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ABSTRACT

R O BU ST ESTIM ATIO N  OF U N K N O W N S IN A  LINEAR  

SYSTE M  OF EQUATIONS W IT H  M O DELING  

UNCERTAINTIES

Fehmi Chebil

M.S. in Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Orhan Arikan 

July 1997

Robust methods of estimation of unknowns in a linear system of equations with 

modeling uncertainties are proposed. Specifically, when the uncertainty in the 

model is limited to the statistics of the additive noise, algorithms based on adap­

tive regularized techniques are introduced and compared with commonly used 

estimators. It is observed that significant improvements can be achieved at low 

signal-to-noise ratios. Then, we investigated the case of a parametric uncertainty 

in the model matrix and proposed algorithms based on non-linear ridge regres­

sion, maximum likelihood and Bayesian estimation that can be used depending

m
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on the amount of prior information. Based on a detailed c:omparison stud}  ̂ be­

tween the proposed and available methods, it is shown that the new approaches 

provide significantly better estirricites for the unknowns in the presence of model 

un(:ertainties.

Keywords: Robust Estimcition, Parametric measurement uncertainties, Ridge Re­

gression, Wavelet based reconstruction, Meciri Sqiuire Error.



ÖZET

B E N ZE TİM  BELİRSİZLİKLERİ OLAN D O Ğ R U SAL  

D EN K LEM  SİSTEM LERİNDE BİLİN M EYEN LERİN  GÜ RBÜ Z

KESTİRJMİ

Fehmi Chebil

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yardımcı Doçent Orhan Arıkan 

Temmuz 1997

Doğrusal denklem sistemlerinde bilinmeyenlerin kestiriminde kullanılmak üzere 

pekçok yöntem önerilmiştir. Sistemin belirsizlikler içermesi durumunda kestirim 

başarımı yüksek gürbüz yöntemlere duyulan ihtiyaç nedeniyle, tez kapsamında 

yeni yöntemler önerilmektedir. Sistem belirsizliğinin ölçüm gürültüsünün istatis­

tiksel tanımlanması üzerinde olduğu durumlarda kullanılmak üzere önerdiğimiz 

yöntemler kullanılmakta olan yöntemler ile kıyaslanmış ve oldukça daha iyi ke- 

stirimler elde edilebildiği gösterilmiştir. Özellikle sinyal-gürültü oranmm düşük 

olduğu durumlarda yeni yöntemler çok daha iyi kestirimler verebilmektedir. 

Pararnetrik yapıya sahip sistem matrislerinde belirsizlikler olması durumunda
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kullanılabilecek yeni kestirim yöntemleri de önerilmektedir. Bu yöntemlerin kul­

lanılmakta olan diğer yöntemlerde olan detaylı kıyaslamasında yeni yöntemlerin 

dcdra gürbüz ve yüksek başarımlı kestirim sonuçlari verebildiği gösterilmiştir.

Anahtar Kelimeler: Gürbüz Kestirim, Parametrik Ölçüm Belirsizlikleri, Diyago­

nal Düzenlileştirme, Dalgacık tabanlı oluştur um. Hata Karesinin Ortalaması.
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Chapter 1

INTRODUCTION

The basic job of an experimenter is to descrilse what he or slie sees, try to explain 

what is observed and use this knowledge to helf) answer ([uestions encountered in 

the future. The explanation often takes the form of a irhysical model, which is a 

theoretical explanation of the physical phenomenon under study. Models make 

it possilrle to explore situations which in the actual system would bo; lia.xardous 

or demanding. Aircra.ft and space vehicle simulators are well known exam]3les. 

A model is usually expressed verbally first then formalized into one or more; 

equations giving rise to the mathematical model. A characteristic of science is its 

use of mathematical models to extract the essenticils from compliccited evidence 

and to qinmtify the implications.

An important reason behind modeling is to provide the required Framework 

for the estimation of the unknowns. Experience has shown that no measurement, 

liowever Ccirefully made, Ccin be completely free of errors. In science the word

1



Clmpter 1. INTRODUCTION

“error” does not carry the usual connotations of mistal<e. Error in a scientific 

measurement means the inevitable uncertainty that attends mecisurements. (Jn- 

certainty is not the ignorance of outcomes. As a matter of fact when a coin is 

tossed, we are certain that one of two outcomes will occur. What is not known is 

heads or tails. Again, when a die is tossed, it is certain that 1, 2, 3, 4, 5 or 6 will 

turn up. What is not known is which of these numbers. The future outcome of 

a. coin toss or a die toss is not only unknown l̂ ut also not knowable in advance. 

Thus uncertainty is the certainty that one of several outcomes will occur; but 

which specific outcome will prevail is unknown and unknowable.

A basic problem that arises in a broad class of scientific disciplines is to 

perform estimation of certain parameters from a model within uncertainties. In 

this thesis, we treat this problem when the model is a linear statistical one, which 

is described by:

A x  =  y , (1.1)

where x is the unknown vector, y  is the measurement vector and A  is the 

measui’ement kernel. As mentioned previously, there are no measuix'ments frex; of 

cM-ror, l,he obtained data presented in the vector y  are considered to Ixi erroneous. 

An additive noise vector n is added to the observation to stress tliat fact. 'I’he 

uncertainty could come from the kernel matrix A  , the entries of tins matrix 

are also subject to sampling errors, measurement errors, modeling errors and 

instrument errors. Again the matrix A  could depend on an unknown real valued 

set of parameters 6 belonging to a set S. This is the case of array signal processing 

applications where $ refers to direction of arrivals of signals. Thus the problem we 

are dealing with is estimating an M dimensional vector x from an N dimensional
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data vector y  with:

y =  A  {6 )x n (1.2)

In chapter 2, some of the commonly used approciches to tlie estinuition of the 

nnknowns in the presence of measurement uncertainties will be presented. In 

chapter 3, we will introduce the proposed approaches to the estimation problem. 

In order to compare the estimation performance of the old and new approaches, 

extensive simuhitions are provided throughout the thesis.



Chapter 2

Commonly Used Estimation 

Approaches

2.1 Introduction

'riie commonly used approaches to estima.te the unknown parameters from a 

model under uncertainties are presented in this chapter. Over synthetically gen­

erated excunples, these approtiches are compared with each other in terms of their 

performances. In the Ibllowing, measurement relationship is modeled as:

y = A {9 )x + n  , (2 . 1)

wliere y  is the A-dirnensional vector of available measurement data., A  is the 

measurement kernel or operator, x is the Tl f̂-dirnensional unknown vector, n  is 

the additive rnecisurement noise cind 6 is /^-dimensioned vector para.m(;t(u-ixing 

the uncertainty in the model.



We shall start by providing the approaches used for a fixed 6 , that is to solve 

the overdetermined set of equations:
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y =  A X +  n ■ (2.2)

W(' will investigate the Least Squares approach, then the ridge regression esti­

mate. For the model uncertainty ¡problem which is characterized by eqiuition 2.1, 

we will consider the Totcil Least Squares estimate and the nonlinear least squares 

modeling cilgorithm.

2.2 Known Measurement Kernel

2.2.1 Least Squares Fitting to the Measurements

The least squares method of estimation is extensively utilized in a wide variety 

of applications such as communications, control, signal processing and numerical 

analysis, since it requires no information on the statistics of the data, arid it is 

usually simple to implement. As we will see, it provides reasonably good estimates 

when the condition number of A  is relatively small and the signal to noise ra.tio 

of the mecisurements is high.

In the method of lecist squares, we want to find an estimat(.' x sucli tliat the 

norm of the fit error

e = y — A X (‘•̂••1)

is minimized.
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lie least squares estimate satisfies the well known norrnaJ equations:

{ A ’^A) xns  = II (2.4)

n {A^ A )  is lull Tciiik then the least squares solution can be tbuncl as:

xls  =  {A A  ) '■A ’’ y (2.5)

When {A A  ) is rank deficient, the least squares estimator is given by:

X lss =  A , ( 2.6)

where A  1’ is called the pseudo-inverse or the Moore Penrose generalized inverse 

ol A  , which can be obtained from the singular value decomposition (SVD) of A .

When the measurement noise vector has independent identically (listril)uted 

normal entries, the least squares estimator cdso corresponds to the maximum like­

lihood estimator. The maximum likelihood theory is widely applied to a number 

of important applications in signal processing such as system identification, ar- 

ra.y sigiml processing and signal decomposition. It is also ap];)lied to find an 

estimate to uncertain model parameters. The principle of maximum likelihood is 

illustrated by the following example [1].

Let y be a random variable for which the probability density function /,■(;(/) is 

parameterized by an urdaiown parameter x. A typical density function is given 

in figure 2.1. In this figure two densities are illustrated, one for parameter ;ri and 

one for parameter X2 - Suppose that the value y is observed. Based on the prior 

model fx(ij) shown in 2.1 we can say that y is more probably observed when 

X — x -2 than when x =  .Ti . More generally there may l)e a unique value of ;r 

for which y is more probably observed than for any other. We call this value of
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Figure 2.1: Mcixiimmi Likelihood principle:Typical density functions.

X that makes y most probable, or most likely, the maximum likelihood estinmte 

Xm l -

Xml  =  argmax./;.(?/) . (2.7)

We obtain the maximum likelihood estimate by evakuiting tlie conditional density 

,/V|.Y(y/|-c) at the value of observation y and then searching for the value' of x that 

maximizes fY\x{y\x).  The function /(.c,?/) =  fY\x{y\x)  is called the likelihood 

lunction and its logarithm L(x,y) =  In fy\a-iy\x) is called the log likelihood 

function.

