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ABSTRACT

ROBUST ESTIMATION OF UNKNOWNS IN A LINEAR
SYSTEM OF EQUATIONS WITH MODELING
UNCERTAINTIES

Fehmi Chebil
M.S. in Electrical and Electronics Engineering
Supervisor: Assist. Prof. Dr. Orhan Arikan
July 1997

Robust methods of estimation of unknowns in a linear system of equations with
modeling uncertainties are proposed. Specifically, when the uncertainty in the
model is limited to the statistics of the additive noise, algorithms based on adap-
tive regularized techniques are introduced and compared with commonly used
estimators. It is observed that significant improvements can be achieved at low
signal-to-noise ratios. Then, we investigated the case of a parametric uncertainty
in the model matrix and proposed algorithms based on non-linear ridge regres-

sion, maximum likelihood and Bayesian estimation that can be used depending

111
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on the amount of prior information. Based on a detailed comparison study be-
tween the proposed and available methods, it is shown that the new approaches
provide significantly better estimates for the unknowns in the presence ol model

uncertainties.

Keywords: Robust Estimation, Parametric measurement uncertainties, Ridge Re-

gression, Wavelet based reconstruction, Mean Square Error.



OZET

BENZETIM BELIRSIZLIKLERI OLAN DOGRUSAL
DENKLEM SISTEMLERINDE BILINMEYENLERIN GURBUZ
KESTIRIMI

Fehmi Chebil
Elektrik ve Elektronik Miuhendisligi Bolimit Yiiksek Lisans
Tez Yoneticisi: Yardimci Dogent Orhan Arikan

Temmuz 1997

Dogrusal denklem sistemlerinde bilinmeyenlerin kestiriminde kullanilmak tizere
pekgok yontem onerilmistir. Sistemin belirsizlikler icermesi durumunda kestirim
bagarim yliksek girbliz yontemlere duyulan ihtiyag nedeniyle, tez kapsaminda
yeni yontemler onerilmektedir. Sistem belirsizliginin olgtim glrtiltdsiindn istatis-
tiksel tanimlanmasi tizerinde oldugu durumlarda kullanilmak tizere onerdigimiz
yontemler kullanilmakta olan yontemler ile kiyaslanmig ve oldukga daha iyi ke-
stirimler elde edilebildigi gosterilmistir. Ozellikle sinyal-giiriilti oranmim diigitk
oldugu durumlarda yeni yontemler ¢ok daha iyi kestirimler verchilmektedir.
Parametrik yapiya sahip sistem matrislerinde belivsizlikler olmast durumunda
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kullamilabilecek yeni kestirim yontemleri de 6nerilmektedir. Bu yontemlerin kul-
lamilmakta olan diger yontemlerde olan detayli kiyaslamasinda yeni yontemlerin

daha glrbuz ve yuksek bagariml kestirim sonuclari verehildigi gésterilmigtir.

Anahtar Kelimeler: Giirbliz Kestirim, Parametrik Olgiim Belirsizlikler, Diyago-

nal Duzenlilegtirme, Dalgacik tabanl olugturum, Hata Karesinin Ortalamasi.
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Chapter 1

INTRODUCTION

T'he basic job of an experimenter is to describe what he or she sees, try to explain
what is observed and use this knowledge to help answer uestions encountered in
the future. The explanation often takes the form of a physical model, which is a
theoretical explanation of the physical phenomenon under study. Models make
it possible to explore situations which in the actual system would be hazardous
or demanding. Aircraft and space vehicle simulators are well known examples.
A model is usually expressed verbally first then formalized into one or more
equations giving rise to the mathematical model. A characteristic of science is its
use of mathematical models to extract the essentials from complicated evidence

and to quantify the implications.

An important reason behind modeling is to provide the required framework
for the estimation of the unknowns. Experience has shown that no measurement,

however carefully made, can be completely [ree of errors. In science the word
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“error” does not carry the usual connotations of mistake. Error in a scientific
measurement means the inevitable uncertainty that attends measurements. Un-
cerbainty is not the ignorance of outcomes. As a matter of fact when a coin is
tossed, we are certain that one of two outcomes will occur. What is not known is
heads or tails. Again, when a die is tossed, it is certain that 1, 2, 3, /l,‘5 or 6 will
turn up. What is not known is which of these numbers. The future outcome of
a coin toss or a die toss is not only unknown but also not knowable in advance.
Thus uncertainty is the certainty that one of several outcomes will occur; but

which specific outcome will prevail is unknown and unknowable.

A basic problem that arises in a broad class of scientific disciplines is to
perform estimation of certain parameters from a model within uncertainties. In
this thesis, we treat this problem when the model is a lincar statistical one, which
1s described by:

Ax =y , (1.1)
where @ is the unknown vector, y is the measurement vector and A is the
measurement kernel. As mentioned previously, there are no measurements free of
error, the obtained data presented in the vector y are considered to be erroncous.
An additive noise vector m is added to the observation to stress that fact. The
uncertainty could come from the kernel matrix A , the entries of this matrix
are also subject to sampling errors, measurement errors, modeling errors and
instrument errors. Again the matrix A could depend on an unknown real valued
set ol parameters 8 belonging to a set S. This is the case ol array signal processing
applications where 8 refers to direction of arrivals of signals. Thus the problem we

are dealing with is estimating an M dimensional vector  from an N dimensional
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data vector y with:

y =A@)z +n . (1.2)

In chapter 2, some of the commonly used approaches to the estimation of the
unknowns in the presence of measurement uncertainties will be presented. In
chapter 3, we will introduce the proposed approaches to the cstimation problem.
In order to compare the estimation performance of the old and new approaches,

extensive simulations are provided throughout the thesis.



Chapter 2

Commonly Used Estimation

Approaches

2.1 Introduction

rl\] o : § . .
I'he commonly used approaches to estimate the unknown paramecters from a
model under uncertainties are presented in this chapter. Over synthetically gen-
erated examples, these approaches are compared with each other in terms of their
performances. In the following, measurement relationship is modeled as:

y = A0)x +n | (2.1)
where ¢ is the N-dimensional vector of available measurement data, A is the
measurement kernel or operator, @ is the M-dimensional unknown vector, n is
the additive measurement noise and 8 is P-dimensional vector parameterizing

the uncertainty in the model.
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Chapter 2. Commonly Used Estimation Approaches

We shall start by providing the approaches used for a lixed 8, that is to solve

the overdetermined set of equations:
y = Az +n . (2.2)

We will investigate the Least Squares approach, then the ridge regréssion esti-
mate. For the model uncertainty problem which is characterized by equation 2.1,
we will consider the Total Least Squares estimate and the nonlinear least squares

modeling algorithm.

2.2 Known Measurement Kernel

2.2.1 Least Squares Fitting to the Measurements

T'he least squares method of estimation is extensively utilized in a wide variety
of applications such as communications, control, signal processing aud numerical
analysis, since it requires no information on the statistics of the data, and it is
usually simple to implement. As we will see, it provides reasonably good estimates
when the condition number of A is relatively small and the signal to noise ratio

(SNR) of the measurements is high.

In the method of least squares, we want to find an cstimate & such that the
norm of the fit error

e =y—Ae (2.3)

is minimized.
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T'he least squares estimate satisfies the well known normal equations:
T4\ 1 ¢
(ATA)E s = Ally (2.4)

L (A" A) is full vank then the least squares solution can be found as:

g5 = (ATA) ATy (2.5)
When (A 7 A) is rank deficient, the least squares estimator is given by:
Ers = Aly (2.6)

where A T s called the pseudo-inverse or the Moore Penrose generalized inverse

of A, which can be obtained from the singular value decomposition (SVD) of A.

Wlen the measurement noise vector has independent identically distributed
normal entries, the least squares estimator also corresponds to the maximum like-
lihood estimator. The maximum likelihood theory is widely applied to a number
of important applications in signal processing such as system identification, ar-
ray signal processing and signal decomposition. It is also applied to find an
estimate to uncertain model parameters. The principle of maximum likelihood is

illustrated by the following example [1].

Let y be a random variable for which the probability density function f.(y) is
parameterized by an unknown parameter z. A typical density function is given
in figure 2.1. In this figure two densities are illustrated, one for parameter 2, and
one for parameter z5. Suppose that the value 7 is observed. Based on the prior
model f,(y) shown in 2.1 we can say that § is more probably observed when
@ = a9 than when * = 2. More generally there may be a unique value of @

for which # is more probably observed than for any other. We call this value of
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fxz<y)

[igure 2.1: Maximum Likelihood principle:Typical density functions.

@ that makes § most probable, or most likely, the maximum likelihood estimate
TML:

Epr = argmax f.(4) . (2.7)
We obtain the maximum likelihood estimate by evaluating the conditional density

Jyx(ylx) at the value of observation g and then searching for the value ol a that

maximizes fy(x(gle). The function {(z,§) = fyx(gla) is called the likelihood
[unction and its logarithm L(z,§) = In fy.(g|z) is called the log likelihood
function.

