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ABSTRACT

HALDANE PHASE IN THE BOND-ALTERNATING
SPIN-1/2 XXZ CHAIN: DMRG AND

FERMIONIZATION STUDIES

Murod Bahovadinov

M.S. in Physics

Advisor: Prof. Dr. Oğuz Gülseren

December 2018

In this thesis, the subject of study is the Haldane phase in bond - alternating XXZ

chain with S = 1
2
. We firstly mapped our model to the fermionic chain by the use

of standard Jordan-Wigner Transformation, which leads to the famous interacting

spinless Su-Schrieffer-Heeger (SSH) fermionic model with modifications. Firstly,

we studied trivial quantum phase transition (QPT) under the magnetic field in

exactly soluble non-interacting limit, which corresponds to the bond-alternating

XX chain . Excitation spectrum, magnetization, magnetic susceptibility are used

to characterize QPT and compared with the numerical results. Correlation func-

tions for all components of spins are calculated exactly.

Secondly, we studied symmetry - protected topological phase transition in the

given non-interacting SSH model and characterized it by calculating topological

winding number. Fermionized string order parameter as a function of spin coup-

lings is obtained and the Haldane phase diagram in the XX limit is confirmed. The

correspondence of the Haldane phase in the spin chain in XX limit and topological

insulating phase of fermionic non-interacting SSH model is shown. Finally, by the

use of entanglement spectrum as an order parameter, we numerically obtained

Haldane phase diagram for XXZ model with bond-alternation.

For numerical investigation, we used density matrix renormalization group

theory in matrix product states formulation (MPS-DMRG) for a system with

open boundary conditions (OBC) .

Keywords: Quantum phase transitions, Density Matrix Renormalization Group

theory, Matrix Product States, bond-alternating XXZ chhain, Haldane phases,

SSH model, String order parameter .
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ÖZET

HALDANE FAZINDA BAĞ DEĞIŞTIREN SPIN-1/2
XXZ ZİNCİRİ: DMRG VE FERMIYONLAŞTIRMA

ÇALIŞMASI

Murod Bahovadinov

Fizik, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Oğuz Gülseren

Aralık 2018

Haldane fazında bağ değiştiren spin-1/2 XXZ zincirleri konusu işlenmiştir.

Öncelikle modelimizi standart Jordan-Wigner Dönüşümü kullanarak fermiyo-

nik zincire dönüştürdük; bu dönüşüm bize modifiye edilmiş etkileşim halindeki

spinsiz Su-Schrieffer-Heeger (SSH) fermiyonik modeli verdi.İlk olarak bize bağ

değiştiren XX zinciri veren manyetik alan altındaki basit kuantum faz geçişini

(QPT) çözülebilir etkileşimsizlik limitinde çalıştık. QPTyi karakterize etmek

için uyarılma tayfı, manyetizasyon, ve manyetik duyarlılık kullanıldı ve hesap-

lanmış sonuçlar ile karşılaştırıldı. Her spin bileşeni için korelasyon fonksiyonu

tam olarak hesaplandı. Bundan sonra, bulunan etkileşimsiz SSH modeli üzerinde

simetrik olarak korunan topolojik faz geçişi çalışıldı ve topolojik sarma sayısı

hesaplanarak tanımlanıldı. Spin eşleşme, Fermiyonlaşmış yay düzeni değişkenine

bağlı bir fonksiyon olarak elde edildi ve XX limitindeki Haldane faz diyagramı

onaylandı. Spin zincirinde XX limiti Haldane fazı ve etkileşimsiz Fermiyonik SSH

topolojik yalıtkanlık fazı modelinin uyumluluğu gösterildi. Son olarak, dolaşıklık

tayfını düzen değişkeni olarak kullanarak, hesaplamalı olarak bağ değişimli XXZ

modeli için Haldane faz diyagramı elde edildi. Hesaplamalı çalışmada açık sınır

koşullu sistemler için, matris çarpım evresi formüllendirmesindeki renormali-

zasyon yoğunluk matrisi grup teorisi (MPS-DMRG) kullanıldı.

Anahtar sözcükler : Kuantum faz geçişleri, DMRG, iDMRG, Matris çarpım

Evresi, Bağ Değiştiren XXZ Zinciri, Haldane Fazları, SSH Modeli, Sicim Düzen

Değişkenleri .
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Chapter 1

Introduction

We start introductory section by formulating the problems to be solved in the

thesis, discuss the actuality of these problems from an experimental and also

theoretical point of views. Then we briefly introduce theoretical prerequisite

necessary for this thesis.