In our problem we have N olrservations summarized in tlie vector y ol)tained 

l)y this relation:

y =  A x  + n  , (2.8)

with n noriTicdly distributed having zero mean and covariance matrix R  , the 

conditional probcvbility density function of y  given x is:

f y\x{y\x)  =  -  A x ) }  (2.9)
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where \R | denotes the deterininant of R  . The corresponding log-tikeliliood 

fniiction is;

L( x , y ) in fy\x (y\x)
N i l

= - Y l n 2 7 r - - l n \ R \ - - { y - A x f R - ' ( y - A x )  .

The rnaximuin likelihood estimator is obtained by differentiating the log- 

likelihood function with respect to x and setting it to 0, yielding:

XML =  { A ^ R - ^ A ) - ^ A ’^^R-^y (2.10)

As pointed Ccirlier, the maximum likelihood estimator coincides with the least 

squares estimator when R  =  cr;̂  J .

In tlie remaining of this sul^section we will investiga.te tlie mea.n and cova.ria.nce 

of tire least squares and maximum likelihood estimators. Let 7Z(A ) be the 

subspace spanned by the columns of A . ff we call y  j the i)rojectiou of y  onto 

'R.{A) and y-2. the projection of y  onto the orthogonal complement of 'R{A ), 

then y  j — A x  belongs to 'TZ{A ) and is orthogonal to y 2 · ilence we can write :

C =  ||y -  Ax\\‘̂ =  \\yi -  Ax\\'  ̂+  \\y-. (2.11)

which attains its minimum when ||y 1 — A x\\̂  is minimized with respect to x . 

Since we Ccui alwciys find an x satisfying A x  = y \ and it is unic|ue if and only 

if

mdl{A) =  {x;  A x  =  0 } =  0 , (2.12)

then, the least squares estinicite always exists, and it is unicpie if and only if A 

is full column raidv. The statistical behavior of cui estimator can be investigated 

l)y finding its mean and covariance. Assuming that the additive mea.surement
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noise vector is zero mean, the expected value of the least squares estima.tor can 

Ije found cis:

E{ x l s } =  E{ iA^^A) -U^^y}

=  E{iA^^A)~^A'UAx + n ) }

= (A " A  ^̂ A )x +  (A -̂̂ A ) - ' A  }

=  X ,

which implies that the least sqiuires estimator is unbiased. The covariance of the 

leiist squcires estimator is given by:

Cov{xls} = E{(X LS -  E{X Ls})(x LS -  E{x is}Y^} ■ (2.13)

With the assumption that the noise vector n is normally distributed having zero 

mean and covariance matrix R  „„ =  <7,^/ , the required computation can be 

performed ecisily, yielding:

Cov{x l s } = crliA^^A) ' (2.14)

Mow much an estimator could deviate on the average from the actual parameters 

is given by the Mean Square Error (MSE) criterion. This is obtained by:

MSE{x l s ) =  trace(C't>u{«/^,s’ })
M ^

= cr„
i=l

(2.15)

where s/Xi is the singular value of A . Hence, if tlie matrix kernel has a. high 

condition number then the MSE will be large.

Another criterion to quantily statistical performance of estimators, is com­

paring their error covariance matrix with the (Jramer-Ra.o lower bound, which
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e.sta.blishes a lower IdouiicI on the covariance matrix for any estimator of a param­

eter. I he Gramer-K,ao theorem states that il y  is an N -climensionaJ vector with 

probability density function j y  (y |a;) and the estimator x is an unbiased 

estimator of x , then the error covariance matrix of x is bounded as ill.

C l{{x — x){x — xy^]  > J (2.16)

where J is called the Fisher information matrix and it is given by:

=  J^{[-^^^Kfy\x{y\x)][-^lnJy\x{y\x)f]  . (2.17)

For the Least Squares estimator, the Fisher information matrix becomes:

J =  — ^  . (2.18)
 ̂n

Thus, the covariance matrix of the least squares estimator given in equa­

tion 2.14 meets the Crarner-Rao lower bound. Hence, when the measurement 

noise is identically independently distributed normal, the least squares estimator 

is the best linear unbiased efficient (BLUE) estimator.

2.2.2 Ridge Regression

In 1970, Hoerl and Kemiard showed that based on the Mean Squarci Error crite­

rion, a biased estimation procedure could yield better parameter estimates of a. 

linear model than the aricilogous estimates obtained via classical least sc|uares [2]. 

This procedure is introduced initially to avoid the ill effects of quasi-collineci.rity 

in ordinary least squares estimators. In order to avoid widely oscillating esti­

mate's of least squares, obtained in the case of measurement kerneds with a la.rge
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condition number, a penalty term on the weighted magnitude of the estimated 

variables is incorporated to the ridge regression cost function:

C =  e e + X “ D  X ,H (2.19)

with e =  y — A x  and D  — diag{ki),i =  where the weights k-i >  0 are

known as the ridge regression constants. The Ridge Regression estimator, x nn, 

can be found as the uniciue minirnizer of the above cost function resulting in:

XRR -  ( A^^A + £ ) ) - ' A " y-1 A H. (2.20)

Similcu· estimator wiis obtained by Levenberg(1944) and Marquct.rdt(1963) in de­

veloping an algorithm lor nordinear least sciuares minimiza.tions [3]. In the pres­

ence of little or no prior information, the choice of the ridge regression constants 

becomes a difficult task. Therefore in many applications the weights a.re all cho­

sen to be the same, reducing the search spaee lor the right set of para.meters to 

oiKi. This case of unilbrm weighting is known as ordinary ridge regression arid its 

corresponding estimator is:

XORR =  ( A  " A  + A: / ) - ' A " y

The expected value of the ridge regression estimator can be found as:

E { x r r } = E{{A^^A + D ) - ^ A ‘^y}

= (A " A  + £ ) ) - ‘ A "AiB ,

( 2.21)

which has a bias oh

E{x - X rr} =  V  diag( k ) V " x  ,
A ; -|- k i

(2.22)
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where V  is the right singulcir matrix ¿uicl v/Ai’s ¿u-e the singular values oF the A  

matrix. Likewise, the covariance of the Ridge R.egression estimator ca.n be found 

as:
XI

c o v { x m }  =  diag( )V  "  ,(Â  +  kiŷ
(2.23)

where (jj; is the noise veu-iance.

Since the Generalized Ridge Regression is a biased estimator, we use the 

Cramer Rao lower bound for biased estimators :
0

Cov{xjir} > [ - ^ E { x  J Rji}]

where J  is the Fisher information matrix for x . since

A'̂
Cov{x r r } =  a^V die

(Aj· +  ki)
H

l E i x n . )  =  V d l a g ( ^ ) V "  .

it can be shown that:

J =

d
C ov{x r r } =  [— E{ x r r }Y‘ J [̂—

8
- Y ^ E {

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

flence, the Ridge Rcigression estimator meets the Cramer-Rao bound for the 

biased case.

The main task in Ridge Regression estimators is how to choose the Ridge 

Regression constants. The criterion that we are using to judge estimators is the 

Mean S([uare Error criterion, so the Ridge Regression estimator would outperform 

the Least Squares estimator if :

MSE{ x r r ) < M S E ( x l s ) ■ (2.29)
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Figure 2.2: Least; Squares and Ridge Regression Estimators: Bias and Covaruuice.

In other words we would like to get the situation illustrated l>y figure 2.2. 'riie 

corixisponding Mean Square Plrror of the Ridge Regression (Estimator is:

\1I IMSE(xrh) =  E { { x , m - x Y \ x , m - x ) }

(2.30)
fet i г̂ +  kY iXi. + k y  ·

Theobald proved that to provide the condition in e(|uation 2.29 we should liave :

V ‘'x^^xV  , /2  1
— 3 — « ‘ ' '“ « h  +  x '  ’ (2.31)

which is satis.iiecl tor ki > 0 or ki < —2\i for i — When tlie are

fixed, the domain of parameters where the genei’cilized ridge regression estimator 

is better than the least squares one ¿ire given

* " V d i a g ( - ^ ) V " a !  <
k \ Ih n ’ (2.32)

2X +  k'

which is an ellipsoid. Several suggestions were proposed Idr the choice of tlie 

ridge regression constant: Goldstein and Smith (1974) proposed to take ki =
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~   ̂ where 7  =  [4]. Schmidt (1976) suggested tha.t k could
2

1)0 taken as k =  ■ Swamy, Mehta cuid Rappoport (1978) sliowed tlurt if a.

priori information about the norm of the pcirameter vector x is provided then we 

can get better estimates. For instance, if we suppose tlial. x lies in a hyper-spa.ce 

of radius r, that is

X ^̂ x <  < 00 , (2.33)

the value of x thcit minimizes subject to equation 2.33 is:

xsMRik) =  (A  " A  + a l k I ) - ^ A ‘'y  , (2.34)

where :

a.nd

k = c\j.
y^^Qy

(2.35)

Q = A„„,A (A " A  )-'^A “ + { N -  M)-^A (A ” A ) " ‘ A “

with c a. positive constant and the noise variance.