In our problem we have N observations summarized in the vector y obtained

by this relation:
y =Az+n (2.8)
with m normally distributed having zero mean and covariance matrix R, the

conditional probability density function of y given @ is:

] 1 )
fye(ylz) = Wem{—;j(y —Ae)'R ' (y —Az)} (29
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where |R | denotes the determinant of R . The corresponding log-likelihood

function is:

Lz,y) = Infyez(yle)
N 1 L ’
= —?]11271'—5111]12]—;(’!/—A‘B)HR_I(Z‘/_Aa’)

The maximum likelihood estimator is obtained by differentiating the log-

likelihood function with respect to @ and setting it to 0, yielding:
zpmp = (A HR_IA)_ILAHR_ly (2[0)

As pointed earlier, the maximum likelihood estimator coincides with the least

squares estimator when R = o1 .

[ the remaining of this subsection we will investigate the mean and covariance
of the least squares and maximum likelihood estimators. Let R(A ) be the
subspace spanned by the columns of A . If we call ¥ the projection of y onto
R(A) and y, the projection of y onto the orthogonal complement of R(A ),

then y; — A @ belongs to R(A ) and is orthogonal to y 4. Hence we can write :
C=ly—-Az|® = |y —Az|’+]y.|* , (2.11)

which attains its minimum when ||y, — A @ [[* is minimized with respect to @ .
Since we can always find an @ satisfying A @ = y,; and it is unique if and only
if

nulllA) = {z;Az =0} =0 , (2.12)

then, the least squares estimate always exists, and it is unique if and only if A
is [ull column rank. The statistical behavior of an estimator can be investigated

by finding its mean and covariance. Assuming that the additive measurement
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noise vector is zero mean, the expected value of the least squares estimator can
be found as:
E{# s} = E{(ATA)'Ay)
= P{(A"A)Y"'AT(Az +n))
= (A"A)Y " A"A)e +(ATA)' AT {n)
= x ,
which implies that the least squares estimator is unbiased. The covariance ol the

least squares estimator is given by:
CO’U{:ﬁ LS} = E{(:ﬁ LS — E{:ﬁ L,S})(‘f: LS — E{:ﬁ LS})”} . (.2[3)

With the assumption that the noise vector m is normally distributed having zero
mean and covariance matrix R ,, = oI, the required computation can be

performed easily, yielding:
Cov{# s} = o2(A7A)! (2.14)

[Tow much an estimator could deviate on the average from the actual parameters

is given by the Mean Square Error (MSE) criterion. This is obtained by:

MSE(xrs) = trace(Cov{@s})
M-
= 0'2 Z _J;_a (;) 15)
n X ’ -
=1 "

where 2 is the 7t singular value of A . Hence, if the matrix kernel has a high

condition number then the MSE will be large.

Another criterion to quantify statistical performance of estimators, is com-

paring their error covariance matrix with the Cramer-Rao lower bound, which
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establishes a lower bound on the covariance matrix for any estimator of a parar-
eter. The Cramer-Rao theorem states that if y is an N -dimensional vector with
probability density function -/"Y[X (y |2 ) and the estimator & is an unbiased

estimator of @, then the error covariance matrix of  is bounded as [1].
C =F{(z-z)(z-—2)1})>7", (2.16)

where J is called the Fisher information matrix and it is given by:

-

Lo 0 X .
(@) = Bllotnfye @R)lcnfye @)} . (217

For the Least Squares estimator, the Fisher information matrix becomes:

AH
g =44 (2.18)

o
Thus, the covariance matrix of the least squares estimator given in equa-
tion 2.14 meets the Cramer-Rao lower bound. Hence, when the mecasurement
noise is identically independently distributed normal, the least squares estimator

is the best linear unbiased efficient (BLUE) estimator.

2.2.2 Ridge Regression

In 1970, Hoerl and Kennard showed that based on the Mean Square Iirror crite-
rion, a biased estimation procedure could yield better parameter estimates of a
linear model than the analogous estimates obtained via classical least squares [2].
This procedure is introduced initially to avoid the ill effects of uasi-collinearity
in ordinary least squares estimators. In order to avoid widely oscillating esti-

males of least squares, obtained in the case of measurement kernels with a large
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condition number, a penalty term on the weighted magnitude of the estimated

variables is incorporated to the ridge regression cost function:
C =ee+z’"Da |, (2.19)

withe =y — Az and D = diag(k;),i = 1,..., N, where the weights k; > 0 are
known as the ridge regression constants. The Ridge Regression estimator, & pr,

can be found as the unique minimizer of the above cost function resulting in:
- H -1 4 H 9 ¢
T pp = (A A+ D ) Ay (2.20)

Similar estimator was obtained by Levenberg(1944) and Marquardt(1963) in de-
veloping an algorithm for nonlinear least squares minimizations [3]. In the pres-
ence of little or no prior information, the choice of the ridge regression constants
becomes a difficult task. Therefore in many applications the weights are all cho-
sen to be the same, reducing the search space for the right set of parameters to
one. This case of uniform weighting is known as ordinary ridge regression and its

corresponding estimator is:
Eorr = (ATA + k1) TAy (2.21)
The expected value of the ridge regression estimator can be found as:
E{grr} = E{(A"A+D)"'Ay}
= (A"TA +D)'A"Az |,

which has a bias of:

/\35 o o
E{x - &rr} = Vcliexg(m)V”m : (2.22)
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where V. is the right singular matrix and v/\;’s are the singular values of the A
matrix. Likewise, the covariance of the Ridge Regression estimator can be found
as:

, A2

where o2 is the noise variance.

Since the Generalized Ridge Regression is a biased estimator, we use the

Cramer Rao lower bound for biased estimators :

. 0 . TN
Cov{& pnr} > [%ﬂ{wrm}]”-} l[a—w/b{-’clm}] , (2.24)

where J is the Fisher information matrix for & . since

, . , : A2 _

Cov{& pr} = % dla.g(m—)v no (2.25)
a ... . Ai o
-a-;E{w RR} = ledg(/\—_'_/:)v " y (22())

AfA
J = — (2.27)

it can be shown that:
Cov{® pr} = [—0 E{ii'zm}]ﬂ-]_l[—(? I{& pr}] . (2.28)

flence, the Ridge Regression estimator meets the Cramer-Rao bound for the
biased case.

The main task in Ridge Regression estimators is how to choose the Ridge
Regression constants. The criterion that we are using to judge estimators is the
Mean Square Error criterion, so the Ridge Regression estimator would outperform

the Least Squares estimator if :

MSE(# rr) < MSE(Z Ls) - (2.29)
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(/r\h

E{ &R } Covariance of RR

[Pigure 2.2: Least Squares and Ridge Regression Estimators: Bias and Covariance.

[n other words we would like to get the situation illustrated by figure 2.2. The

corvesponding Mean Square Error of the Ridge Regression estimator is:

MSE(&pr) = E{(@pr—a)!(@pp—2))
N Az V”iB ”2 /\20.2
- /\ + k;)? (N + k;)?

(2.30)

[ﬁ

Theobald proved that to provide the condition in equation 2.29 we should have :

VigHgy
2

T

l
< dmg( + (2.31)

/\) ’
which is satislied for k; > 0 or k; < —2); for i = 1,..., M. When the k;’s are
fixed, the domain of parameters where the generalized ridge regression estimator

is better than the least squares one are given by:

1V diag(——)V Tz <02 | (2.32)

Z)\ k
which is an ellipsoid. Several suggestions were proposed for the choice of the

ridge regression constant: Goldstein and Smith (1974) proposed to take &; =
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202 (v2 = 02X 1)~ where v = V Hg [4]. Schmidt (1976) suggested that & could

2
he taken as & = ﬁ“(,y—T) Swamy, Mehta and Rappoport (1978) showed that il a

priori information about the norm of the parameter vector @ is provided then we
can get hetter estimates. For instance, if we suppose that @ lies in a hyper-space
ol radius r, that is

el <r*<oo | (2.33)

the value of @ that minimizes LAZ-YIP o hiect ¢ ation 2.33 is:
e value jhat mimimizes ~ subject to equation 2.33 is:
7

& sur(k) = (ATA 402k Ay | (2.34)
where :
k= ;]/1\’% , (2.35)
and
Q = dmawA(ATAYPAT L (N-M)'A (A" A) AN (2.36)

with ¢ a positive constant and o7 the noise variance.

