate
truncation error for low-frequency problems as

�̂ ≈ R√
wv

( v
w

)ρ+1.5
√

2

2ρ + 3
. (14)

Note that the closed-form expression in (14) can be used to
estimate the truncation error for different translation and shift
distances. However, the common approach in practice is to
select the highest possible truncation number for the worst
case in terms of error, which corresponds to the one-box-buffer
scheme. Therefore, we can further simplify (14) by assuming
a one-box-buffer scheme and substituting �w = [0 2a 0] and
�v = [a a a], resulting in

�̂ ≈ 1.782

(√
3

2

)ρ+1.5√
2

2ρ + 3
, (15)

where the direction of �w in a one-box-buffer scheme does not
affect the result. The closed-form expression in (15) can be
used as a complement to EBF for small boxes to estimate
the worst case errors in a one-box-buffer scheme. On the
other hand, the closed-form expression in (14) can be used
if different truncation numbers are to be used for different
translation distances. An important insight for (14) and (15)
is that they do not depend on the box sizes. This behavior
is consistent with the low-frequency harmonics of Green’s
function when the multipole expansion is explicitly used [12].

The expressions given in (14) and (15) still have room for
improvement. Specifically, they still require numerical imple-
mentations to search for truncation numbers for a given desired
error threshold and may suffer from inaccuracies due to the
RMS approximation of the Legendre polynomials. Therefore,
we provide yet another alternative for the low-frequency
scenarios in the form of curve-fit functions of (4), which we
consider to be the gold standard among all other alternatives
presented in this work.

Fig. 1. Truncation numbers obtained via (4) for a = δ/2048.

To generate the data for curve-fitting, we have computed
truncation numbers using (4) for the following range of
parameters.

1) Desired Error Threshold: �d ∈ [3.3e−1, 1e−5].
2) Box Sizes: a ∈ [δ/2048, δ].
3) Translation Vectors �w: All possible vectors within a

parent box with symmetries removed (17 unique cases).
4) Shift Vectors �v: From corners, edge centers, and face

centers of the source box to those of the observation
box (62 unique cases).

After the required truncation numbers for the above scenar-
ios are computed, we assume that the truncation error only
depends on the translation distance normalized to the box
size, i.e., w/a, consistent with our findings of (14) and (15).
As an example, computed truncation numbers for a box size of
δ/2048 for some w/a values are illustrated in Fig. 1. A clear
observation from Fig. 1 is that the relation between d0 and ρ
can be closely represented by an affine transformation, where
the slope and offset parameters of the transformation being
functions of w/a are

ρ ≈ f1(w/a) d0 + f2(w/a). (16)

Then, the slope, f1(·), and the offset, f2(·), of the affine
transformation that depend on w/a are approximated by
double-exponential functions that are empirically found to be
best fit as

f1(x) = 3.073e4 × e−4.064 x + 10.34 × e−0.3562 x , (17)

f2(x) = −28.63 × e−1.071 x − 1.168e8 × e−8.620x . (18)

Note that the closed-form expressions given in (16)–(18) can
be used as an alternative to (14) if different truncation numbers
are to be used for different translation distances within the
same parent box of MLFMA. Similar to the derivation of (15),
we can simplify (16) for the maximum error of the one-
box-buffer scheme with w = 2a to obtain

ρ ≈ 14.14 d0 − 7.17 (19)

which is an extremely simple closed-form expression to esti-
mate the required truncation numbers for small boxes and
low-frequency problems. Note that (19) will only yield values
larger than unity for d0 > 0.58 or �d < 0.26 due to its affine
nature, which should be useful for almost every scenario.

To illustrate the accuracy of the closed-form expressions
and EBF given in (3), we analyzed the average relative
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Fig. 2. Relative error of truncation numbers obtained via EBF [5]–[7], (14),
and (16) for different box sizes and translation distances.

Fig. 3. RMSE of truncation numbers obtained via EBF [5]–[7], (14), and
(16) for different box sizes and translation distances.