1.1 Statement of the problem

The object of the study in the current thesis is bond-alternating Heisenberg

XXZ chain (BAHC) with S = −1
2

defined as:

H = J
N∑
i=1

~S2i−1 · ~S2i(∆) + J ′
N∑
i=1

~S2i · ~S2i+1(∆′) (1.1)

where J, J ′ are coupling constant which can be ferromagnetic(< 0) or antiferro-

magnetic (> 0) types. ∆,∆′ are z-component anisotropies of the model , such

that for ∆ = ∆′ = 1 one has bond-alternating XXX Heisenberg chain.

The subject of the study is analytical fermionization and numerical Density

Matrix Renormalization group (DMRG) study approaches for zero- temperature

properties and Haldane phase diagram of generalized model (1.1).

In the scope of the theses, we consider the following tasks :
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I. Analytically:

• By the use of the Jordan - Wigner transformation, to obtain an analytically

exact form of ground state energy, two-point correlators for all components

of spins in the XX limit of the model (1.1).

• By fermionization of string order parameter and calculating topological

winding number, to identify the Haldane phase and to get corresponding

phase diagram in XX limit.

II. Numerically:

• By the use of matrix product states based DMRG to show the existence of

edge states in corresponding Haldane phase of XX limit with open bound-

ary conditions and to show the consistency of analytically obtained phase

diagram by the calculating the bipartite entanglement spectrum.

• To obtain the Haldane phase diagram of XXZ model in antiferromagnetic

couplings regime J, J ′ > 0.

Actuality of the study

Theoretical perspectives

Phase characterization in quantum many-body systems is one of the most impor-

tant topics in condensed matter physics. While Landau-Ginsburg (LG) theory

has been describing phase transition quite successfully, it is unable to identify

topological orders of quantum systems due to the lack of local order parameter

in these phases. Thus, one of the actual problems of modern condensed mat-

ter physics of one dimension is the classification of newly discovered symmetry

-protected topological (SPT) phases. While the main features of SPT phases

2



are: the existence of finite-gap to the first excited state in a system with peri-

odic boundary condition and the formation of localized edge states in a system

with open boundary conditions, these are ambiguous order parameters to fully

characterize these systems. Nevertheless, using group theoretical approaches clas-

sification of fermionic and bosonic systems in interacting and the non-interacting

limit was performed [1, 2, 3].

When we are dealing with spin systems, the most famous SPT phase is the

Haldane phase. This phase is the ground state phase of the Heisenberg model

with S = 1. Although the gapped nature of the ground state and the existence

of edge states were predicted long time ago [4, 5, 6], the full understanding of the

phase emergence came much later [7]. For a long time, the only condition for the

existence of the Haldane phase in spin systems was a non-zero value of non-local

string order parameter (SOP). In this respect, in early 1990’s the Haldane phase

was detected in modified Heisenberg spin chains with S = 1 and Heisenberg

ladders with S = 1
2

both numerically and analytically [8, 9] . In particular, the

Haldane phase of bond-alternating model (1.1) was also studied numerically using

SOP via exact diagonalization method [10, 11].

While nontrivial topological phases like Haldane phase were under study using

SOP in spin systems, in fermionic and bosonic systems advanced and versatile

tools like Berry phase has been used, so the question about a generalization of

fermionic order parameters for spins has arisen. Hastugai et al. [12] has intro-

duced local spin twist as a generic parameter of Berry phase for gapped spin

systems, which has been used extensively [13]. Rosch and Anfuso [14] has used

reconstructed SOP for identification of topological phase in band insulators. In

this thesis, we obtained a fermionic version of SOP which can be used as order

parameter of the topological phase for dimerized fermionic chain even in a certain

interacting limit. However, even if SOP has been widely used, this is not a robust

order parameter. We will discuss this issue in the last Chapter of this thesis.

A more general order parameter-doubly degeneracy of whole entanglement spec-

trum has emerged after deep group theoretical study of symmetries of matrix

product states [15, 7]. In these studies, the authors have shown that there are

certain symmetries which stabilize the Haldane phase and this reflects on the
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degenerate character of entanglement in the bipartited chain. We will use this

order parameter to identify the Haldane phase in the XXZ chain of (1.1).