2.2.3 Simulation Results

[n the sirmmulations we generate randomly a matrix A, a vector & and a (Gaussian

random vector m then we find the observation vector y by
y=Azxz +n (2.37)

Then, based on A and y we apply the algorithms described in this chapter to
find an estimate for . All through the simulations we will give the estimation

o) -

crror values for an estimate & of @ by error percentage: Y%error = T
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In figures 2.3- 2.7, the estimated and actual @ obtained using the method
of Least Squares and also methods proposed by Theobald’s, Schmidt’s, Swamy-
Mehta & Rappoport and Goldstein are shown. In this simulation the kernel
matrix has a condition number x < 10 and the signal to noise ratio, SNR =
—20log(Z=), is 80dB. As expected for such a case the least squares estimator is
performing well, the estimate is very close to the true unknown variables. The
estimates obtained via the proposed ridge regression procedures provide very
close results to the theoretical values. In such cases, one would prefer to use the
Least Squares estimator since it does not need any prior knowledge on the noise
or data statistics, and the inversion of the system matrix A A7 can be performed

without any trouble.

However, as shown in figures 2.8- 2.12. when the signal to noise ratio de-
creases below 40dB a Ridge Regression estimators provide far more accurate
results. This is because of the fact that the least square estimator is more sen-
sitive to the measurement noise. The least squares estimate is more noisy along
the right singular vectors corresponding to the smaller singular values. Since,
typically smaller singular values are associated with oscillatory singular vectors,
the estimates obtained at low SNR have widely oscillatory behavior as shown in

figure 2.8.

[n order to obtain statistically more significant comparison results, we re-
peated the above comparisons for various realizations of y at different SNR val-
ues, and plotted the average errors in the obtained estimates in figure 2.13.
At each SNR value 25 different realizations have been used. As it can be scen,

performance of the least squares estimator degrades badly at low SNR values
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compared with the results obtained by the ridge regression family ol estimators.

In order to test the performance of these estimators in the case of measure-
ment kernels with high condition number, we compared the performances of the
estimators of various condition numbers. In figure 2.14, for each (—:.s:l,ima.tor, we
plotted the average error norm as a function of the kernel condition number. As
seen from this figure, the performance of the least squares estimator degrades

drastically as the condition number gets large.

The superiority of the ridge regression estimators over least squares is due
to the utilization of available prior information. The methods presented by
Theobald, Schmidt, Swamy Mehta and Rappoport, and Goldstein outperform
least squares when the noise standard deviation and the magnitude of the un-
known vector are available. Unless a priori knowledge about the signal and the
noise statistics are provided, the performance of the suggested ridge regression
estimators deteriorates. Irom the performance of the Ridge Regression estima-
tors we can also conclude that Swamy, Mehta and Rappoport’s give better results

than the other estimators.
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Tho OLS Estimate

Figure 2.3: Least Squares Estimator, % error= 4.44.

Ridgo Rogression (Theobald) Estimato
T T T T

a5

Figure 2.4: Theobald Estimator, % error= 4.44.

Ridge Rogression (Schmidl) Eslimalo
T T T T

a6

Figure 2.5: Schmidt Estimator, % error= 4.44.

17
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Ridge Rogression (SMR) Estimale
T T T

18 T T

o 5 10 15 20 25 30 a5
Figure 2.7: Goldstein Estimator, % error= 11.46.

The OLS Estimate

Figure 2.8: Least Squares Estimator, % error= 113.

18
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Ridgo Rogrossion (Thoobald) Eslimato
T T T T

o 5 10 15 20 25 av a5

Figure 2.11: Swamy Mehta and Rappoport Estimator, % error= 16.2.

19
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Ridgo Rogrossion (Goldstein) Estimato
T T T T

as

Figure 2.12: Goldstein Estimator, % error= 26.8.

Error vs SNR
20 H H R

—its: i
1'=--Theobald:
----- :Schimidt
- - SMR ©
+ f@si |l

3

10

Figure 2.13: Estimation error versus SNR for Least Squares(LS), Theobald,
Schmidt, Swamy-Mehta-Rappoport(SMR) and Goldstein-Smith(GS).
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Error vs Condition number

30

a5

20f - = Thigbalg -

Figure 2.14: Estimation error versus kernel matrix condition number for
Least Squares(LS), Theobald, Schmidt, Swamy-Mehta-Rappoport(SMR) and
Goldstein-Smith(GS).

2.3 Uncertain Model

In the previous section, the measurement matrix entries are assumed to be known
exactly, hence, the only source of uncertainty in the observation vector y is the
additive noise vector m. However this assumption is often unrealistic. In prac-
tice, we seldom face an exactly known measurement kernel. Errors that do take
place during modeling and sampling may imply inaccuracies on the measurement
matrix A as well. The inaccuracies in 4 can be due to uncertainties in a few
parameters which define A , or to the uncertainties in each individual entry in
A which do not fit to a low order parametric description. In the latter case the
Total Least Squares (TLS) is one of the commonly used methods of obtaining
estimates when there are errors in both the observation vector y and the data
matrix A . Although computationally more intensive and limited in terms of
its application areas, nonlinear least squares modeling is the method of choice if

there is a parametric description of the measurement matrix.
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2.3.1 Total Least Squares

The Total Least Squares approach has been introduced in recent years in the
numerical analysis literature as an alternative for the least squares in the case
that both A and y are affected by errors. A good way to introduce the Total

Least Squares method is to recast the Ordinary Least Squares problem.

In the Least Squares estimation, the unknown @ is obtained as the minimizer
of the following optimization problem:

min —y'|I?
S Hin, ly — 3’|l
Subject to ¥y € R(A)

Once y ' is found, the minimum norm @ satisfying A @ =y’ is called the Least
Squares solution. The underlying assumption here is that errors only occur in the
vector y and that the matrix A is exactly known, which is often far from reality.
The least squares estimator is obtained by solving the smallest perturbation on
the measurements so that the perturbed measurement will lie in the range space
of A. When there are errors in both A and vy, the same idea of perturbation
can be applied to both A and y such that the perturbed measurements will
lie in the range space of the perturbed A matrix. Again we want to find the
minimal perturbation on both A and y. In the TLS, this is achieved by finding

the solution to the following optimization problem:

~ min I[A,y]—[A,9 ]l
[A Y JERN X(M+1)

Subject to g eR(A) ,

.|l denotes the [robenius norm. Once a minimizing [4 , 9] is lound, @

where

satislying Az = g is called the Total Least Squares solution.
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To solve this problem, we bring A ® ~ y into the following form

T
[A,y] ~0 . (2.38)
~1

Let [A,y] = U XV # be the singular value decomposition of [A ,y], with

U = [ul,...,U]\/]+[] N
Y = diag(oy, ..., OM41)
| 4 = [v17'"’v1\/1+1]

If oprpr # 0 then [A ,y] is of rank M + 1 and the subspace S generated by
the rows of [A ,y] coincides with RM+1 and there is no unonzero vector in the
orthogonal complement of S, hence equation 2.38 is incompatible. To obtain a
solution the rank of [A ,y] must be reduced to M.

[ickart- Young-Mirskey matrix approximation thcorem says: Let the singular

value decomposition of C € RN*M e given by: C = 3I_, ow ] with

o= rank(C). fk<rand C = Zf-;l ou ;v f then

min  ||C —=D|? = ||C -~ C || = o111 (2.39)
1'a.nk(D )=k
and
min  ||C =D = ||[C —C||* = . (2.40)
runk(D Y=k i=k+1
with p = min(M, N). Using this theorem, the best rank M Total Least Squares

approximation [A, 9] of [A ,y] which minimizes the deviation in variance is

given by:

A,g)=UxVHY | (2.41)
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where ¥ = diag(oy,...,on,0). It is clear that the approximate set

. x _
[A,7] ~ 0 (2.42)
-1
is compatible and its solution is given by the vector v py4; the last column of V.

T'hus the total least squares solution is :

—1 -

; 1 ‘
rrLs = [V iMats 0 V imsd] (2.43)
V Mi1,Mm+41
= (A7A —o}  I)'Aly (2.44)
exists and is unique solution to
Az =9 (2.45)

Whenever V ari1.m+1 # 0, the Total Least Squares solution is solvable and
is therefore called generic. Problems may occur if o, > 0,41 = ... = opqy for
p<Mandifall V yyr = 0fore = p+1,..., M + | these problems are called
non generic .

[For the generic case when o, > 0,1y = ... = opyy for p < M, il not all
Vi, =0 fori = p+1,..., M +1 then the minimum norm Total Least Squares

solution is given by:

_1 M+1 T
€TLS = FA 2 Z VovrenilVoni Vol (2.16)
Zi=7)+l M41,1 i=p+1 .

[For the non generic case when V ppyy; = 0fory = p+1,...,M+1. llo,_ >0,

and V a41, # 0 then the Total Least Squares Solution is given by:

. —1 T .
Grrs = o[V ipres Voary) (2.47)
V m+ip
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2.3.2 Simulation Results

To test the performance of the Total Least Squares Estimator, we generated a
matrix A , of independent identically distributed random va.ria.blcs,' with zero
mean. This matrix is added to the kernel matrix A, then we generate the data
vector ¥y in the same way we did for testing Ridge Regression and Least Squares

estimators.