(2.36)

2.2.3 Simulation Results

In the simulations we generate randomly a iricitrix A , a. vector x and a Caussian 

i-a.ndom vector n then we find the ol^servation vector y  liy

y =  A X + n (2.37)

Then, based on A  cUid y  we apply the algorithms desci'ibed in this chapter to 

find an estimate for x . All through the simulations we will give the (istimation 

error values for an estimate x of x by error percenta.ge: %error =
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In iigures 2.3- 2.7, the estimated and actiuil x obtained using the method 

of Ix;ast Squcires and also methods proposed by Theobald’s, Schmidt’s, Swamy- 

Mehta & Rappoport ¿uid Goldstein are shown. In this simulation the kernel 

matrix hcis a condition number k <  10 and the signal to noise ratio, SNR =  

—201og(^), is 80dB. As expected lor such a Ccise the least squaix ŝ estimator is 

performing well, the estimate is very close to the true unknown Vcirialiles. The 

estimates obtained via the proposed ridge regression procedures provide very 

close results to the theoretical values. In such cases, one would prefer to use the 

Least Squares estimator since it does not need any prior knowledge on the noise 

or data statistics, and the inversion ol the system matrix AA '̂  ̂ can be performed 

without any trouble.

However, as shown in iigures 2.8- 2.12. when the signal to noise ratio de­

creases below 40dB a Ridge Regression estimators provide far more accura.te 

results. This is beccuise of the fact that the least squai'e estimator is more sen­

sitive to the measurement noise. The lecist squares estimate is more noisy along 

the right singular vectors corresponding to the smaller singular values. Since, 

t3q:)ically sniidler singuhu· viilues are associcited witli oscillatory singular vectoi's, 

the estimates obtained at low SNR Imve widely oscillatory behavior as shown in 

figure 2.8.

In order to obtain stcitisticcilly more significant comparison results, we re- 

l)cated the above comparisons for various realizations of y  at different SNR val­

ues, and plotted the average errors in the obtained estimates in figure 2.13. 

At each SNR. value 25 different realizations have been used. As it can l)e seen, 

performance of the least squares estimator degrades badly at low SNR values
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compared with the results obtained by the ridge regression family of estimators.

In order to test the performance of these estimators in tlie case of measure­

ment kernels with high condition numlser, we compared the pertbrmances of the 

estimators of Vcirious condition numbers. In figure 2.14, for each estimator, we 

|)lotted the avei’cige error norm as a function of the kernel condition number. As 

seen from this figure, the performance of the least squares estimator degrades 

drastically as the condition number gets large.

The superiority of the ridge regression estimators over least squares is due 

to the utilization ol aviiilable prior information. The methods presented by 

Theobald, Schmidt, Swamy Mehta, cind Rappoport, a.nd Goldstein outperform 

least squares when the noise sta.ndard deviation and the magnitude of the un­

known vector cire available. Unless a priori knowledge about tlie signal and the 

noise statistics are provided, the performance of the suggested ridge regression 

estimators deteriorates. From the performance of the Ridge Regression estima­

tors we can also conclude that Swamy, Mehta, and Rappoport’s give Iretter results 

than the other estimators.
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T h o  O L S  E s tim a to

R id g o  R o g ro s s io n  (T h e o b a ld )  E s tim a to

R id g e  R o g ro s s io n  (S c h m id t)  E s tim a to
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R Id g o  R o g ro s s io n  (S M R )  E s tim a to

Figure 2.6: Swaray Mehta and Rappoport Estimator, % error= 4.45.

R id g o  R o g roB s lon  (Q o ld s te in ) E s tim a to

Figure 2.7: Goldstein Estimator, % error= 11.46.

T h o  O L S  E s tim a to

Figure 2.8: Least Squares Estimator, % error= 113.
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R Id g o  R o g ro s s io n  (T h e o b a ld )  E s llm a to

R id g o  R o g ro s s io n  (S c h m id t)  E s tim a te

R id g o  R e g re s s io n  (S M R )  E s tim a te

Figure 2.11: Swamy Mehta and Rappoport Estimator, % error= 16.2.
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R id g o  R o g ro s s io n  (G o ld a to in ) E s tim a lo

Figure 2.12: Goldstein Estimator, % error= 26.8.

Error vs SNRT~r~l------

;— LS i
:------ Theobald;

Schmidt :
i -  - SMR ;
: + GS;

Figure 2.13: Estimation error versus SNR for Least Squares(LS), Theobald, 
Schmidt, Swamy-Mehta-Rappoport(SMR) and Goldstein-Smith(GS).
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Error vs Condition number

Figure 2.14: Estimation error versus kernel matrix condition number for 
Least Squares(LS), Theobald, Schmidt, Swamy-Mehta-Rappoport(SMR) and 
GoIdstein-Smith(GS).

2.3 Uncertain Model

In the pi'evious section, the measurement matrix entries are assumed to be known 

exactly, hence, the only source of uncertainty in the observcition vector y  is the 

additive noise vector n . However this assumption is often unrealistic. In prac­

tice, we seldom face an exactly known measurement kernel. Errors that do take 

place during modeling cuid sampling may imply iiiciccuracies on the measurement 

matrix A  ¿is well. The inaccuracies in A  can be due to uncertainties in a few 

pcirameters which define A  , or to the uncertainties in each individual entry in 

A  which do not fit to a low order parametric description. In the latter case the 

Totcil Least Squares (TLS) is one of the commonly used methods of obtaining 

estimates when there are errors in both the observation vector y  and the data 

matrix A . Although computationally more intensive and limited in terms ol 

its cipplication areas, nonlinear least squares modeling is the method ol choice il 

there is a parametric description of the measurement matrix.
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2.3.1 Total Least Squares

The I ’otal Least Squares approach has been introduced in recent years in the 

nuniericcil analysis literature as an alternative for the least squares in the case 

that l)oth A  and y  are affected by errors. A good way to introduce the 'Total 

Least Squares method is to recast the Ordinary Least Squares problem.

In the Least Squares estinicition, the unknown x is obtained as the rninimizer 

of the following optimization problem:

mmy'çRM \y -  y  I I
Subject to y '  ^ TZ(A ) .

Once y  is found, the minimum norm x satisfying A x  = y '  Is called the Least 

S(|uares solution, 'riie underlying assumption here is that errors only occur in the 

vector y  and that the matrix A  is exactly known, which is often far from reality. 

'The least squares estimator is obtained by solving the smallest perturbation on 

the measurements so that the perturbed measurement will lie in the range space 

of A . When there cvre errors in both A  and y , the same idea of perturbation 

can be applied to both A  and y  such that the perturbed measurements will 

lie in the range space of the perturbed A  rmitrix. Again we want to find the 

minimal perturbafion on both A  and y . In the TLS, this is achieved by finding 

the solution to the following optimization problem:

, min \\[A,y]-[A,y]\\i.·
[A

Subject to y E TZiA) ,

where ||.||f denotes the frobenius norm. Once a. minimizing [ A , y ]  is found, x 

satisfying A x  =  ÿ is called the 'Lotal Least Squares solution.
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To solve this problem, we bring A x  ^  y  into the following foran

[A,y]
X

- 1
0 . (2.38)

Let [A ,y]  =  U S  V  he the singulcir value decomposition of [A ,?/], with

U =  «M +l] ,

S  =  diag((Ti,...,(rM+i) ,

If ctm+1 7̂  0 then [A ,y ]  is of raidi M  +  1 cuid the subspace S generated by 

the rows of [yt ,y ]  coincides with and there is no nonzero vector in the

orthogonal complement of <?, hence equation 2.38 is incompatible. 3b obtain a 

solution the rank of [A  , y ] must be reduced to Ad.

value

r r= rariKk{C ). if k < r and C  k =  ^¿=1 ¡v j then

and

mm
rank(D ) = k

min ||C — D  ||;r 
ratik{D ) = k

\C - C =

says: Let the singulcU’

= E;'l=\0 -iUivl with

(̂ k+i (2.39)

P
E af (2.40)

1
with p =  min{M, N). Using this theorem, the best rank Ad 'Ibtal Least Squares 

approxinicition [ A , y ]  of [A ,y ]  which minimizes the deviation in variance is 

given by:

[ A , y ]  =  , (2.41)
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where S  — cl iag((Ti,<jm , 0). It is clecir that the approximate set

[ A, y ]
X

-1
0 (2.42)

is compatible cincl its solution is given by the vector v the last column of V . 

'I'lius the total least sĉ uares solution is :

- 1
X TLS =

II A _2=  ( A ‘‘ A

[y  1,M+1, · · · ,^  M,M + i 
,2
M+l

\T (2.43)

(2.44)

(xxists and is uniciue solution to

A x  = y (2.45)

Whenever V  m+i,m+i 0, the Total Least Squares solution is solvable and 

is therefore called generic. Problems may occur if <jp > (jp+i = ... =  (Tm+i for 

p < M  and if all V  M+i,i =  0 for i =  p +  1,..., M +  1 these prolrlems are called 

non generic .

libr the generic case when ap > cr,;+i =  ... =  o'm +i lor p < 7V/, if not all 

Y  =  0 for i =  p +  1,..., 714 +  1 then the minimum norm Total Least Squares 

solution is given by:

-1 M+i
X I LS Ŷ A/+1 TT 2

T (2.46)
M+Ia i=p+i

For the non generic Ccise when V  M+i,j — 0 foi' j — P +  1, ···, At +  I · H > <y,> 

and y  M+x,p 7̂  0 Total Least Squares Solution is given by:

-1
xtls =

M+l,p
-[y  1,;;, ■··, y  M,p] ‘ (2.47)
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2.3.2 Simulation Results

'lb test the performance of the Total Least Squares Estima.tor, we generated 

matrix A  „ of independent identically distributed ra.ndom variables, with zero 

mean, 'riiis matrix is added to the kernel matrix A  , then we generate the data 

vector y  in the same way we did for testing Ridge Regression and Least S(|iuires 

estimators.