Experimental perspectives

Just after the prediction of Haldane about the gapped nature of integer Heisen-

berg chain, there has been an excessive number of experiments which has

proved Haldane’s conjecture with finding the finite gap and predicted edge

states[16, 17, 18].

From an experimental point of view, model (1.1) is a relevant theoretical model

to describe numerous compounds [19, 20] and the list is progressively updating

[21]. Thus, a theoretical study of the current model with possible extensions is

an important topic to consider.

1.2 Theoretical Background

1.2.1 Spontaneous Symmetry Breaking and Landau the-

ory

We call a system gapped if there is a finite excitation gap between ground state

and the first excited state. In fermionic systems, this property characterizes in-

sulating phases. Thus, in analogy to fermionic systems, one may call gapped

phase of spin chains also ’insulating’ phase. In spin chains, except a finite gap,

the local correlators of all spin components exponentially decay in a gapped phase.

We consider 1D quantum Ising model in a transverse magnetic field in x-

direction:

HI = −J
N∑
i=1

Szi S
z
i+1 − Γ

N∑
i=1

Sxi (1.2)

where J > 0 and S - operators obey SU(2) algebra. For the moment, we set
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Γ = 0.

The system has discrete Z2 symmetry, which is a physical ’spin-reversal’ symme-

try. When Hamiltonian diagonalized, due to double degeneracy of ground states,

we have all spins in the ’up’ states with 〈Szi 〉 = 1
2
, or all are in the ’down’ states

with 〈Szi 〉 = −1
2
. This means that there is a spontaneous breaking of Z2 symme-

try and we have a ferromagnetic phase. Thus, one can detect this spontaneous

symmetry breaking (SSB) by measuring local magnetization mz
i = 〈Szi 〉 and here

it plays a role of order parameter in the system.

In the limit of Γ >> J , we have paramagnetic phase, where all spins are polar-

ized to the direction of a magnetic field and more importantly there is no any

SSB. One can calculate long-range correlation functions
〈
Sαi S

α
i+r

〉
and see that

it decays exponentially so that there is a finite correlation length. From this,

particularly, one can conclude that the system in this regime also is gapped.

Figure 1.1: Gap closure in 1D Ising model

From schematic representation (Fig.1.1) we see that in two extreme limits of

Γ the system is gapped. In one of them, one has SSB, while on the other there

is no SSB. Thus, there is a quantum phase transition (QPT) with a quantum

critical point (QCP) Γc, where gap-closure occurs. From explanations above one

can conclude that QPT of the model under considerations can be identified by

measuring local order parameter mz
i .

In conclusion, SSB causes the existence of a local order parameter while in the ab-

sence of it, local order parameter vanishes. Thus, using this local order parameter
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one can identify QPT. This is a fundamental idea behind Landau theory.

1.2.2 Symmetry - protected topological states

It has been believed that Landau theory is able to fully classify quantum phases

in terms of symmetry - breaking. However, from recent time new phases of matter

- topological phases, have been discovered and their classification is beyond the

ability of the Landau theory.

Here, we consider only a subgroup of topological phases - symmetry-protected

topological (SPT) phases. SPT phases are gapped phases of matter that have

no any symmetry-breaking and one cannot distinguish two different SPT phases

using local order parameter.

1.2.3 Antiferromagnetic Heisenberg S=1 Chain

Let us consider Antiferromagnetic Heisenberg Chain (AHC) with uniaxial

anistropy in z-direction D :

H = J
N∑
i=1

~Si · ~Si+1 +D
N∑
i=1

(Szi )2 (1.3)

with J > 0. AHC with S = 1 (D = 0) is known to be gapped [4] [5]. As

it was mentioned, if it is gapped, spin component correlation functions should

exponentially decay. However, the same model with S = 1
2

is gapless and was

solved exactly by Bethe [22]. In fact, the AHC with general integer S is gapped,

while with half-integer S is gapless.

If we consider model (1.3) in two extreme D limits, we have two different gapped

phases: when D << J we have gapped ’Haldane phase’, while for D >> J we

have gapped D-phase. Gapped D- phase is just a direct product of |0〉’s:

|Ψ〉 = |00000...0〉 (1.4)

As one can notice, this example is very similar to one from the previous section.