Pigure 2.15 shows the Total Least Squares (TLS) and the Ordinary Least
Squares (OLS) estimates when applied to a case where the Total Least Squares
solution is generic. The Total Least Squares outperforms the Least Squares for
several reasons. Ordinary Least Squares takes into account only errors in the
observed data y. However, Total Least Squares considers that both the data
vector y and the kernel matrix A are erroneous, and it searches for the smallest

perturbation on both A and y to reach a compatible set of equations.

The main problem in using the TLS approach is how to determine the rank
of the augmented matrix [A ,y] and how to choose p for which o, # 0. The
performance of the TLS estimator deteriorates drastically when the rank is chosen
inaccurately.

Despite this drawback, the Total Least Squares estimate remains the only way
to solve the problem of linear parameter estimation under model uncertainties

that are treated as independently distributed random variables.
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Total Least Squares Estimate

Spo AU A B : | —sSignal
: o |- -~ Estimate
‘//1’\\

5 10 15 20 25 30 35

Figure 2.15: TLS and OLS %errs = 31.2, %eors = 47.6 .

2.3.3 Nonlinear Least Squares Modeling

In many applications of interest the phenomenon under investigation can be rep-
resented by a system of linear equations in which the elements of the system
matrix are known [unctions of a set of parameters. For instance, in array sig-
nal processing the parameters correspond to direction of arrivals of the received
signals, or in inverse problems, the parameters correspond to the measurement

device geometry. For these cases measurements relation is modeled as:
y = Af)e +n (2.48)

where 8 € RY is a vector containing P parameters characterizing the uncertainty
in the model. To solve this problem the Nonlinear Least Squares Modeling tech-
nique has been applied [5]. In this approach, which was presented by Cadzow,
a selection of the parameter vector @ and the unobserved vector @ are tried to

be found so that A (8)x best approximates y in the Luclidean norm sense.
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More precisely, @ and & are found by solving the following squared [, norm

optimization problem:

Jain, min [ly -4 (8)z]* . (2.49)

Due to the nonlinear fashion in which @ and 8 appear, generally there is no
closed form expression for the solution to this optimization problem. So it is
necessary to apply nonlinear optimization techniques to scarch for a solution.
The search space dimension can be reduced to the dimension of 8 by observing

that the optimal value of & given 8 is:

&5 = A'0)y (2.50)

Hence, the overall optimization can be recast in terms of 8 alone as:
min ||[I =P (0))y|* , (2.51)
0 crr '
where P (8) = A(6)AT(8) is the projection operator onto the range of A ().
Since I — P () is the projection operator onto the perpendicular space of range

A (0), optimal value of @ can be found as the maximizer of

5\.«
[
~
S—r

g(6) = |P(8)y|* . (:

Thus we would chose @ so that the projection of y onto the subspace spanned

by the columns of A (@) has the maximum squared norn.

The maximization of g(8) necessitates a nonlinear programming algorithm
to approximate an optimal solution. Cadzow suggested the method of descent in
which the present estimator 8 is additively perturbed to 0 +6&, where & is referred

to as perturbation vector. The basic task becomes to select the perturbation
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vector so that the improving condition
g(@ +6)>¢(0) (2.53)
1s satisfied. For a sulficiently small, in size, perturbation vector, a Taylor series
expansion, of the perturbed criterion can be made, in which only the first two
terms are retained:
g0 +68) = [[P(8 +8)y]’
P
OP (8)
= [[PO)+ > —5
ol

k=1
IP(6)
00

Skly |I?

= [P (8)ly +§‘[ y16:l*

= |[[P(8)y +L(6)s8)° , (2.54)

where:

9P (8) .OP(8) . .0P(9)
90, Y ap, Y o0, Yl

and é; or §; are the j th entry of § or 8, respectively. A logical choice of the

(2.55)

L(6) =]

perturbation vector would be one that maximizes the Euclidean norm criterion
given by equation 2.34.
g0 +8) = ¢(0)+6"L ()P (8)y
+ y"P(O)L(6)s +6"L(6)'L(0)S5.

By setting the gradient of this expression, with respect to &, to the zero vector
the optimal selection can be found as :

8" = —[R{L(0)'L(0)}'R{L(O)'P@O)y} . (2.56)
To ensure a sufficiently small perturbation, a scaled perturbation vector ad ™ is

instead used. The nonlinear programming algorithm is given in table 2.1. The

stopping condition to be evaluated is the fit error norm.
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Step | Description
I Start by an initial 8
2 | Evaluate || P (8 )y ||*
3 | Determine L ()

4 | Compute the optimumn perturbation
vector 6 *
5 | Evaluate [||[P (8 + ab*)y|)?
fora = 1, %, %, %, ... until improvement.
6 | Evaluate stopping conditions, if not
satisfied, set @ = @ + «ad ™ and go to step 2.

‘Table 2.1: Nonlinear Programming Algorithm.

2.3.4 Simulation Results

Consider the following matrix:

L 0
A0) = |0 cos(0) |- (2.57)
0 sin(9)

The range of this matrix is a plane in the three dimensional space. The parameter
® determines the slant angle of the plane as shown in figure 2.16. Based on
the above parametric representation we investigate the the performance ol the
nonlinear least squares modeling estimator. So, we choose a random 8¢ then
generate  and n in the previously described fashion, and we obtain y by
A (8% +n. Then, based on y and the known parametric description ol A, we
estimate @ . Figure 2.17 shows the result obtained in the case when the system
is nearly noise free SNR = 80dB. The nonlinear least squares modeling algorithm

converges in few steps to the optimal vector of unknowns 8 and the estimate &

is very close to the true unknown vector.
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A
R(A( w3 )
e
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R(AQw3 ) / N
R(AC 0 )

X

Figure 2.16: Effect of 0 on the R(A).

[However in the case when we increase the signal to noise ratio the quality
of the estimates deteriorates and the estimated parameters deviate significantly
from the true values. This is because in the search for optimal 8 thatl results in
the largest projection of y onto the subspace spanned by A(8 ), the additive noise
vector is also projected. Hence, if the condition number of A(8) is large, the noise
component of the projection may result in significant estimation errors along the
singular vectors corresponding to the smaller singular values, as illustrated by
figure 2.18, where the SNR = 28dB. This is due to the fact that this algorithm
is based on the least square estimator, and whatever the least squares suller from

will be inherited in this procedure.
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Non Linoar Least Squares Modolling
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Figure 2.17: Application of Cadzow’s algorithm with SNR=80dB and kernel of
low condition number, %error= 3.2

A comparison between the performance of Total Least Squares and Nonlinear
Least Squares algorithms is held in figure 2.19, both estimates were applied
for the case of an SNR 47dB, the results show the superiority of the Noulinear
[east Squares Modeling. Thus modeling the uncertainty of the kernel matrix as

a function of nuisance parameters will improve the quality of the estimate.

Non Linear Least Squures Modeliing

-4
sl | stana |
— - Esolimate
-8 i v 4 s
o 5 10 15 20 a5 20 a5

[igure 2.18: Non linear least squares modeling algorithm with SNR=28dB,

Yoerror = 64.2 .
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Tolal Leasl Squaren Eatimute
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Figure 2.19: Comparing TLS and Nonlinear Least
Yerrorrrs = 71.5 and %errorgeg = 24.1

Squares Modeling,



Chapter 3

Proposed Estimation Methods

3.1 Introduction

In the previous chapter we presented the commonly used estimation approaches
in the presence ol measurement uncertainty. We investigated the Least Squares
and Ridge Regression estimators for the fixed kernel case. The drawbacks ol
these approaches were observed in the simulations, due to noise standard devi-
ation and the structure of the data matrix for the former; and to the necessity
of prior information [or the choice of the ridge regression constant for the latter.
FFor the uncertain kernel case we examined the Total Least Squares and the Non-
linear Least Squares Modeling approaches. In this chapter, we will present new

approaches to provide more reliable estimates of the unknowns.

Following the same plan as the previous chapter, we start by proposing the

methods that we can apply when we fix the parameter 8 and we assume that
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it 1s known. Then we present algorithms when this parameter is unknown and

need to be estimated as well.

3.2 Known Measurement Kernel

In this section, we will present a way to choose the Ridge Regression constant by
constraining the estimate to lead to a fit error having the same statistics as that
of the additive noise. Then, we introduce a method that alleviates the necessity of
a priori information by iteratively estimating the noise and the signal variance.
Then, we propose an algorithm to solve large linear system ol equations, the
algorithm recursively updates the solution in an increasingly larger dimensional

subspace whose basis vectors are a subset of a complete wavelet basis.

3.2.1 Error Dependent Ridge Regression Constant

As presented in the previous chapter, Ridge Regression methods provide a fam-
ily of solutions depending on the regression parameter. Some of the commonly
used ways of choosing the ridge regression parameter have been presented in the
previous chapter. However no firm recommendation for optimal Ridge Regres-
sion parameter seems to emerge. The simplest single parameter family of ridge

regression estimates are in the following form:

Epplp) = (ATA +ul) Ay (3.1)
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where g is the regression parameter.