Figure 2.15 shows the Total Least Squares (TLS) and the Ordinary Least 

Squares (OLS) estimiites when applied to a case where the Total Least Squares 

solution is generic. The Total Least Squares outperforms the Least Squares for 

several reasons. Ordinary Least Squares takes into account only errors in the 

ol:)served data y . However, Total Least Squares considers that Irotli the data, 

vector y  and the kernel matrix A  cire erroneous, and it searches for the smallest 

jrerturbation on both A  cind y  to reach a compatil)le set of equations.

'I'he main problem in using the TLS approach is how to determine the rank 

of the augmented matrix [A ,y]  and how to choose p for which cr,, ^  0. 'The 

perlbrmance of the TLS estimator deteriorates drastically when the rank is chosen 

inaccurately.

Despite this drawbcick, the 'Lotal Least Squares estimate remains the ordy wa.y 

to solve the problem of linear parameter estimation under model uncertainties 

that are treated as independently distributed random variables.
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Total Least Squares Estimate

Figure 2.15: TLS and OLS Voctls =  31.2, %eo^,s =  47.6 

2.3.3 Nonlinear Least Squares Modeling

In niariy applications of interest the phenomenon under investigation can be rep­

resented by a system of linear equations in which the elements of the system 

matrix are known functions of a. set of parameters. For instance, in array sig­

nal processing the parameters correspond to direction of arrivals of the received 

signals, or in inverse prol:)lems, the parameters correspond to the measurement 

device geometry. For these cases measurements relation is modeled as:

y = A  (6 )x + n  , (2.48)

where 6 € 7^  ̂ is a vector containing P parameters characterizing the uncert 

in the model. To solve this problem the Nordinear Lecist Squares Modeling tech­

nique has been applied [5]. In this approach, which was presented by (Jadzow, 

a selection of the parameter vector 0 and the unobserved vector x are tried to 

be found so that A { 0 ) x  best approximates y  in the Euclidean norm sense.
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More precisely, 0 and x are found by solving the ibllowing squared /2 norm 

optimization problem:

min min 11« — Ai d  )x\U (2.49)

Due to the nonlinear fashion in which x and 6 appear, generally there is no 

closed form expression for the solution to this optimization problem. So it is 

necessary to apply nonlinear optimiziition techniques to search fbr a solution. 

The secU'ch space dimension can be reduced to the dimension of 6 by observing 

that the optimal value of x given 6 is:

X IS =  A \ e ) y (2.50)

Hence, the overall optimization can be recast in terms of 6 alone as:

min ||[J - P { 0 ) ] y f  
0€R^

(2M

where P ( d )  = A ( 9 ) A H 0 )  is the projection operator onto the range of A (9 ). 

Since I  — P  (9) IS the projection operator onto the perpendicular space ol range 

A ( 9  ), optimal value of 9 Ccui be found as the niciximizer ol

y(9)  =  I IP(9 )y (2.52)

Thus we would chose 9 so that the projection of y onto the subspa.ce spanned 

by the columns of A (9 ) has the maximum squared norm.

The maximization of g{9 ) necessitates a nonlinear programming algorithm 

to approximate an optimal solution. Cadzow suggested the method ol descent in 

which the present estimator 9 is cidditively perturbed to 9 + 5 , where 6 is relerred 

to as perturbation vector. The basic task becomes to selec t the peitui l)ation
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vector so that the improving condition

g{d + 6 ) >  (j{e ) (2.53)

is satisfied. For a sufTiciently small, in size, perturbation vector, a. d'aylor series 

expansion, of the perturbed criterion can be made, in which only the first two 

terms are retciined:

g{e-^6) = \\p{e+6)yf

k = 1
P

[p(e)]y + L { e ) 6 f  ,
where:

- d P i » )  ■ . d P ( e )  ,

(2.54)

(2.55)

a,nd 6.j or Oj are the entry of 6 or 6,  respectively. A logical choice of the 

perturbation vector would he one that niciximizes the Euclidean norm criterion 

given by equation 2.54.

< / («+ « )  = .,(«) +  i " i ( « ) ' ' p ( # ) a

+  a  " P  ( Û  )L ( 6 ) 6 + 6  " l  (6 ) " £  (6 ) 6 .

By setting the gradient of this expression, with respect to 6 , to the zero vector 

the optimal selection can be found as :

« ·  =  - [ » { £ ( « ) " £ ( # ) ) ) » « { £  ( « ) " P ( « ) a )  . (2.56)

To ensure a sufficiently snicill perturbation, a scaled perturl)ation vector a6* is 

instead used. The nonlinear programming algorithm is given in table 2.1. The 

stopping condition to be evakuited is the fit error norm.
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Description

2
3
4

Start by an initial 6 
Evaluate ||P (6 )y ||*'̂
Determine L {6)
Compute the optimum perturbation 
vector 6 *
Evaluate [||jP (Û +  *)y |P
for o; — 1, . until improvement.
Evaluate stopping conditions, if not 
satisfied, set 9 = 9 -\- ct9* and go to step 2.

Table 2.1: Nonlinear Programming Algorithm.

2.3.4 Simulation Results

Consider the Ibllowing matrix:

1 0

AiO) =  0 cos(d) . (2.57)

0 sin(t )̂

The rcuige of this matrix is a plane in the three dimensional space. The parameter 

9 determines the slant angle of the plane as shown in figure 2.16. Based on 

the above pariimetric representation we investigate the the performance of the 

nonlinear least sciuares modeling estimator. So, we choose a random 9 then 

generate x and n in the previously described fashion, and we obtain y  by 

A (9^)x + n  . Then, based on y  and the known parametric description of A  , we 

estimate x . Eigure 2.17 shows the result obtained in the case when the system 

is nearly noise free SNR =  80dB. The nonlinear least squares modeling algorithm 

converges in few steps to the optimal vector of unknowns 9 and tlu? (;stima.te x 

is very close to the true unknown vector.
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However in the case when we increase the signal to noise ratio the quality 

of the estimates deteriorates and the estimated parcimeters deviate significantly 

from the true values. This is because in the search for optimal d that results in 

the largest projection oiy  onto the subspace spanned by A(0  ), the additive noise 

vector is also projected. Hence, if the condition number of ) is large, the noise 

component of the projection may result in significant estimation errors along the 

singular vectors corresponding to the smaller singular values, as illustrated by 

figure 2.18, where the SNR =  28dB. This is due to the fact that this algorithm 

is lra.sed on the least square estimator, and whatever the least squares sulfer from 

will be inherited in this procedure.
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Figure 2.17; Application of Ccidzow’s algorithm with SNR=80clB and kernel of 
low condition number, %error= 3.2

A comiDarison between the performance of Total Lecist Square,s and Nonlinear 

Leaat Squares algorithms is held in figure 2.19, both estimates were applied 

for the ca.se of an SNR 47dB, the results show the superiority of tlie Nonlinear 

Least Squares Modeling. I'hus modeling the uncertaintj^ of the kernel matrix as 

a function of nuisance parameters will improve the quality of the estimate.

N on  L Inoar L oa o t S q u iit e o  M ode llin g

Figure 2.18; Non linear least squares modeling algorithm with SNR=28dB, 
%error =  64.2 .
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T ota l L eant S q u a r e s  E atim ute

Figure 2.19: Comparing TLS and Nonlinecir Least Squares Modeling, 
%erroTTLS =  71.5 and %errorcad =  24.1



Chapter 3

Proposed Estimation Methods

3.1 Introduction

In the i^revious chcipter we presented the coniinonly used estimation a.|)|)roa.ches 

in the presence ol’ rnecisurernent uncertciinty. We investigcited tlie Least .Scpiares 

and Ridge Regression estimators for the fixed kernel case. The drawl)acl'Cs of 

these approaches were observed in the simuhitions, due to noise standard devi- 

a.tion and the structure of the data matrix for the fonrier; and to the necessity 

of irrior information for the choice of the ridge regression constant for tlie latter. 

For the uncertain kernel case we examined the Total Lc!ast Sciuai es a.nd tlie Non­

linear Lecrst Squares Modeling approciches. In this chapter, wc will present new 

approaches to provide more reliable estimates of the unknowns.

Following the scune plan as the previous chapter, we start by |)roposing the 

methods that we can apply when we fix the parameter 6 and wo assume that

33
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it is known. Then we present cilgorithms when this paraineter is unknown and 

need to l̂ e estimated as well.

3.2 Known Measurement Kernel

In this section, we will present a way to choose the Ridge Regression constant l:)y 

constraining the estimate to lead to ci fit error helving the same statistics cis that 

of the cidditive noise. Then, we introduce a method that alleviates the necessity of 

a. priori information by iteratively estimating the noise and the signal variance. 

'Idien, we propose an algorithm to solve large linear system of equations, the 

aigorithm recursively updates the solution in an increasingly larger dimensional 

subspace whose basis vectors are a subset of a complete wavelet basis.

3.2.1 Error Dependent Ridge Regression Constant

As presented in the previous chapter. Ridge Regression methods provide a. fam­

ily of solutions depending on the regression parcimeter. Some of the commonly 

used ways of choosing the ridge regression parameter have been presented in the 

previous chapter. However no firm recornmendcition for optimal Ridge Regres­

sion parameter seems to emerge. The simplest single parameter family of ridge 

regression estimates are in the following form:

® Riiip) =  {A A + p i ) '^A“ y- 1  A I P (3.1)
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where p is the regression parcimeter.