Fig. 4. Relative error of truncation numbers obtained via EBF [5]–[7], (15),
and (19) for different box sizes for a one-box-buffer scheme.

error and root-mean-square error (RMSE) of the truncation
numbers over the same �d , �w, and �v values that we have listed
previously, with an even greater range of box sizes that include
electrically large boxes. The errors for the truncation numbers
are shown in Figs. 2 and 3 for the variable-translation case
with (14) and (16) and in Figs. 4 and 5 for the one-box-buffer
scheme using (15) and (19). For all cases, RMSE values for
EBF are calculated for only w = 2a, as EBF is not able to
handle different translation distances within the same parent
box of MLFMA.

As shown in Figs. 2–5, EBF achieves relatively low errors
for large boxes, and the proposed closed-form expressions
(14), (15), and (16)–(19) perform well for small boxes. Note
that, although the proposed expressions for low frequencies
exhibit a slightly large relative error, they perform much better
in terms of RMSE. This is due to truncation numbers being
much smaller at low frequencies compared to high frequencies.

Fig. 5. RMSE of truncation numbers obtained via EBF [5]–[7], (15), and
(19) for different box sizes for a one-box-buffer scheme.

For example, even an RMSE of 1.2 for a = δ/2048 has led
to a relative error of 11% in Figs. 2 and 3. The converse
is true for EBF at high frequencies where the truncation
numbers are very large, leading to relatively high RMSE
values although their relative errors are very low. Another
important observation from Figs. 2–5 is that the curve-fit
expressions outperform the asymptotic expressions, especially
for the one-box-buffer scheme shown in Figs. 4 and 5, as they
are based on the accurate error control expression in (4). As the
truncation numbers are selected for the one-box-buffer scheme
in practice, Figs. 4 and 5 show the power of the extremely
simple expression that we have provided in (19).

As shown in Figs. 4 and 5, it is best to use the pro-
posed closed-form expressions for relatively small box sizes,
i.e., a < 2.8δ, whereas EBF should be used exclusively for
a > 2.8δ, where a = 2.8δ is approximately the point where
the errors of EBF and small-box expressions coincide. Also,
the errors are relatively larger in the region a ∈ [δ, 4δ]
for the combined usage of small-box expressions and EBF.
Therefore, practitioners of MLFMA should be aware that
these expressions are relatively erroneous in this particular
region. We would like to emphasize again that the error control
formulation of (4) is valid for all box sizes and should be used
if a multiple-precision framework could be implemented by
the practitioners. Since a multiple-precision framework may
not be available for most cases, we provide detailed design
curves that can be used to estimate the achievable errors of
MLFMA for commonly available fixed-precision computers in
the next section.

IV. ERROR ANALYSIS OF MLFMA

The simplified error control scheme with closed-form
expressions (16)–(19) together with the machine precision
estimation method given in [4] can be used to estimate the
minimum achievable errors (denoted as �min) or minimum
translation distances for a given fixed machine precision. Note
that, in this section, the machine precision levels are provided
as decimal digits of precision in a floating-point standard [13],
where single, double, and quadruple precisions correspond
to approximately 7, 16, and 34 decimal digits of precision,
respectively.

Using (16)–(19) for subwavelength box sizes (a < δ)
and (4) for all other cases and desired errors larger than
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Fig. 6. Minimum achievable errors versus the box size in a one-box-buffer
scheme (i.e., w = | �w| = 2a).

�d > 0.26, we present three design curves to provide a helpful
guideline for MLFMA practitioners. Note that, although EBF
is valid for large boxes, it slightly overestimates the truncation
numbers due to simplification of the Legendre polynomials’
exact value as unity [5], while (16)–(19) do not suffer from
such a problem. Therefore, to provide the most accurate design
curves possible, we have used (4) for box sizes greater than
one wavelength.