Different methods of choosing px will lead to different fit error vectors
énn(pr) = y — A @pp(p). If there is prior information on the statistics of
the random noise vector, one can try to choose u such that € pr(i) will look like
a realization of the random noise vector. The similarity can be measared based
on the deviation of sample moments of € pr(x) from the known moments ol the
noise vector. In practice, only the first few moments can be used for this purpose.
lere we suggest to choose g such that the sample variance of € pp(1) is the same

as the noise variance.

3.2.2 Simulation Results

Over a synthetically generated example, this practical approach is compared with
the Swamy-Mehta and Rappoport approach, and the obtained results are shown
in figure 3.2. As seen from this figure, the performance of the proposed ap-
proach is better. This is a typical case over moderate sized problems. When the
dimension of y gets larger, the performance difference gets smaller.

i Lior ve fildge Hourension

0.7

IMigure 3.1: Choice of Ridge Regression: increasing curve is the sample variance
. » ~ . . » [ . . \ 2
of the fit error vector as a function of g, horizontal line is o*.
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LEOIA and SMIA Lutimatoyu

Figure 3.2: Error Dependent Ridge Regression(EDRR) with % error = [2.4 and
Swamy-Mehta-Rappoport (SMR) with % error = 21.5 [istimates .

3.2.3 Gauss-Markov Estimate with recursive updates

There are two fundamentally different ways of solving statistical problems: The
classical and the Bayesian approaches. In the classical approach, a set of data
generated in accordance with some unknown probability law will be used without
making any assumption about the unknown law. In the Bayesian approach, the

use of any reasonable prior knowledge about the unknown is recommended.

In deriving the maximum likelihood estimator we have inferred the value of
the unknown parameter @ by chasing & to be the parameter that maximizes the
likelihood of the observed data y, this is a classical view ol the problem. In the
following we will treat the unknown parameter & as a realization of a random
experiment from which the unknowns are endowed with prior distribution. This
is the Bayesian approach where the information available prior to and carried by

the measurements are optimally combined to obtain an estimate for .

[f we define P(z |y ) to be the conditional probability that @ is true given y,
then Bayes theorem gives the desired P(z |y ) from the computable probability

P(y|z) and from the probabilities P(z) and P(y). P(z) is called the prior
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probability because it is known in advance, somehow, to obtain ¥, and Pz |y )
is called the a posteriori probability because it is what we aim to obtain after
considering the above facts.

Plyle)P(e) .
P(y) (3:2)

Let & g be the Bayes estimator. The quality of the estimator & g is measured by

Plely) =

a real-valued function with some specific properties, known as the loss function,

denoted by L[z, p]. A typical loss function would be the quadratic one:
Lz, é5] = [z —&5]"[z — & 3.3
z,tp] = [¢ —¢p])'[c —2p] , (3.3)
which assigns a loss equal to the Euclidean distance between the actual value
of £ and the estimated value £ g. The Bayes estimator under quadratic loss is

given by:
g = arg mjn/L[:c ,Zg|f(x|y)de (3.4)
x

which is the conditional mean of & given y, that is

g = L{zly} . (3.5)
Our problem is to estimate @ from the overdetermined set of equations:

y = Az +n . (3.6)
Asswmning that # and n are independent, zero-mean Gaussian random vectors,
with autocorrelation matrices R ., and R .., respectively, we get the following

jointly Gaussian density for @ and y:

x R .o R, A" _
~ N | 0; (3.7)
A R rr A R .’L‘.’l,‘A H + R nn
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To find the Bayesian estimator @ g that minimizes the mean squared error, we
have to find the expectation of the random variable z = @ |y. Gauss-Markov
theorem states that if @ and y are random vectors that are distributed according

to the multivariable distribution

x m, R:v:v ng/

Yy my R, R,

Then the conditional distribution of @ given y is multivariate normal:
Plxly)~N(@&,P) , (3.9)
where the mean £ and the covariance P are given by:

z = m:v+Ra:3/R;yl(y _m!/)

P = Ra,m - R:L‘yR y_le yx
Thus the Bayesian estimator for @ is given by:
ép = (A"R,A+R)TATR Ly (3.10)

In the case of @ and m are composed of independent identically distributed

random variables, i.e., Ry, = 02l and R,, = oI, we get
. H SN :
g = (A A+;I) Aly (3.11)
' 11702
P = ol(A"A+21)" . (3.12)
ol

2
r 1 1 ] 1 1] .1 ‘\'_\'-\." 2 . yaf e - _.U-
Note that & g is a ridge regression estimator with ridge regression constant o = o

and the corresponding mean square error is:

ey TE
MSE(@p) = trace(o,V diag(375- =3IV 7)
M 4
T (3.13)

)\103 + 0721.

=1
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which is smaller than the MSE of the maximum likelihood estimator due to the

optimal use of the prior information on @ .

In the case of unknown o2 and o2, we can first obtain their maximum likeli-
hood estimates and then we use them in the Bayesian estimator. The approach

in developing the Bayesian estimator was to find :

€3 = max P(e ly) . (3.14)
The maximum likelihood estimator for z = [ o o? ] can be obtained as:
zZ = algma\] Y =vy) . (3.15)

I U is the left singular matrix of A, then y,, = Uy has a normal distribution
with zero mean and diagonal covariance matrix o2A+02I where A is the diagonal
“matrix with entries which are the square of the singular values of A . Hence, the

probability density function of y,, 1s:
N exp(

-y, )
NioZ+od (3.16)
i=11/27 (Aot 4 02)

jy m(Y m)

Maximizing fy,, (Y ) with respect to z is equivalent to maximizing

'](0-2 0-7:‘21,) = log .fy m,(Y 711,)
N 2
—Yoni

= ;__—/\1:0_%%-072 log \/21(Aic? + o?)

(3.17)
Taking partial derivatives with respect to o2 and o? we obtain:
_ o2

or ZAJ"” Mo —n (3.18)

do? o) +02)?

: _ 2

o7 _ Z Yimi — Tu (3.19)

;90-—';21, =1 (0.2/\ + 0-2)



Chapter 3. Proposed Estimation Methods 40

lo find the solutions that annihilate these quantities we may use the successive
substitution method, to get:

\/\1/

N miTn, I\)
2 =1 ( m“‘),\ +o'”“))2 -
U-”’(/;+1) - ZN AZy2 ’ (3..,0)
=1 ((;é-"_”‘),\ +o-“”\))_>
ZN _—-/nu 1)1‘
2 =1 ( 1“)/\ +U"{A))2 19
O-n(k-y-l) - EN 1/2 Y ) ('5.../1)
=1 (az.“)/\ -I-U,,(I))

where o2 " and 0'“{ stand for the values of o2 and o2 at step k of the iterations.
We could also use a gradient descent method to successively converge to the
solutions for o2 and o?

3.2.4 Simulation Results

o test the performance of the above proposed algorithm we make use ol the
same synthetic example used in the previous sections. The results are shown in
Pigure 3.3 and 3.4. As seen [rom these figures, the estimator we suggested do
not suffer from the multi-collinearity problem in the kernel matrix A because it
helongs to the class of ridge regression estimators. The signal and noise variance
estimation process in the Gauss-Markov with recursive updates algorithm ends
up by converging to values that are within 10% of the actual values ( ol =1
and 62 = 0.92, o2 = 0.02 and 62 = 0.018 ). These results are plugged into

equation 3.11 and the estimate that we obtain shows good performance which is

robust to the noise standard deviation or kernel matrix condition number.
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Gauus Markov with Hocursive updaton

Moo vy 12 ~iv e at 1o . 1 1 :
IYigure 3.3:  Application of Gauss-Markov with recursive updates algorithm.
SNR=45dB and low kernel matrix condition number, %error= 2.

Gnusa Markov with Ioouraive updatos

——— Signhal
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Figure 3.4: Application of Gauss-Markov with recursive updates algorithm.
SNR=45dB and high kernel matrix condition number, %error= 8.

3.2.5 A Wavelet Based Recursive Reconstruction Algo-

rithm

Reconstruction of the unknowns from the data has been the subject matter of
mauny inverse problems arising in a vast class ol applications as geophysical sig-
nal processing and speech processing. A very important first step ol the inverse
problems is the parameterization of the unknowns. In many applications, where
the sensitivity of the measurements varies across the space of the unknowns, the
space of the unknowns is partitioned into cells of non-uniform sizes. The dimen-

sions of cells becomes larger when the sensitivity of the measurements to those
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cells becomes weaker. In order to keep the computational complexity at a low
level, usually data independent partitions are used. In this way the reconstruc-
tion performance ameliorate with respect to the case when uniform partitions
are used. However this result could be further improved when the partitions are

chosen adaptively based on the available data.