Different methods of choosing p will lead to different fit error vectors 

6 imip) =  y — A  X rr(p). If there is prior information on the statistics of 

the random noise vector, one can try to choose p such that e rr{p)  will look like 

a realization of the random noise vector. The similarity can be measured based 

on the devicition of sample moments of e rr(p) from the known moments of the 

noise vector. In practice, only the first few moments can l)e used for tins purpose. 

Here we suggest to choose p such that the sample variance of e rr(p) is the same 

cis the noise vciricince.

3.2.2 Simulation Results

Over a synthetically generated example, this practical approach is compared with 

the Swamy-Mehta and Rappoport approach, and the obtained results are shown 

in figure 3.2. As seen from this figure, the perlbrniauce of the proposed ap­

proach is l)etter. This is a typical case over moderate sized problems. When the 

dimension of y  gets larger, the performance difference gets smaller.

J MIcdio Houin

Figure 3.1: Choice of Ridge Regression: increasing curve is the sample variance 
of the fit error vector ¿is a function of p, horizontcd line is cr̂ .
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Figure 3.2: Error Dependent Ridge Regression(EDRR) with % error =  12.4 and 
SwaiTiy-Mehta-Rappoport (SMR) with % error = 21.-5 E.stirnate.s .

3.2.3 Gauss-Markov Estimate with recursive updates

There cire two fundainentally different way.? of .solving statistical problems: The 

classical and the Bcxyesian approaches. In the classical approach, a. set of data 

generated in ¿iccordance with some unknown probability law will be used without 

making any assumption about the urdinown law. In the Bayesian a|>|)roa.ch, the 

use of any reasonable prior knowledge about the unknown is recommended.

In deriving the maximum likelihood estimator we have iiderred the valiui of 

the unknown parameter x l:)y chasing x to be the parameter that maximizes the 

likelihood of the observed data y , this is a classical view of the problem. In the 

Ibllowing we will treat the unknown parameter x as a realization of a random 

experiment irom which the unknowns are endowed with prior distribution. This 

is the Bcxyesian approach where the information available prior to and carried by 

the measurements are optimally combined to obtain an estimate lor x .

If we define P{x \y) to be the conditional probability that x is true given y  , 

tlien Bayes theorem gives the desired P{x \y) from the computal)le probcxbility 

P{y\x)  and from the probabilities P{x)  and P{y)· P{x)  is called the prior
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probability because it is known in advance, somehow, to obtain y , and P{x \y) 

is called the a posteriori probability because it is what we aim to obtain after 

considering the above facts.

P{y \x)P{x)
P{x \y)

P(y)
(3.2)

Let X  B  he the Bayes estimator. The quality of the estimator «  b is measured by 

a real-valued function with some specific properties, known as the loss function, 

demoted by L[x ,®s] .  A typical loss function would be the quadratic one:

L[x , x b ] == [x - x b ^̂ Ix ~ x b ] , (3.3)

which assigns a loss equal to the Euclidean distance between the aetual value 

of X and the estimated value x b - The Bayes estimator under (luadratic loss is 

given by:

x b  =  arg min /  L[x ,x B].f{x\y)dx , (3.4)
X J

which is the conditional mean of x given y  , that is

X b = P{x\y} · (‘hh)
Our problem is to estimate x Iroiri the overdetermined set of equations:

y =  A X p n . (3.6)

Assuming that x and n are independent, zero-mean Gaussian random vectors, 

with autocorrelation matrices R  xx and f2„„ ,  respectively, we get the lollowing 

jointly Gaussian density for x cuid y :

X
-  N 0 ;

. y .

R  XX RxxA

A R  XX A  R  XX A  P R  n

H
(3.7)
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Ib  find the Bayesian estimator x b that minimizes the mean squared error, we 

have to find the expectation of the random vciriable z — x \ y . Causs-Markov 

theorem states that if x cind y  are random vectors that are distributed according 

to the multivcU’iable distribution

m.
(3.8)

X

-  N
r r i x

1

R  X X JFi, j.y

. y  . _ m . y  _ R  y x R  yy

(3.9)

'rhen the conditional distribution of x given y  is multivariate normal:

P{x \y) ~  N { x , P )  ,

where the mean x and the covariance P  cire given by:

X =  m :, +  i i  xyR yyiy - r n  y)

P  = -  R^yRyyRy: ,  .

I ’hus the Bayesian estimator for x is given by:

XB = (A“R - ‘A + R - p - ‘A"R7.iy

In the case of x and n are composed of independent identically distributed 

random variables, i.e., and =  <T;|/,weget

(3.10)

‘Z
XB =  ( A " A  + ^ / ) - U ' ^ y  ,

P  =  < T ^ ( A  " A  + )
a2

n r \ — I

(.1.11)

(3.12)

Note that x b is ridge regression estimator with ridge regression constant p — 

and the corresponding mean square error is:
_2 HMSEix b) =  trace(,r2 V  aiag( - ) V  “ )

= E
M .1 ̂n
^  \i(xl +

(3.13)
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which is smaller than the MSE of the maximum likelihood estimator due to the 

timal use of the prior information on x .

In the case of urd-cnown erf, and erf, we can first obtain thedr maximum likeli­

hood estimates and then we use them in the Bayesian estimator, d'he approach 

in developing the Bayesian estimator was to find ;

X b =  nvax F{x\y) . (3.14)

I'he maximum likelihood estimator for z = can be obtained as:

z = arg max P y  {Y =  y) (3.15)

If U  is the left singular matrix of A , then ?/,„ =  U^^y luis a normal distribution 

with zero mean and diagonal covariance matrix erf A-bcrf /  where A is the dicvgonal 

matrix with entries which are the square of the singular values of A . Hence, the 

probability density function of y  rn 1*̂·

Jyini^rn) — n r
«  e x p ( l g f e )
.=1 y'ijrCA.crJ +  a'‘ )

Maximizing fy,n(Y m) with respect to z is equivalent to maximizing

N ,_ ____ynil
L ·

(3.16)

(3.17)

'taking partied derivatives with respect to erf and erf we olrtnin:

dJ
dal

dJ
dal

~ L ·

^  y'ii -  î̂ 'x -

(3.18)

(3.19)
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To find the solutions tlicit annihilate these quantities we may use the successive 

substitution method, to get:

Er=
(tI

N 2' ( k )

"(k)'
(/¡+1) ____

1 (<7“ Af-T(7“

„AT

^ (A :+ l)
2̂ i=i

(3.20)

(3.21)

W here erf. ¿md erf stand for the values of erf and erf at step k of the iterations.‘̂ '(A:) '(A:)
VVe could also use a gradient descent method to successively converge to the 

solutions for af and erf.

3.2.4 Simulation Results

'I'o test the performance of the above proposed algorithm we make use of tlie 

same synthetic e.xample used in the previous sections. The results are shown in 

Figure 3.3 and 3.4. As seen from these figures, the estimator we suggested do 

not suffer from the multi-collinearity ¡problem in the kernel matri.x A  because it 

belongs to the class of ridge regression estimators. The signal and noise variance 

estimation process in the Gauss-Markov with recursive updates algorithm ends 

up by converging to values tha.t cire within 10% ol the actual values ( af =  1 

and erf =  0.92, af =  0.02 and df =  0.018 ). These results are plugged into 

eipiation 3.11 and the estimate that we obtain shows good perlormance which is 

robust to the noise standard deviation or kernel nicitri.x condition numlrer.
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Figure 3.3: Application of Gauss-Markov with recursive updates algorithm. 
SNR=4.5dB and low kernel matrix condition number, %error= 2.

Onuaa Markov wllli I'louuriilvu upciatou

Figure 3.4: Application of Gauss-Markov with recursive updates algorithm. 
SNR=45dB and high kernel matrix condition number, %erroi— 8.

3.2.5 A  Wavelet Based Recursive Reconstruction Algo­

rithm

Reconstruction of the unknowns from the data has been tlie subject matter ol 

many inverse problems arising in a vast class of applications as geopliysical sig­

nal processing cind speech processing. A very important first step of the inverse 

problems is the parameterization of the unknowns. In many applications, where 

the sensitivity of the measurements varies across the space of the uidviiowns, the 

spa.ce of the unknowns is partitioned into cells of non-uniform sizes. 'I'he dimen­

sions of cells becomes larger when the sensitivity ol the measureriKnits to those
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cells Ixicomes weaker. In order to keep the cornputationa.1 cornpIexit,y a.t a, low 

level, usually data independent partitions are used. In this way the reconstruc­

tion performance ameliorate with respect to the case whom unilorm partitions 

a.re used. However this result could be further improved when the partitions are 

chosen adaptively based on the available data.

A new data dependent recursive reconstruction crlgorithm has been proposed 

for robust and efficient estimation of the unknowns [6]. In this algorithm, the 

parameterization of the space of unknowns are performed by using an appropriate 

wavelet basis for the appliccition at hand. The algorithm recursively updates the 

solution in an increasingly larger dimensional subsi^ace whose basis vectors are 

chosen as a subset of the wavelet basis. Robust criteria on how to choose the 

basis vectors at each iteration, and when to stop the itera,tions are given in [6].

In this approach, an optimal subspace of the domain of x will be sea.rched 

such that least-sciuares inversion within this subspa.ee provides a satisfactory re­

construction. For this purpose, a properly chosen wavelet basis can l)e used.