First, we investigate the minimum achievable error versus
the box size for various machine precision levels in a one-
box-buffer scheme (i.e., w = 2a). Fig. 6 shows the achiev-
able error bounds of MLFMA on fixed-precision computing
platforms for a wide range of box sizes. For scattering and
radiation problems, where only far-zone radiation characteris-
tics are of interest, relatively large errors in Green’s function
can be tolerated. For example, assuming an error bound of
� = 0.33, both single- and double-precision platforms are
able to handle subwavelength box sizes (a minimum of 2−4δ
and 2−11δ, respectively). On the other hand, for problems
where accurate current distributions and network parameters
are required (e.g., antenna problems), relatively low error
bounds for Green’s function must be enforced. For example,
if an error bound of � = 0.01 is selected, both single and
double precisions fail to handle subwavelength box sizes,
as shown in Fig. 6. As a result, higher precision levels may
be required to solve antenna problems with large numbers
of MLFMA levels that include subwavelength translation
distances.

An important observation to note in Fig. 6 is that, for
the single-precision case (7 decimal digits), the minimum
achievable errors are only reported for a ∈ [2−4δ, δ], meaning
that the error is not bounded outside this region. Specifi-
cally, single-precision is not enough to handle the spherical
Hankel functions, leading to low-frequency breakdown for box
sizes smaller than 2−4δ. On the other hand, for box sizes
larger than δ, relatively small numerical integration weights
cannot be handled by single precision as the number of
spherical harmonics increases. Nonetheless, single precision

Fig. 7. Minimum box size versus the machine precision to achieve different
desired error thresholds for w = | �w| = 2a, i.e., the one-box-buffer scheme.

Fig. 8. Minimum box size versus the machine precision for different
translation vectors to achieve a desired error of �min = 10−3.

can possibly handle larger boxes (and achieve lower errors)
if special care is taken to prevent overflow/underflow during
the computation of the translation operator, as explained in
Section II.

As shown in Fig. 7, our second design curve illustrates the
minimum box size that can be used in MLFMA given the
desired relative error threshold. In addition to demonstrating
new information on the achievable error levels in MLFMA,
the results in Fig. 7 further verify the conclusions drawn from
Fig. 6, i.e., single and double precisions fail to accurately
handle subwavelength boxes for relatively low error levels,
and they should only be considered for larger box sizes
or problems where large errors of Green’s function can be
tolerated. Also, note that the graphs only show the box sizes
included in the analysis (i.e., a ∈ [2−11δ, 24δ]), and the
minimum box sizes are expected to decrease further as the
machine precision increases.

In our third and final design curve, we illustrate the min-
imum box size that can be handled for a given translation

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 27,2022 at 10:52:52 UTC from IEEE Xplore.  Restrictions apply. 



KALFA et al.: ERROR ANALYSIS OF MLFMA WITH CLOSED-FORM EXPRESSIONS 6623

distance in Fig. 8. Different translation distances are selected
among possible far-zone translations inside a parent box of
an MLFMA tree structure. As expected, Fig. 8 shows that the
achievable minimum box size decreases as the magnitude of
the translation vector gets larger since the overflow problem
due to the spherical Hankel function in the translation operator
becomes less severe as w increases [4]. Thus, lower precision
levels can be used for large translation distances even if
higher precision levels may be required for the one-box-buffer
scheme. Also, similar to Fig. 7, the minimum box sizes are
expected to decrease when higher machine precision levels
are used though they are limited to the analyzed box sizes
in Fig. 8.

V. CONCLUSION

We have proposed and validated simplified closed-form
expressions for the accurate error control of MLFMA that
is valid for low-frequency problems. Together with the com-
monly used EBF, our proposed expressions can be imple-
mented easily for broadband error analysis of MLFMA
although our previously reported error control scheme that
requires a multiple-precision framework should be considered
as the gold standard. Moreover, we presented a thorough inves-
tigation of achievable error limits in MLFMA while taking into
account the machine precision used in the computing platform.
We believe that the practitioners of MLFMA solvers can use
the proposed expressions and presented design curves in this
article as a helpful guideline to estimate the error limits of
their implementation on any platform, whether they use fixed-
or variable-precision arithmetic computing platforms.
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