A new data dependent recursive reconstruction algorithm has been proposed
for robust and eflicient estimation of the unknowns [6]. In this algorithm, the
parameterization of the space of unknowns are performed by using an appropriate
wavelet basis for the application at hand. The algorithm recursively updates the
solution in an increasingly larger dimensional subspace whose basis vectors are
chosen as a subset of the wavelet basis. Robust criteria on how to choose the

hasis vectors at each iteration, and when to stop the iterations are given in [6].

[n this approach, an optimal subspace of the domain of @ will be searched
such that least-squares inversion within this subspace provides a satislactory re-

construction. For this purpose, a properly chosen wavelet basis can be used.

Wavelets are relatively recent development in applied mathematics. Their
name itsell was coined in 1982 [7]. But interest in them has grown at an explo-
sive rate. There are several reasons for their wide spread use: Wavelets have heen
successfully used in subband coding, signal analysis and numerical analysis. The
wavelet transform is a tool that cuts up data or functions or operators into dil-
ferent frequency components and then studies each component with a resolution
matched to its scale, i.e., the localization in space and scaling are the hallmarks

ol the wavelet expansion.
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The search for the appropriate dimensional subspace ol the unknown & will
be performed in steps of increasing dimensions with the addition of new basis
components to the existing ones in the previously formed subspace. The order
in which the basis components should be used must be determined efficiently. A
close approximation to the set of basis can be obtained by using the matching-
pursuit algorithm where the first basis component ¢ is chosen as the one which
maximizes ||y *A ¢;]|?, and then at step n of the recursions the optimal set of
basis components is updated by adding the basis vector which has the largest
absolute inner product with the residual measurement vector, i.e.,

b,.1 = argmax |(y —yn.)"b (3.22)
b,

where y , is the estimate of the measurement by using n basis components.
Define the decomposition of @ onto the first n basis components to be:
n
. '3 0
r, = ZQS,;Q’i . (323)
=1

Our aim is to determine & ,, such that
A N . 2 2 o
€, = argmin ly — Ax,|*+ plle. (3.24)
7
where g is the ridge regression constant which when set to 0 yields the Least
Squares estimator. ‘The above minimization problem is equivalent to linding:
y . 2 2 v I~
G = argmin ly — B ra|l” + plla|l (3.25)
n
with o, = [en.e.c)”, and B, = [by...b,]. As given previously the solution to
this optimization problem is:

G, =(B"B,.+ul)"'By (3.26)
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Since the optimal number of basis components to be used is not known a priori,
estimates for &, for various values n should be obtained in the search for the
right number of basis components. If equation 3.26 is used [or the estimates, then
the order of computations is high because of the matrix inversion that should be
performed at each step. Fortunately, there is an efficient way of updating the

matrix (B # B, + pI )~! for two consecutive values of n. At step | compute:

H, = (B/B{+ul)"! (3.27)
hy, = bly (3.28)
dl = H lhl . (329)

The general step of the algorithm which updates H ; makes use of the following

matrix inversion result:

-1
R r Q gq
= (3.30)
r H /) q H K
where R is an invertible matrix, 7 is a vector and p is a scalar and:
1 y
. = - 3.31
K p—r IR -1p ( )
g = —«R7'r (3.32)
Q = R'-—R'rq” (3.33)

Based on the above formula, the general step of the recursion in the update from
n to n + 1 is given by:
0n+1 = ng 41 (;;4)
Yn+1 = H ne n+1

| s or
_ (3.36)
Pt bH  bopr + f— 01Vt
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Moutl = = nt1Pnti (3.37)
H n o 7 n+1n :11 77 n1

H nt+l = i * (}jS)
Mt Prti

€ndl = ﬂn+1 (b :LI.H Y ) (5‘39)

Vp41 = (0 g.}_l& n) /jn-f-l — Cpt1 (340)

N d n + Vpgt? n+1 )
Xpty = (341)
_Vn+1

For an N dimensional y we have 2n® +n(N +4) 4+ 2N +2 multiplications at each
step of the recursion, the total number of multiplications required to compute
&, is O(Nn?) for N > n, whereas the direct use of equation 3.26 requires
O(Nn?) multiplications at each step. Therefore, the computational saving of
the recursive algorithm over the direct solution is significant. Also, the recursive
algorithm provides estimates ar,, at each step of the recursion making it possible
to easily implement criteria to stop the iteration. One important quantity that

is helpful in the decision to stop the iterations is the measurement (it error:
. A 2 g ¢
e(n) = |ly — B.a.|* , (3.42)

which is a decreasing function of n. One commonly used criterion stops the
iterations when e(n) is either small enough or reaches a plateau region following
a fast decrease. Another stop criterion makes also the use of the norm of the

estimate at each step.
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3.2.6 Simulation Results

To test the performance of this algorithm we generated a measurement kernel such
that the norm its columns decreases rapidly as the column index gets larger. This
type of rapid decrease is a common case in remote sensing applications where
the domain of unknowns is partitioned with a unilorm grid. The SNR in this
simulation is 35dB. The Haar basis is chosen to be the wavelet basis for the

domain of unknowns in this example. The ridge regression parameter, p, is set

2/ .2
to o2 /o?.

The criterion we suggest for the number of the basis components used in the
estimation is based on the magnitude of the reconstructed vector @ .. Since the fit
error will decrease rapidly till it reaches a plateau where almost no improvement
is observed, the magnitude of the reconstructed vector would indicate for us
when the noise [fitting process starts, this occurs when an abrupt change in the
magnitude takes place. Thus we will avoid that by choosing the appropriate
number of basis components. Figure 3.5 shows the plot of the [it error and
the estimated vector magnitudes versus the number of basis components used
[or the reconstruction, figure 3.6 shows the reconstructed estimator by using 10
components of the basis since we stop when the norm of the estimate increases
rapidly.

The obtained estimate is very close to the true values of the unknown vector,
this result shows that the presented algorithm provides satisfactory results with

a highly reduced cost of computations.
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Iligure 3.5: Fit Error and Magnitude of the estimate versus the number of basis
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J*igure 3.6: Reconstructed estimate by using 10 components of the basis.

3.2.7 Comparing performances

Figure 3.7 shows the performance of the Error Dependent Ridge Regression,
Gauss Markov with recursive updates, Wavelet based recursive reconstruction
algorithms to together with the Ridge regression estimator suggested by Swamy,
Mehta and Rappoport when applied to a case where the sensitivity of the mea-

surements varies across the space of the unknowns. The algorithms that we
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presented outperform the Swamy, Mehta and Rappoport Ridge Regression esti-
mate. Figure 3.8 shows a plot of the estimation error || — & || versus the signal
to noise ratio for the above mentioned methods. The Wavelet Based Recursive
Reconstruction and the Error Dependent Ridge Regression algorithms beat the
Gauss-Markov and the Swamy-Mehta and Rappoport’s algorithms. ‘'his is be-
cause the Wavelet based algorithm takes into consideration the sensitivity of the
measurements across the space of the unknowns by searching for the optimal
subspace of the unknown @ and the Error Dependent Ridge Regression method
imposes on the estimate to yield to an error having the same statistics as the
noise, thus for low signal to noise ratio the emphasis on the noise is stressed
more than in other approaches. The Error Dependent Ridge Regression and the
Wavelet based Recursive reconstruction algorithms performances are shown on

figure 3.9.

15 ! ! T ! T !
: Signalf : A
B S i=:- Gauss=Markov...|............. S S .
oA -~ SMR ' :

P ‘... EDRR: T
L . .
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0
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Figure 3.7 WBRR, EDRR, GM, SMR estimates, with Y%errors: ewprr = 18.37,
CIEDRR = 15.23, eGM = 13.82, E€SMR = 24.54
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‘o Error vs SNR
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Figure 3.8: Estimation Error vs. SNR for the WBRR, EDRR, GM and SMR
estimates.
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Figure 3.9: Estimation Error vs. SNR for the WBRR and EDRR estimates.



Chapter 3. Proposed Fstimation Methods 50
3.3 Uncertain Model

3.3.1 Nonlinear Ridge Regression Modeling

In the section of the previously suggested algorithms we presented the Nonlin-
car Least Squares Modeling method proposed by Cadzow to solve the system
of equations when the system matrix elements are known [unctions of a set of
parameters, and through a synthetic example, we saw that its performance dete-
riorates in the case of high signal to noise ratio or high kernel matrix condition
number. In a way these were the same problems we faced when considering the
Least Squares problem. Therefore, by introducing a penalty term on the squared
norm of the estimate, we can hope to obtain a similar improvement in the perfor-
mance of the non linear least squares estimator. In the following we will call the
penalized approach as the non linear ridge regression modeling which provides
cstimates for @ and @ as the solution to:

min min ||y — A (8)z|*+ plz]* , (3.43)

TeCM @ cRrp
where u is the ridge regression constant. Lor the general case there is no direct
form solution to this problem. One way to find the optimal & and 6 is to use
the same non linear optimization technique applied previously in non lincar least
squares modeling. For any value of 8 the optimal estimator that minimizes the

above cost is :

rn = (AO)A(0)! +ul) ' A(0) Ty (3.44)
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Substituting equation 3.44 into equation 3.43 the dimension of the optimization

problem can be reduced to the dimension of 6.

min 111111 ly —A(0)x I1* + el ||?