Wavelets are relatively recent development in applied mathematics. 'I'lieir 

name itself was coined in 1982 [7]. But interest in them has grown a.t an (explo­

sive rate. There are several reasons for their wide spread use: Wavelets have been 

successfully used in subband coding, signal analjcsis and numerical analysis, 'riie 

wavelet transform is a tool that cuts up data or functions or operators into dif­

ferent freciuency components and then studies each component with a resolution 

matched to its scale, i.e., the localization in space and scaling are the hallmarks 

of the wavelet expansion.
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'I'lie search for the appropriate clirriensional subspace of the unknown x will 

be peribrrned in steps of increasing dimensions with the addition of new Irasis 

components to the existing ones in the previousl,y formed suirspace. The order 

in which the basis components should be used must be determined efficiently. A 

close apiDroximation to the set of basis can be obtained by using the matching- 

pursuit algorithm where the first basis component (f> [ is chosen as the one which 

maximizes ||y (j> i\\'̂ i and then at step n of the recursions the optimal set of

Irasis components is updated by adding the basis vector which has the largest 

absolute inner product with the residual measurement vector, i.e.,

6„+i =  arg max \{y - y v Y ' h ,  
hi

(3.22)

where y n is the estimate of the measurement by using n basis components.

Define the decomposition of x onto the first n basis components to be:

n — 'y ) (j) iOii 
1=1

(3.23)

Our aim is to determine x „ such that

X n =  arg min ||y -  A x  „||̂  4- p\\x ■.
Xn

(3.24)

whei'e p is the ridge regression constant which when set to 0 yields the Least 

Squares estimator. The above minimization problem is equivalent to finding:

dn -  arg min ||y -  B  „ a  „|| 4- /i||a: „OC 11
|2 (3.25)

with OLn =  [ax...an]\ and B  „ =  [6i...6„]. As given previously the solution to 

this optimization problem is:

\-l Ddn =  ( B " B „  + p J ) - ' B " y (3.26)
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Since the optimal number of basis components to be used is not known a priori, 

estimates for o;„, for various values n should be olstciined in tlui secircli for the 

right number of basis components. If equation 3.26 is used for the estimates, then

1 is high because of the niatrix inversion that should be

Fortunatelj^, there is an efficient way of updating the

for two consecutive values of :n. At step 1 compute:

H y =  ( B f B r + p I ) - ' (3.27)

hi = b f y (3.28)

cr 1 =  H  yh 1 (3.29)

The general step of the cilgorithm which updates H  makes use of the Ibllowing 

matrix inversion result;

(3.30)

_ - -1
R  r Q q

r "  p q  ̂̂ K.

where R  is an invertible rmitrix, r is a vector and p is a scalar and:

K
1

p — r ‘^R ~^r
(3.31)

q =  —nR~^r (3.32)

Q =  R- ^  -  R - ^ r q ” (3.33)

Based on the above formula, the general step of the recursion in the updcite from

n to n +  1 is given by:

 ̂n+l (3.34)

7n+i = H  n+l (3.35)

l̂ n+l —
1 (3.36)

 ̂n-f l^ ^̂+1 "b ~  ̂n+lT n+l
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V n+l —

H  n+i —

'hi n+lPn+l

H T n+l V n+l V n+1

iU l

(3.37)

(3.38)

OC n+1 =

(3.39)

(3.40)

(3.41)

Vn+l

n̂+l — l̂ n+1

l̂ n+1 î n+l Cn+1

á  n +  i^n+l7 n+l

•̂'n+l

For an N dimensional y  we have +  ?r(A1 +  4) +  27V +  2 multii^lications at each

step of the recursion, the total number of multipliccitions required to compute 

otn is 0{Nn^) for TV > ?2, whereas the direct use of equation 3.26 requires 

0{NrP)  multiplications at ecich step. Therefore, the computational saving of 

the recursive algorithm over the direct solution is significant. y\lso, the recursive 

algorithm provides estimates o :„  at each step of the recursion making it possible 

to easily implement criteria to stop the iteration. One important (]uantity that 

is helpful in the decision to stop the iterations is the measurement fit error:

e{n) =  \\y -  B  ndi ; (3.42)

which is a decreasing function of n. One commordy used criterion sto|)s tlie 

iterations when e{n) is either small enough or reaches a. plateau region following 

a fast decrease. Another stop criterion nnikes also the use of the norm of the 

estimate cit each stej).
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3.2.6 Simulation Results

To test the performance of this algorithm we generated a measurement kernel such 

that the norm its columns decreases rapidly a.s the column index gets larger. This 

type of rapid decrease is a common case in remote sensing applications where 

the doniciin of unknowns is partitioned with a nniform grid. The SNR. in this 

simulation is .‘35dB. The Haar bcisis is chosen to be the wavelet basis lor the 

domain of unknowns in this example. The ridge regression parameter, p, is set 

to al/al-

The criterion we suggest for the number of the ba.sis components used in the 

estimation is based on the magnitude of the reconstructed vector x Since the fit 

error will decrease rapidly till it reaches a plateau where almost no inprrovement 

is observed, the magnitude of the reconstructed vector would indicate for us 

when the noise fitting process starts, this occurs when an abrupt change in the 

magnitude takes place. Thus we will avoid that by choosing the ap|rropriate 

number of basis components. Figure .3.5 shows the plot of tlie fit error a.nd 

tlie estimated vector mcignitudes versus the number of basis components used 

for the reconstruction, figure 3.6 shows the reconstructed estimator by using 10 

components of the l)asis since we stop when the norm of the estimate increases 

rai

The obtained estimate is very close to the true values of the mdcnown vector, 

this result shows that the presented algorithm provides satisfactory results with 

a highly reduced cost of computations.
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Figure 3.5: Fit Error and Magnitude of the estimate versus the number of basis 
components.

W a v e le t  B a s e d  R e c u rs iv e  R e c o n s tru c tio n  A lg o rith m

Figure 3.6: Reconstructed estimate by using 10 components of the basis.

3.2.7 Comparing performances

Figure 3.7 shows the performance of the Error Dependent Ridge Regression, 

Gauss Markov with recursive updates, Wavelet based recursive reconstruction 

cilgorithms to together with the Ridge regression estimator suggested by Swarny, 

Mehta and Rappoport when applied to a case where the sensitivity ol the mea­

surements varies across the space of the unknowns. The algorithms tliat we
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presented outperform the Swamy, Mehta and Rappoport Ridge Regression esti­

mate. Figure 3.8 shows a plot of the estimation error \\x — ® || versus the signal 

to noise ratio for the above mentioned methods. The Wavelet Based Recursive 

Reconstruction and the Error Dependent Ridge Regression algorithms beat the 

Gauss-Markov and the Swamy-Mehta and Rappoport’s algorithms. This is be­

cause the Wavelet based algorithm takes into consideriition the sensitivity of the 

measurements across the space of the unknowns by searching for the optimal 

subspace of the unknown x and the Error Dependent Ridge Regression method 

imposes on the estimate to yield to an error having the same statistics as the 

noise, thus for low signal to noise ratio the emphasis on the noise is stressed 

more than in other approaches. The Error Dependent Ridge Regression and the 

Wavelet based Recursive reconstruction algorithms performances are shown on 

figure 3.9.

Figure 3.7: WBRR, EDRR, GM, SMR estimates, with %errors: cwbrh =  18.37, 
<iEDRR =  15.23, 6gm — 13.82, esMR =  24.54
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Error vs SNR

Wavelet
(^aiiss 
EDRR 
SMR i

-Markov

Figure 3.8: Estimation Error vs. SNR for the WBRR, EDRR, GM and SMR 
estimates.

Error vs SNR

Figure 3.9: Estimation ExTor vs. SNR for the WBRR cind EDRR estimates.



Chcipter 3. Proposed Estimation Methods 50

3.3 Uncertain Model

3.3.1 Nonlinear Ridge Regression Modeling

In the section of the previously suggested algorithms we presented the Nonlin­

ear Least Squares Modeling method proposed by Cadzow to solve the system 

of equations when the system matrix elements are known functions of a set of 

parameters, and through a synthetic example, we saw that its performance dete- 

riorcites in the case of high signal to noise ratio or high kernel matrix condition 

number. In a way these were the same problems we faced when considering the 

Lecist Squares problem. Therefore, by introducing a. penalty term on the squared 

norm of the estimate, we can hope to obtain a. similar improvement in the perfor­

mance of the non linear least squares estimator. In tin; following we will ca.ll the 

penalized approach as the non linear ridge regression modeling which provides 

estimates for x and 6 cis the solution to:

min min \\y — A  {0 )x \\̂ +  i.i\\x (3.43)
X eC^ 0 Qiip

where p is the ridge regression constant. For the generirl case there is no direct 

form solution to this problem. One way to find the optimal x and 6 is to use 

the same non linear optimizcition technique applied previously in non linear least 

squares modeling. For any value of 6 the optimal estimator that minimizes the 

above cost is :

XRR = { A { e ) A { 0 ) ^  + p I ) - ^ A { 0 f y (3.44)
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Substituting equcition 3.44 into equation 3.43 the dimension of the o|)timization 

problem can be reduced to the dimension of в .