In fact, there is gap closure with a critical Dc in which we have QPT. However,

6



there is not any SSB in the current model in both phases. Therefore, there is no

any local order parameter which can separate these two phases. The question to

ask is what makes these phases to differ from each other?

Den Nijs and Rommelse [23] have shown that the Haldane phase has hidden

non-local antiferromagnetic (Neel) order and proposed so-called String Order Pa-

rameter (SOP) which is defined as:

Oα
S(H) = − lim

|i−j|→∞

〈
Sαi e

iπ
∑l=j−1
l=i+1 S

α
l Sαj

〉
(1.5)

where α = x, y, z. It should be noted that SOP is non-local order parameter.

Obviously, SOP for D-phase vanishes. The hidden non-local Neel order supposes

a state in which if all set of sites g with Szg = 0 are deleted, one has rigid Neel

order, e.g

|Ψ〉 = |↑↓ 00 ↑ 0 ↓ 000 ↑ ...〉 (1.6)

The ’clearness’ of hidden Neel order determines the value of Oα
S .

Except non-zero SOP, Haldane phase also has a localized edge states. In a finite

chain with Hamiltonian (1.3) and D << J , one has 4-fold degenerate ground

state with free spin -1
2

at the edges. These edge states cause 4-fold degeneracy of

the ground state.

Later on, Affleck, Kennedy, Lieb and Tasaki [6] has proposed an exactly solvable

model which has the Haldane phase as a ground state:

HAKLT =
N∑
i=1

(~Si · ~Si+1) +
1

3
(~Si~Si+1)2 (1.7)

Similar to Majumdar-Ghosh Hamiltonian [24], HAKLT is projection operator onto

the sector of STot = 2:

HAKLT = 2
N∑
i=1

(P2(i, i+ 1)− 1

3
) (1.8)

where P2(i, i+ 1) is projection operator onto the sector with STot = 2. Thus, two

neighboring spins in the ground state lie on STot = 1 or STot = 0. This suggests

that any given two spins are antiparallel if both of they don’t have non-zero z

component. This proposes the existence of hidden Neel order in the ground states

of the Hamiltonian.
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While SOP was identifying Haldane phase successfully, the question about why

AHC is gapped was open for a while. Kennedy and Tasaki [9] (and parallelly

Oshikawa [25]) has proposed a non-local unitary transformation which explains

the existence of the gap by hidden Z2⊗Z2 (or D2) symmetry breaking. Rigorously

speaking, one can formulate following unitary transformation: The first non-zero

spin is left unchanged, the second non-zero spin is flipped, the third is unchanged,

the forth is flipped and so on. As a result of the transformation, non-zero spins are

’ferromagnetized’ in the hidden Neel order. Mathematically, this transformation

has the following form[25]:

V = V −1 =
∏
j<k

eiπS
z
j S

x
k (1.9)

Then, applying this to Hamiltonian (1.3) (J = 1) leads to:

H̃ = V HV −1 =
∑
i

Sxj e
iπSxj+1Sxj+1 + Syj e

iπ(Sxj+1+Szj )Syj+1 + Szj e
iπSzj Szj+1 +D(Szj )2

(1.10)

One can see that Hamiltonian (1.10) has Z2 ⊗ Z2 symmetry, π rotations of all

sites about x, y or z doesn’t change the energy. Then, the formation of the gap

can be explained in terms of breaking this symmetry like in the 1D Ising model.

More interestingly, SOP transforms by V to a ferromagnetic correlation function,

i.e

Oα
S(H) = Oα

F (H̃) (1.11)

with

Oα
F (H̃) = lim

|i−j|→∞

〈
Sαi S

α
j

〉
(1.12)

Thus, non-local SOP transforms into the local order parameter.

At this point, everything is similar to the 1D Ising model . For D >> 1 we have

a paramagnetic phase without any SSB, while for D << 1 we have SSB of D2

symmetry .

In a first glance, it seems that the problem of gapped nature of the Haldane

phase is solved by unitary transformation and can be explained by SSB. However,

this is partially true. Particularly, these results suggest that if one adds terms

which break D2 symmetry in original Hamiltonian (1.3) , Haldane phase should
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disappear. However, this is not true. Haldane phase in the model (1.3) is not only

’protected’ by D2 symmetry but also by time reversal, bond-centered inversion

symmetries [15]. Thus to eliminate the Haldane phase, one should break all these

symmetries in the original Hamiltonian. Discussed Haldane phase is an example

of symmetry-protected topological phase.