T eCM @
= guin [ly —A(0)(4(0)A L(0)! 4+ uI ) A (8 Ty
+ull(A(0)A(0) + D) A0) Y]’
= é‘nin II —D(0)lyl”+ulB(8)yl* , (3.45)
ERF

where D (8) and B (8 ) are:

D(@) = A(0)A0)AB) +ul)"A(8)" (3.46)

B() = (A(B)A(0) +ul)tA(0)" (3.47)
If we define the function to be minimized by:
f8) =L —D(@)y|*+r|B@)yl* , (3.48)
then the problem reduces to finding a perturbation vector 8 such that:
[ +6)< f(o) . (3.49)

Assuming that the perturbation vector is sufliciently small in size, we can use

Taylor series expansion for D (0 + &), giving:

P
D (6 +5)A_JD(0)+Z()1?(0)5A, : (3.50)
=1 ()()k

Similarly using the Taylor series expansion for B (0 +6), we obtain:

L 0B( ,
B(6+6) Z . ), . (3.51)
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Using the above expansions

J6+8) ~ |[I -D(6+8)y|*+ulB(8)yl’
_ _ & D), PLOB(6), . o,
= T =D 0)- 3 “T eyl + w8 0) - X T gy

= I -D @)y L1 (6)8|*+ulB @)y —L2(8)8] , (3.52)

where the Jacobian matrices L1 (8 ) and L2 (8 ) are obtained by:

oD(@) .0oD(@) . .0D (6 )
Li1(0) = | 89(1 )y: 805 )y (?0(}.)) ] (3.53)

oB(0) .0B(6) . .9B(8 |
L2 (0 ) = [ 001 y: ()02 )y e ()—()Ply y (354)

and 6; or ; are the j thentry of & or @, respectively. A logical choice of the
perturbation vector would be one that minimizes the Suclidean norm criterion
given by equation 3.52. By setting the gradient of this expression, with respect

to &, to the zero vector the optimal selection is :

§ = R{(L1(0) L1 (0)+puL2(0)"L2(6))"}
R{L1(0)'[I —D(8)+u1L2(6)"B(8)y} . (3.55)

To ensure a sufficiently small perturbation, a scaled perturbation vector aé ™ is
used instead. The stopping conditions could be the fit error norm. The steps of

non linear optimization algorithm are given in table 3.1.

An other way to solve the minimization problem equation 3.45 is to apply

sradient descent method to reach the optimal  that minimizes J(8) = ||[I —
D (0))y|* + ul|B (8)y |*. Starting with an initial 6, we perform updating by:

X ” 0.J .
0 = 0, +ﬂ08—0‘10’k_1 , (3.56)
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Step | Description
1 Start by an initial 8
2 | Evaluate ||[I — D (0)])y||* + u||B (8 )y]*
3 | Determine L1 (@) and L2 ()

4 Compute the optimum perturbation
vector 6 * ,

5 | Bvaluate [|[I — D (8 +a8*)y|*+¢l|B (8 +abd™)y|?
for « = 1, %, i, é, ...until improvement.

6 | Evaluate stopping conditions, if not

satisfied, set @ = 6 + b ™ and go to slep 2.

Table 3.1: Nonlinear Ridge Regression Algorithm.

where d)é , the derivative of the cost function with respect to 8, is given by:
oJ _ _zoD(@)" 0D (8)
T} YoV "o
,0D (8)" 9D ()"
HZ\" J D (6 UD ] I =7
t oy DOty D) = D)y
#0B(6)" n9B(6)"

= B(8 Hpggynz=_"/
+ py 20, @)y +ry"“B(8) o, Yo

for 7 = L..P. and gy is the step size which can be taken small enough to ensure
. > g

the convergence of the algorithm. Once we reach a minimizing 6, we plug it

into equation 3.44 to find @ pr then check that this point Q(& pr,8 ) is a global

minimum for both parameters by finding the eigenvalues of the Hessian matrix

H at ), where

aJ2 aJ2

T2 sx 50 (3.57)
aJ2 aJ?

20 sz B

At the global minimum point the Hessian matrix is positive definite. T'he speed of

H(xz,0) =

convergence of this method is highly related to the starting point of the algorithm
and to the step size used. Taking a large step size may stick the iterations at

a local minimum. One way to overcome this problem is to apply the algorithm
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by initializing several starting points, so that we can avoid being clung at local

minima points.

The derivation of the Jacobian matrices L1 (8 ) and L2 (8 ) are provided in

the Appendix.

3.3.2 Maximum Likelihood and Least Squares Bayesian

Inversion Approaches

Both non linear least squares and ridge regression estimators of  in the presence
ol a parametric uncertainty in A (8 ) provide estimates in the absence of any prior
information. In this section, we will present two approaches to the estimation of
unknowns & when there is available prior information on the set of parameters

0 . I'ypically this prior information on @ can be a constrained set, such as:
0.,<6 <0y, (3.58)

or it can be a density function fg(8). One way of incorporating this type of
prior information on @ to the estimation of @ is given in the following estimator

which is based on maximum likelihood principle:

Ty = arg nmax Eg{Llly —A(0)z)} , (3.59)
where Eg {L(y — A (0) )} is the expected likelihood with respect to 6.
Eg{Lly —A(0)e)} = /,C(y _A(B)z)fg(8)d0 ,  (3.60)
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where fg () is the prior density on @, For the commonly used zero mean Gaus-

sian noise model with autocorrelation R ,,,, the likelihood function is:

o J‘ -1 .

Lly = A(0)2) = sope—rmesp{—(y — A(0)2)"Ril(y A (0)e)
(3.61)

Hence, @ ps in equation 3.59 can be obtained as the maximizer of:

Jw.0) = [ el -y ~AB)2)"Rilly — A (6)2)}g(6) do
| (3.62)

There is no closed form expression for the maximimizer of this cost. However,
numerical optimization tools can be utilized to compute the maximizer & ;. For
instance, assuming that R ,, = ¢2I, then & p; that maximizes J is the vector

that annihilates:

I S PP VL }E
ozt J (2r0,)N? : 202
A0)'(y-A(6)z), o
20 fg(0) do (3.63)
which, by discretizing the subspace of @ onto K possible valuesof 8,2 = 1,..., K
equation 3.63 can be approximated by:
9 _ 4~ | oy —A@Iz|? AB) (y —AB)2),
2o = ,_Zl AL exp{ %07 } %07 fg(0:)
(3.64)

[or the solution of equation 3.64, we may use the method of successive sub-

stitutions. At iteration £ + | @ is updated by:

2
(k+1) _ 2/9(9 pr{ ”y_‘?')a-z) ” }A “A(0 ))
- N (R) ]2
Z/a Jep{ W =AGIE Ty 401y, (369)
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A second way of incorporating prior information on 8 is based on least squares
principle, where the estimate is obtained as the minimizer of the expected squared

norm of the fit error:
T = arg min &g {ly —A(60)x|*} . (3.66)

By using the prior distribution on 8 , we can rewrite the estimator in the following

form:

£ = arg Hzlvin/ ly —A(0)z|*/g(8) O (3.67)

This quadratic form of the cost function has the following closed form solution
for @ :

&, = [/AH(_e)A (0)/g(8) do]-l[/A”(a)y./'g(o) 0] . (3.68)

In order to avoid potential problems of the required matrix inversion, we can use

the following regularized form:
di = [[(A7(0)A(8)+1I)fg(6) d8]) (A(O)y [g(6) dB] . (3.69)

where u is the regularization parameter.

3.3.3 Simulation Results and Comparing Performances

To test the performance of the non linear ridge regression modeling algorithm
when applied to estimate an unknown vector @ under model uncertainties, we
apply the same synthetic example used to test the non linear least squares mod-
eling estimator. Figure 3.10 shows the result when the algorithm is used for the

case of SNR = 65dB and the kernel matrix condition £ = 40. The algorithm
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converges in few steps to the actual values of 8 and the estimated & is very
close to the unknown parameter @ . For kernel matrix A (8 ) having a condition
number £ = 10? and SNR = 46dB, figure 3.11 displays the result obtained when
non linear ridge regression algorithm is applied with use of non linear minimiza-
tion procedure to solve for 8 and figure 3.12 shows the result when we apply the
gradient descent technique to search for optimal @ . The ridge regression constant

used is the one provided by Swamy, Mehta and Rappoport.