11̂  - А { в ) х  11̂  + /1.\\х 11'-̂X ес^ в
=  mil. ||у  - А ( в ) ( А ( в  )А (в У  + , , 1 Г '  А ( в  ) " у  ||" 

+ У \ { А { в ) А { в ) "  + у 1 ) - ' А { в ) ' ’ у\\‘

=  min II (-f
венР

D{e)\yfAy\\B{e)y\\·

where D  {в)  and В  {в) are:

В { в )  =  А { в ) { А { в ) А ( в У ^  +  р 1 ) - ' А { в У ’ 

В  (в) = { А{ в ) А{ в У^  +  p I ) - ^ A İ β У '

If we define the function to be minimized by:

¡ ( в )  =  ||[/ -В(в)]у\\'^ +  р\\В(в)у\\‘̂ ,

then the problem reduces to finding a perturbation vector 6 such that:

f ie + 6 ) < / ( в )  .

Assuming that the perturbation vector is sufficiently small in size, we can use 

Taylor series expansion for D  (8 +  ^ ), giving:

D ( e  +
k=l do,

(3.50)

Similarly using the Taylor series expansion for B  (B +  ^ ), we obtain:

F f)]R ( 0  ]

B { 9  + 6 ) ^ B { e ) p Y ^ —^ h
k=\

(3.51)
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Using the above expansions

f ( e + s )  ~  \ \ [ i - D { e  ^6 )]y\\ ^pp\\B {e)y f

=  III/ -  j ?  ( « )  -  E  11̂ +  /■ll[B ( « )  -  E  ‘̂ ^ h ] y  IP

= \\[I-D(e)\y-Lx{e)Sf + fi\\B{»)y-L:i(e)6f, (;i,52)

where the Jacobian matrices Lx {6) ¿ind L -2 {9 ) are obtiiined by:

£ i ( « )  =
, dD{ 9)  . 3D {9) . 
' d», d0,

. 3D {9)
oo,

(3.5:

L ‘2 {9 ) =
, 3 B{ 9)  . 3 B{ 9 )  .
' do, 00, '>'■■■

. 3 B{ 9 )
00,  ’

(3.5'

a.nd 6j or Oj are the entry of 6 or 9 , respectively. A logical choice of the 

perturbation vector would be one that minimizes the Uuclidecui norm criterion 

given by equation 3.52. By setting the gradient of this expression, with respect 

to 6 , to the zero vector the optimcil selection is :

8* =  ^{{Lx{9fLx{9) + pL:i{9fL-2{9))-'} 

^{Lx{9 Ÿ̂ [I -  D  {9 )] + pL -2 {9 [9 )y } . (3.55)

To ensure a sufficiently small perturbation, a scaled perturbation vector cvi * is 

used instead. The stopping conditions could be the fit error norm. The steps ol 

non linear optimization algorithm are given in table 3.1.

An other way to solve the minimization problem equation 3.45 is to apply 

gradient descent method to reach the optimal  ̂ that minimizes ,/(^ ) =  ||[/ -

D  ||2 p\\B (9 )y ||A Stcirting with an initial è o we peridrm updating by:

. dJ ,
9 k = (3.56)
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Description
1
2
3
4

Start by an initial 0
Evaluate \\[I -  D  (0 )]y ||̂ +  p\\B (0 )y
Determine L i  {0 ) and Xa (0 )
Compute the optimum perturbcition 
vector S*
Evaluate [||/ -  D  {0 + a6 *)]y ||'̂ +  p\\B {0 +  a.6 *)y f  
for a = 1, |, · · .until improvement.
Evaluate stopping conditions, if not 
satisfied, set  ̂ =  0 -\- cx6 * and go to step 2.

Table 3.1: Nonlinear Ridge Regression Algorithm.

where the derivative of the cost function with respect to 0 , is given by: du

do,
, r d D { 0 f  h 9 D { 0 )

=  - y  o . , —  y - y  ^ ^ — ydOj "  dOj

+  hy
II dB {0) II

dO,;
B ( 0 ) y  Ppy^^B (0) II dB { 0 ) 

dO,

II
y

for j =  1..P, and po is the step size which can be taken small enough to ejisure 

tlie convergence of the cdgorithm. Once we reach a minimizing 0 , we plug it 

into equation 3.44 to find x r r  then check that this point Q{x r r , 0 )  i.s a global 

minimum lor both parameters by finding the eigenvalues of the Hessian matrix 

H  at (5, where
dĴ  OJ'̂

H { x , 0 )  =  (3.57)
dJ'^

dX 2 8 X d 0
d.P d p

d 0 d X 80^

At the globed minimum point the Hessian matrix is positive definite. 1 he speed of 

convergence of this method is highly related to the starting point of tlie algorithm 

a.nd to the step size used. Taking a hirge step size may stick the il,era.tions at 

a local minimum. One way to overcome this problem is to apply the algorithm
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by initializing severcil starting points, so that we can avoid being clung at local 

minima

The derivation of the Jacobian matrices Lx ( 0 ) and L 2  (9 ) are provided in 

the Appendix.

3.3.2 Maximum Likelihood and Least Squares Bayesian 

Inversion Approaches

Both non lineiu- least squares and ridge regression estimators of x in the presence 

of a parametric uncertainty in A(9  ) provide estimates in the absence of any prior 

information. In this section, we will present two approcvches to the estimation of 

unknowns X  when there is available prior information on the set of [parameters 

9 . Typically this prior information on 9 can be a. constrained set, such as;

9 L < 9 < 9 U-, (3.58)

or it can be a density function fQ(9).  One way of incorporating this type of 

prior inibrmation on 9 to the estimation of x is given in tlui Ibllowing estimatoi· 

wliich is based on maximum likelihood principle:

X m =  argmaxTfl {T (y  - A { 9 ) x ) }  , (3.59)
X

:e {£(y — A  {9 )x )j is the expected likelihood with respect to 9 .

£q {C{y -  A { 9 ) x ) ]  = J C(y -  A { 9 ) x  )/^ {9 ) d.9 , (3.60)
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where (0 ) is the prior density on 0 , For the corninonly used zero niean Gaus­

sian noise model with autocorrelation -R„„, the likelihood function is:

1£(y  -  A  (0 )a;) =  - e x p { - (y  -  A (0) X Y‘R  J ( y  -  A { 0 ) x ) }  .

(;h6i)

Hence, X m in equation 3.59 can be obtained as the maximizer of:

J{x, d)  =  j  e x p {- (y  - A { 0 ) x  Y R  -J(y  -  A { 0 ) x  ) } /^  (6>) d0

(3.62)

'f'here is no closed form expression for the maxirnirnizer of this cost. However, 

numerical optimization tools can be utilized to compute the maximizer x m - Fer 

instance, assuming that R  nn =  i ® m that maximizes J is the vector 

that annihilates:

dJ r 1 ,-| | y -
dx II 2<T„̂ -]

A { 0 Y { y  - A ( 0 ) x ) ^ .
J0 (0) d0 (3.63)

which, by discretizing the subspace of 0 onto K  possible vaJues of 0 ¡,i =  I , ..., K  

equation 3.63 can be approximated by:

^-||y -  A (0i)x \\'\A {0 iyYy -  A  (6> ,:)a;)dj  _  ^  1
dx ^  (27T(7„) /̂^

exp{- -Î0 i)·

(3.6-̂

For the solution of equation 3.64, we rrmy use the method of successive sub­

stitutions. At iteration k i  x is updated by:

=  ¿ / y ( S i ) e x p { J L · İ İ 4 4 ^ } A ( # , ) " A ( 6 , ■ ) ) - '
i=l

K IL·. Alû.\^(k)\vi

i=l
,)exp{

-||y -  A (0 i)x 
2a'i

} A { 0 , Y y .  (3.65)



Chapter 3. Proposed Estimation Methods 56

A second way of incorporating prior information on 6 is based on least sqiuu-es 

principle, where the estimate is obtained as the minimizer of the expected squared

norm of the fit error:

XL ^  argimn£·^ {\\y -  A  {6 ) x f ] (;3.66)

By using the prior distribution on 6 , we can rewrite the estirmitoi· in the Ibllowing 

[brill:

XL =  arginin j  \\y -  A {d )x {6 ) dO (3.67)

'riiis quadratic form of the cost function has the following closed form solution 

for X  L-

XL =  i j  A « ( 0 ) A ( 0  )fe { e ) d0 ] - ' \ j  A  " (0 )y i 0{0) d.e (3.68)

In order to avoid potential problems of the required matrix inversion, we ca.n use 

the following regularized form:

X L  =  [ ] i A  " ( 0 ) A{ e )  +  p i ) f g ( e ) d0] - i [ A 'He)y f s ( o ) d e ]  , (3.69)

where p is the regularization parameter.

3.3.3 Simulation Results and Comparing Performances

I'o test the performance of the non linear ridge regression modeling algorithm 

when applied to estimate an unknown vector x under model uncertainties, we 

apply the same synthetic example used to test the non linear least s(|ua,res mod­

eling estimator. Figure 3.10 shows the result when the cdgorithm is used for the 

case of SNR =  65dB and the kernel matrix condition k =  40. The algorithm
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converges in few steps to the cictual values of 0 and the estirnatecl x is very 

close to the unknown parameter x . For kernel matrix A [6 ) lia.ving a condition 

number k =  10'* and SNR -- 46clB, figure 3.11 displays the result obtcdned when 

non linear ridge regression algorithm is applied with use of non linear minimiza­

tion procedure to solve for 9 and figure 3.12 shows the result when we apply the 

gradient descent technicpie to search for optimal 9 . 'fhe ridge regression constant 

used is the one provided by Swamy, Mehta and Rappoport.