In the current thesis, we consider the model (1.1) with S = 1
2
. Using symmetry

fractionalization technique, it was shown [26] that the Haldane phase of the model

is protected by the same symmetries of S = 1 AFH.

1.2.4 Order parameters to identify the Haldane phase

To identify the Haldane phase in the model (1.1) we use the following order

parameters:

• XX limit of (1.1): In this limit, one has full SU(2) symmetry. Thus modified

SOP [8] should be able to identify the Haldane phase in the model.

• XXZ model: due to the broken SU(2) symmetry, SOP cannot identify the

Haldane phase. Thus, we will use the degeneracy of Entanglement Spectrum

(ES) as an order parameter of the model in the XXZ limit.

Degeneracy of Entanglement Spectrum as an order parameter

Since there is not generalized non-local correlation function (like SOP) to identify

the Haldane phase of a generic Hamiltonian, we will use so called Entanglement

spectrum to identify the Haldane phase in XXZ model.

Consider a ground state |Ψ〉 of gapped 1D system with a tuning parameter G in

a Schmidt decomposition:

|Ψ〉 =
∑
α

Λα(G) |αL〉 ⊗ |αR〉 (1.13)

where Λα(G) matrix of Schmidt values and has only non-zero positive diagonal

elements. Entanglement Spectrum (ES) is defined as εS = − log (Λ(G))2. The

9



claim is that in the SPT phase the whole ES is doubly degenerate [15] [7]. When

G is varied and crosses QPT (it may be any type of QPT) , the ES degeneracy

character changes. Thus, one can use is as an order parameter to identify the

Haldane phase in 1D spin systems.
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Chapter 2

Density Matrix Renormalization

Group Theory

In this chapter, we briefly discuss a central and important numerical method

for this thesis, namely Density Matrix Renormalization Group Theory (DMRG).

However, we will start this chapter by discussing Numerical Renormalization

Group method, which is the historical father of the DMRG. The idea of the

chapter is delivering the idea behind DMRG rather than an expanded pedagogical

explanation of the numerical method since the main numerical tool of this thesis

is matrix product state based DMRG (MPS-DMRG) algorithm, which will be

discussed in next chapter. However, introducing standard White’s DMRG meth-

ods makes MPS-DMRG clearer. Thereafter, we introduce concepts of Reduced

Density Matrix and Singular Value Decomposition which clarify the fundamental

idea behind DMRG. Infinite Size and Finite Size algorithms of DMRG for open

boundary conditions with implementation details also will be presented. Periodic

Boundary condition DMRG algorithms together with all computational aspects

of algorithms like the implementation of symmetries, diagonalization methods

which will not be discussed.
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2.1 Numerical Renormalization Group

The problem of studying quantum many-body phenomena in lattices leads to nu-

merical diagonalization of large matrices. This is bound to the fact that Hilbert

space dimension grows exponentially with the lattice size. While modern exact

diagonalization algorithms are advanced, they can be applied to the restricted

number of lattice sites, which excludes their usage on the investigation of ther-

modynamic limit properties. Furthermore, for a big number of lattice sites usu-

ally, numerical instabilities appear which are leading to wrong calculated energy

spectrum. In any case, the solution of the problem is related to the fact that

in strongly correlated quantum systems, zero temperature properties are mainly

defined by the low energy spectrum. It means that even if the dimension of

Hilbert space of the quantum system is exponentially large, only a small sector

of the Hilbert space states define the quantum systems’ properties. Thus, the

problem reduces to finding those important states. The first successful approach

was done by Wilson to solve Kondo impurity problem [27]. It turns out, that for

quantum impurity problem the recipe of solving the problem is easy, as shown in

the algorithm below.