Non Linear Ridge Iiegression Modoliing

I'igure 3.10: Nonlinear Ridge Regression algorithm with non linear minimization
technique. SNR=65dB, %error = 3.11

Non Linoar Fidge IRugrosuion Modeoliing
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Iigure 3.11: Nonlinear Ridge Regression algorithm with non linear minimization
technique. SNR=46dB and « = 10, %error = 7.42
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Simultanvous Minimization

IFigure 3.12: Nonlinear Ridge Regression algorithm with Gradient technique.
SNR=46dB, £ = 10%. %error = 3.24.

Figure 3.13 shows the estimated and the actual parameter of @ by the use
ol Maximum likelihood-Bayesian approach. The four dimensional space of the
unknown parameters 8 in this example has been sampled to five steps for each
dimension. Thus we used 625 different 8 values. The prior distribution on the
0 ; space is taken to be proportional to the projection norm of the data vector
y onto the range space of A (8;). The SNR in this application is 45dB. The
performance of this algorithm would increase when the sampling values are taken
tighter as shown in figure 3.14, where the estimation error is plotted versus the

norm of, @, the bound vector for the parameter 8, that is we assume
6o—6 <60 <0,+6 (3.70)
and we keep the sampling rate described above while varying the bound vector.

Iigure 3.14 displays the result when the least squares Baycsian approach
is used. The conditions under which this algorithm is applied are the same as
in the application of the maximum likelihood-Bayesian approach. Again the

performance of this algorithm is highly related to the sampling density applied

to discretize the estimate given by equation 3.69.
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Figure 3.14: Estimation error versus the bound vector norm.

Least Squares—Buyssian Approuch

Y . i | — signm
ol N ] Eatimens

Figure 3.15: Least Squares-Bayesian approach, Y%error = 12.75.
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To end up, we applied the same synthetic example for comparing the non
linear least squares modeling, the non linear ridge regression modeling, and the
maximum likelihood-bayesian inversion estimators. Pigures 3.16- 3.19 display
the results obtained for an SNR of 80dB. The non linear least squares modeling
approach is based on the least squares estimators, thus its drawbacks that arve
caused by the noise vector standard deviation and the kernel matrix condition
number are inherited. Whereas the non linear ridge regression estimator with its
two ways for determining the optimal 6 overcomes the above mentioned prob-
lems. On the other hand if prior information on the distribution of the unknown
parameter is available, we can use the maximum likelihood-Bayesian inversion
or the least squares-Bayesian inversion approaches, these algorithms provide us
siooth estimates, and avoid drastically deteriorating results. The disadvantage
of those two methods is the need of a fine sampling of the 8@ space that leads
to increase in the computational cost. Figure 3.20 gives the estimation error
versus the SNR for the presented approaches. We notice that for low SNR the
algorithms we suggested outperform the non linear least squares algorithim, how-
ever the latter yields better results in the mean square error sense when the SN R

is high, this is due to the fact that non linear least squares algorithm gives an

unbiased estimator.
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[Pigure 3.16: Nonlinear Least Squares Modeling, %error = 24.306.
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IPigure 3.17: Nonlinear Ridge Regression Modeling with non linear optimization,

Yerror = 16.7.
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[igure 3.18: Nonlinear Ridge Regression Modeling with gradient descent mini-

mization, %error = 15.9.
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Error vs SNR
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Figure 3.20: Bstimation Error versus SNR for the presented algorithms: Cad-
zow(Cad), Nonlinear Ridge Regression(RR), Nonlinear Ridge Regression with
Giradient descent algorithm(Gradient), Bayesian-Likelihood(BLik) and Bayesian-

Least Squares(BLeast).
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Conclusions

[n this thesis, we have considered the problem of estimation of unknowns in a
linear statistical model with uncertainties. We started by reviewing some of the
widely used methods, then we introduced our approaches. For both parts we
treated the question in two separate cases. When the kernel matrix is known
and errors are considered only at the measured data, we investigated the Least
Squares and the Ridge Regression estimators. We provided results showing that
the mean square error ol the Least Squares estimator increases drastically for
kernel matrices with high condition numbers and additive noise vectors with
large variances. On the other hand, the Ridge Regression estimator overcome
such problems of multicollinearity and of low signal to noise ratio at the expense
of a required prior information about the unknown parameter vector or about
the noise statistics, which are used to determine the ridge regression parameter.
In order to avoid such a prior information on the unknowns, we proposed the

Error Dependent Ridge Regression approach which chooses a ridge regression

63
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constant that leads to an error with the same second order statistics as the noise
vector. The prior information about the noise vector variance can also he avoided
by applying the Gauss Markov algorithm with recursive updates. These two
algorithms lead to better estimates in the mean square error sense than the Least
Squares and the commonly used Ridge Regression estimators. In addition to
those methods, a data dependent recursive reconstruction algorithm is proposed
for robust and ellicient estimation of the unknowns. The algorithm recursively
updates the solution in an increasingly larger dimensional subspace whose basis
vectors are chosen as a subset of the wavelet basis. Robust criteria on how to

choose the basis vectors at each iteration, and when to stop the iterations are
provided.

Then we looked into the methods used to solve the problem of uncertainties in
the kernel matrix, we first examined the Total Least Squares and the Non Linear
Least Squares modeling. Being based on Least Squares, those two methods inherit
its deficiencies. To remedy these drawbacks we introduced the Non Lincar Ridge
Regression Modeling algorithm which is based on the ridge regression estimator.
This method reduces the minimization problem with respect to two unknown
vectors to a minimization problem with respect to one vector for which a non
linear programming algorithm or a gradient descent type algorithm can be used
o reach the optimal solution. Finally, to deal with the problem when prior
information on the parameter that models the uncertainty in the kernel matrix,
is provided we suggested two similar approaches based on maximization of the
expected likelihood and minimization of expected least squares cost. Simulation
results obtained through synthetic examples demonstrated that the proposed

algorithms outperform the commonly used methods providing robust estimates
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with smaller mean square errors.
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Appendix A

Computation of the Jacobian

matrices.

In the Non Linear Least Squares Modeling we had:

OP(0) .0P(6) . .0P(8)

L(6) = 05 0) or )
(0) === vi—5, ¥ 90, Y (A1)

[n the computation ol the Jacobian matrix L (8) the problem is to lind the

derivative of the projection matrix P (8 ) with respect to the /7 dimensional

vector 8. Knowing that:

P(9)=P(6) (A.2)
and
P(8)=P(0)" (A3)
OP(6)  0P(8) oP(6)
0 = g D@IHPOI (A4)
_ 9P(9) JP (6) " i
- a0, P(6)+] o0, P (6)] (A.D)
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Appendix A. Computation of the Jacobian matrices.
To compute the terms on the right-hand side of equation A.4, each side of the

matrix identity P (0 )A (8) = A (8) is dilferentiated with respect to 0.

(’)P(G)A(e) 0 _Pw)]agoff) , (A.G)

00y,

Right multiplying each side of this relationship by the Moore-Penrose generalize
Right Itipl: h side of tl lationship by the M P lized

inverse A 1(8):

OP (8) o 0A (6 )
0, P@)=1[-P(0) o, At@) . (A.7)

This expression is then substituted in equation A.4 to get:

OP(0) DA(6) . ~ DAB) .+ n
G5 = PO —=ATO)+[I - P@)]=5=—ATO)". (A8)

For I <k < P.

In the Non Linear Ridge Regression Modeling algorithm we hadl:

oD(@) .0D(6) . .0D(8) /
9B(0) .0B(8) . .0B(6) |
L2(8) = | 80(1 )y: 00’2 )y:...: in y] (A.10)

where D (8 ) and B () are given by:

D(O) = A(0)A0)A0)" +pI)"A(0)"
B(@) = (A0)AO) +pul)'A6)"

D @#)

: - - L2 0B (8)
The main problem is to compute =5~ .

and =55~

Call (A (0)A (8)T +ul) = T(8). Then, since T (8) is invertible

T(@O)T~'(8) = I (A1)



Appendix A. Computation of the Jacobian matrices.

Using this identity and differentiating with respect to 0,

T (0)T'(9) _
A0y, B

taking partial derivatives

oT (8), . _, oT-'(6)
G T O+ T(0) == =0

therefore the derivative of T ~1(8) with respect to 8 is

0T—1(0) _T—I(G)OT(G)T—l(e) .

00/\': (I)Ol.:

Thus the derivative of D (8) with respect to 0y, is:

OD(6) _ 9A406) 4(9)a(6)" + 1) A(0)"

001; (r)ok
OT (6)

- AT Y(8)—=—T ' 0)A(6)"

90,
L DA (0)H
+ A(6)T (6 )_—M ,

and of B (8) with respect to 0y, is:

OB(0) 1 0T(8),. 1"
i T (9)‘—00k T7(6)A(8)
; n
+ T 220

00,
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(A.13)

(A.14)

(A.15)

(A.16)
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