Figure 3.10: Nonlinear Ridge Regression algorithm with non linear minimization 
technique. SNR=65clB, %error =  3.11

Nun Llnoiir Hielo«» Hoo*·»’ 1 MutIuMlilu

Figure 3.11: Nonlinear Ridge Regression algorithm with non linear minimization 
technique. SNR=46dB and k =  10‘‘ , %error - 7.42
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liintullunoouu Mlnlnilzntion

Figure 3.12; Nonlinear Ridge Regression algorithm with Gradient tec 
SNR=46dB, /V =  lOF %error = 3.24.

ue.

Figure 3.13 shows the estimated and the actual parameter of x by the use 

of Maximum likelihood-Bciyesian approcich. The lour dimensional space of the 

unknown pcirameters 0 in this example has been sampled to five steps tor each 

dimension. Thus we used 625 different 6 values. The prior distribution on the 

6 i space is taken to be proportional to the projection norm of the data vector 

y  onto the range space of A {6 i). The SNR in this application is 45dB. The 

Ijerformance of this algorithm would increase when the sa.mpling values are taken 

tighter as shown in figure 3.14, where the estimation error is plotted versus the 

norm of, 6 , the bound vector for the parameter 6 , that is we assume

0 0 - 6  < 0  < 0 0  + 6 (3.70)

a.nd we keep the sampling rate described above while varying the bound vector.

Figure 3.14 displays the result when the least squares Bayesian approacli 

is used. The conditions under which this algorithm is applied are the same as 

in the application of the maximum likelihood-Ba.yesia.n ap];)roa,ch. Again the 

performance of this algorithm is highly related to the scvmpling density applied 

to discretize the estimate given by equation 3.69.
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P'igure 3.13: Maximum Likelihood-Bayesian approach, %error =  13.17.

Figure 3.14: Estimation error versus the bound vector norm.

Loaot Squorao-BayAolQD Approuch

Figure 3.15: Least Squares-Bayesian approach, %error =  12.75.
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l o  end up, we api^lied the same synthetic example for comparing the non 

linear least squares modeling, the non linear ridge regression modeling, and the 

maximum likelihood-bayesian inversion estimators. Figures 3.16- 3.19 display 

the results obtciined for an SNR of 80dB. The non linear least squares modeling 

approach is bcised on the least squares estimators, thus its drawbacks that cire 

caused by the noise vector standard deviation and the kernel matrix condition 

number are inherited. Whereas the non linear ridge regression estimator with its 

two ways for determining the optimal 6 overcomes the above mentioned prob­

lems. On the other hand if j r̂ior information on the distribution of the unknown 

parameter is civaihible, we can use the maximum likelihood-Bayesian inversion 

or the least squcires-Bayesian inversion approaches, these algorithms provide us 

smooth estimates, and civoid drastically deteriorating results. The disadvantage 

of those two methods is the need of a fine sampling of the 6 space that leads 

to increase in the computational cost. Figure 3.20 gives the estimation error 

versus the SNR lor the presented approaches. We notice that for low SNR the 

algorithms we suggested outperform the non linear least squares algoi-ithm, liow- 

evcn· the latter yields better results in the mean squa,re (U'ror sense wlien tlie SNR 

is higli, this is due to the fact that non linecu- least scpiares algorithm gives an 

unbiased estimator.

Figure 3.16: Nonlinear Least Squares Modeling, %error = 24.36.
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Figure 3.17; Nonlinear Ridge Regre.ssion Modeling with non lineiir optimization, 
%error =  16.7.

£.>lmLillc«nt*ouu M in im ize I loll

Figure 3.18: Nonlinear Ridge Regression Modeling with gradient descent mini­
mization, %error =  15.9.

L.lkoMlloocl»l3f!»y«ar<lnn /\pproiiuli
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Error vs SNR

Figure 3.20: Estimation Error versus SNR for the presented algorithms: (iad- 
zow(Ccid), Nonlinear Ridge Regression(RR), Nonlinear Ridge Regression with 
Grcidient descent algorithm(Gradient), Bayesian-Likelihood(BLik) and Bayesian- 
Least Squares(BLeast).



Chapter 4

Conclusions

in this thesis, we have considered the problem of estimation of nidinowns in a 

linear statistical model with uncertainties. We started by reviewing some of the 

widely used methods, then we introduced our approaches. T'or bo(;li parts we 

treated the question in two separate cases. When tlie kernel matrix is known 

and errors are considered only at the mecisured data, we investigated tlie Least 

.S(|uares and the Ridge Regression estima.tors. We provided results showing tliat 

the mea.n square error of the Least Squcires estimator increases di'astically for 

kernel matrices with high condition numbers and additive noise vectors with 

la.i'ge variances. On the other hand, the Ridge Regression estiimil,or overcome 

such problems of multicollinearity and of low signal l,o noise ratio at the expense 

of a required prior information cibout the urdaiown parameter vector or about 

the noise statistics, which are used to determine the ridge regression |)a.rameter. 

In order to avoid such a prior information on the unknowns, we proposed tlie 

Error Dependent Ridge Regression apjjroach which chooses a. ridge r(!gr(;ssion

63
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constant that leads to an error with the same second or<ler statistics as the noise 

v( c io i. lilt' piioi inforiiiatioii about the noise vector variance can aiso Ire avoided 

b,y applying the Gauss Markov algorithm with recursive updates. These two 

algoritiims lead to better estimates in the mean scjuare error sense than the Least 

Squares and the commonly used Ridge Regression estimators. In addition to 

those methods, a data dependent recursive reconstruction algorithm is proposed 

for robust and efficient estimation of the unknowns. The algorithm recursively 

updates the solution in an increasingly larger dimensional subspace whose basis 

vectors are chosen as a subset of the wavelet basis. Robust criteria on how to 

choose the basis vectors at each iteration, and when to stop the itera.tions are 

provided.

Then we looked into the methods used to solve the problem of uncertainties in 

the; kernel matrix, we first examined the Total Least iSquares and the Non Linear 

Least Squares modeling. Being based on Least Squares, those two methods inherit 

its deficiencies. To remedy these drawbacks we introduced the Non Linear Ridge 

Regression Modeling algorithm which is based on the ridge regression estimator. 

This method reduces the minimization problem with respect to two unknown 

vectors to a minimization problem with respect to one vector for which a non 

linear programming algorithm or a gradient descent type algorithm can be used 

to reewh the optinud solution. Finally, to deal with the problem when prior 

information on the parameter that models the uncertainty in tin; kernel rna.trix, 

is provided we suggested two similar approaches based on maximization of the 

expected likelihood and minimization of expected least squares cost. Simulation 

results obtained through synthetic examples demonstrated that the proposed 

algorithms outperform the commonly used methods providing robust estimates
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with sma.ller mean square errors.
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Appendix A

Computation of the Jacobian 

matrices.

ill the Non Linear Least Squares Modeling we iiad:

' ’ ‘ ” oop ' ’

In tlie computation of the Jacobian matrix L {0 ) tlui problem is (,o lincl the 

derivative of the projection matrix P  {6) with respect to the P dimensional 

vect.or 0 . Knowing that;

P { 0 )  = P { 0 Y  (A.2)

and

OP ( 0 )
80,

P { 0 ) ^ P { 0 )"

DP [0)
80,

8 P  { 0 )

P { 0 )  + P { 0 )
8 P (0)

80,
80,

( A . J )

(A.4)

(A.5)
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'lb compute the terms on the right-hand side of equation A.4, each side of the 

ma.trix identity P  (0 )A {6) =  A { 0 )  is differentiated with respect to O/̂ .

(A.6)dOk  ̂  ̂ dOk ·

Right niultiplying ecich side of this relationship by the Moore-i^enrose generalized 

inverse AH»y.

'I’liis expression is then substituted in equation A.4 t

dP{ 6 )

(A.7)

OOk =  H I - P  ( « )1 + 11-f -  -P ( « ) ! " ■

f'br 1 <  k < P.

in the Non Linear Ridge Regression Modeling algorithm we ha,d;

. dD{0)  . dD{ e )  . .dD(d)
L± ( 0 )  =  [—

L^( 0)  =  [

y-dOi ' d0<2 .......  dOp
dB{ 0 )  . dB(0)  . . ()B (6>)

■y]

0/1 ¡f ■ 0/1 y ........ >1/1 y  J ’aOi 0 O2 oOp

(A.9)

(A.fO)

where D  {6 ) and B  {0 ) are given by:

D { 0 )  =  A { 0 ) { A { 0 ) A { 0 f  +  pI ) - ^A{ 0 y ^

B { 0 )  =  { A { 0 ) A { 0 f  P p I ) - ' A ( 0 y ^

The main problem is to compute and ■

Call (A {0 )A {0 T p i )  =  T {0 ). Then, since T  {0 ) is invertible

T{ 0 ) T- H0 )  =  I
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with respect to

diT (6 > )T -'(^ ))
00, =  0 ,

tcUciiig pcirticil derivatives

- d o T  +  "

therefore the derivative of T  ~'̂ (d ) with respect to 9 is

'rims the derivative of D  {6 ) with respect to 0, is:

d D ^  =  ^ i ^ ^ { A { d ) A { e f  + pI)-^A{9)
dOk

ir
00k

A (9 )T -^ 9  -  '(6> )A (9 ) "
dOk

+  A ( 9 ) T - ^ { 9 )
dA (9) H

dOk

and of B  { 9 ) with respect to 0, is: 

dB {9)
dOk

T - ^ 0  )A {9 y ’

+ T - \ 9 )

dOk 
dA ( 0 ) "  

dOk

(A.15)
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