Algorithm 1 Numerical Renormalization Group algorithm

1: Consider a block B of a length L. A superblock S of size 2*L should be diagonalizable.
2: Diagonalize a Superblock S Hamiltonian HS and keep only m lowest states
3: From the m lowest states, form transformation matrix O
4: ’Rotate’ all necessary matrices of the Superblock S and call new block as B’ (i.e H′B = O†HSO)
5: Repeat procedure

12



Figure 2.1: Numerical Renormalization Group algorithm

So, one starts with a chain of size L, which conditionally we call block B. Then

2 blocks are joined to form new superblock S, which is diagonalizable. After

diagonalization, only m - lowest energy states are kept and transformation matrix

O formed out of these m lowest states. One should rotate the all superblock S

operators. This rotated Superblock S is called now Block B’. Obviously, after

rotation, the dimension of Hilbert space is reduced and depends on the number

of states kept. The procedure should be repeated until the desired chain length

is obtained.

Despite the accuracy on solving quantum impurity problems, NRG algorithm is

failing for a lattice systems. The reason is the choice of the optimal basis set: low-

lying states of two blocks B are not a good choice of the states for Superblock S

of quantum chains since it treats the system as if all blocks are independent of

each other. The success of NRG in solving the Kondo model is due to the fact

that the coupling between blocks is small, so the assumption is true.

Summing up, the main idea of NRG algorithm was to enlarge block keeping the

Hilbert space manageable by consequent basis ’rotations’. So, for quantum spin

models, in particular, it is important to find optimal basis set out of the states
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of the given Block B, such that only they contribute in the full spin chain.

2.2 Density Matrix Renormalization Group

In the previous section, we emphasized the main idea of NRG and it’s crucial

problem in treating lattice systems. The problem of choosing an optimal basis

set out of exponentially large Hilbert space for the lattice systems was solved

by S. White in 1992 [28, 29]. Since the low lying eigenstates kept in NRG don’t

contain any information about the rest of the lattice system, it fails to treat lattice

systems. White has noticed that in order to treat the system correctly, one needs

to include information about the rest of the system when deciding which states

to keep. This has lead to the concept of Density Matrix Renormalization Group

(DMRG) theory. In contrast to the NRG, DMRG is focused in a chosen target

state of interest, while NRG gives the full spectrum of the system. Mainly the

state of the focus in the DMRG calculation is the ground state of the quantum

system. So, one needs to choose which optimal states to keep based on the density

matrix of the target states. We start introduction of DMRG method with the

concept of density matrix in order to explain this powerful numerical method.

2.2.1 Reduced density matrix

Before going to the direct algorithm of DMRG, here we repeat the basic concepts

behind DMRG method. Particular importance carries the concept of Reduced

density matrix.
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Figure 2.2: Bipartited Universe Block

In the beginning we define a universe , a chain of finite number of sites L.

Every site has local degree of freedom d, so that the dimension of Hilbert space

is Du = dim(Hu) = dL. We divide our chain in two parts of the lengths L1 and

L2 and call them system with the orthonomal set of states |i〉 and environment

with the orthonormal set of states |j〉 respectively, as shown in the scheme above.

It is clear that the dimension of Hilbert spaces are Ds = dim(Hs) = dL1 and

De = dim(He) = dL2 so that Hu = Hs ⊗He with Du = Ds ·De .

For a given Hamiltonian of the universe, one can write the full universe wave-

function as a direct tensor product:

|Ψ〉 =
∑
i,j

ψi,j |i〉 ⊗ |j〉 (2.1)

where summation runs over all states of aforementioned orthonormal sets. For

convenience, we further drop the sign ⊗.

Example: Matrix form of ψi,j

Suppose we have a universe state with three spin-1/2 spins with the local

degree of freedom d=2: |ψ〉 = a11 |↑↑↑〉+ a12 |↑↑↓〉+ .... Next, if we define

our system as the first spin, and environment as the rest of the universe,

the coefficient ψi,j can be written as the matrix of dimension 2× 4 :

ψ =

[
a11 a12 a13 a14

a21 a22 a23 a24

]
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From above example, one can see that the size of the ψ matrix depends on the

definition of the system and environment lengths and equal to Ds × De, where

Ds,e are Hilbert space dimensions of the corresponding parts.

Next, to get reduced density matrix of the system, we consider operator R acting

only on the system space:

R =
∑
i,j,i′

Ri,i′ |i〉 |j〉 〈i′| 〈j| (2.2)

Then, one can calculate expectation value of the operator R :

〈Ψ|R|Ψ〉 =
∑
i,j,i′

ψi,jψ
†
i′,j 〈i|R|i

′〉 (2.3)

which is obtained using the orthogonality property of the |j〉 set.

The equation above can be rearranged as:

〈Ψ|R|Ψ〉 =
∑
i,i′

ρSi,i′ 〈i|R|i′〉 = Tr(ρR) (2.4)

where reduced density matrix is defined as

ρSi,i′ =
∑
j

ψi,jψ
†
i′,j (2.5)

From this equation one can easily figure out how to form ρ matrix if the universe

wavefunction is given, using the example above.

Also, from definition, we can trace out the environment states to get the system

density matrix:

ρS = TrE(|Ψ〉〈Ψ|) (2.6)

which can be easily proven. Generally, the reduced density matrix ρ is not diag-

onal in the basis of |i〉 states. If diagonalized , ρ can be represented as:

ρ =
∑
α

ωα |uα〉〈uα| (2.7)

where ωα and |uα〉 are the corresponding eigenvalues and eigenstates.

16



At this point, we mention several important properties of the reduced density

matrix:

1. Hermiticity: ρ† = ρ

2. Positivity of eigenvalues: ωα ≥ 0

3. Probabilistic interpretation:
∑

α ωα = 1

All these three important properties can be derived using equations above. The

most important property for us is the last one: it means that the system is in a

state |uα〉 with the probability ωα.

Summing up, if a universe wavefunction Ψ is given, one can define the reduced

density matrix for a given ’system’. The values of ωα show the contribution

percentage of states |uα〉 in the system to the total universe wavefunction Ψ,

or how much system it is ’entangled’ with the environment. If sorted ωα falls

exponentially, it means, only a very few states in the system can be kept. And

more importantly, it means that we have a new criterion for cutting our big

Hilbert space: based on the reduced density matrix eigenvalues.

If m states |uα〉 with lowest eigenvalues are kept, there will an error due to the

full Hilbert space truncation, which can be defined as εr = 1−
∑m

α=1 ωα. At this

point, the concept of Singular-Value Decomposition and its’ connection with the

reduced density matrix needs to be discussed.

2.2.2 Singular Value Decomposition

Singular Value Decomposition (SVD) which is well-known from linear algebra,

will be used extensively in the thesis, thus the main idea behind the concept

should be introduced. SVD of any rectangular matrix M of the dimensions DA×
DB is defined as follows:

M = USV † (2.8)

where:

1. U is the matrix which has dimensions DA×min(DA, DB) and left normalized

so that U †U = I. If DA < DB, U is a diagonal matrix of dimensions DA ×DA.

2. S is diagonal matrix with the dimensions min(DA, DB) ×min(DA, DB) with

positive entries. The elements are called singular values. The number of non-zero
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entries define the rank of M.

3.V is the unitary matrix which is right - normalized, so that V V † = I with the

dimensions min(DA, DB)×DB .

From definitions above, it is clear that if only several biggest values of S are

kept and others are set to 0, one gets approximate matrix M̃ .

Our interest in using of this linear algebra tool is so-called Schmidt decomposition

of our bipartited universe |Ψ〉, which is defined as:

|Ψ〉 =
∑
i,j

ψi,j |i〉 |j〉 =
∑
i,j

min(DS ,DE)∑
a=1

UiaSaaV
†
aj |i〉 |j〉 =

=

min(DS ,DE)∑
a=1

[∑
i

Uia |i〉

]
sa

[∑
j

V †aj |j〉

]
=

min(DS ,DE)∑
a=1

sa |a〉S |a〉E

(2.9)

where new basis sets are defined by rotating the previous system and environment

basis sets. This is guaranteed by orthonormality of U and V †. In fact, one can

keep only a few states of |a〉 based on sa, so that the quantum state can be

approximated. Schmidt decomposition allows us to show that density matrices

have the following form:

ρS,E =
a=m∑
a=1

s2
a |aS,E〉〈aS,E| (2.10)

where m is the maximum number of states which are included in approximation.

Now, one can easily see that the basis set |a〉S in fact is the previously mentioned

basis set |uα〉 with ωα = s2
a. Thus, it follows that U and V † matrices are trans-

formation matrices which are mapping |i, j〉 to | aS,E〉.
In summary, SVD decomposition of ψij transforms standard basis sets to or-

thonormal basis sets of ρS,E. Thus, the decision which states to keep to truncate

the Hilbert space should be done according to the eigenvalues of the density

matrix.

2.2.3 Infinite-size DMRG algorithm

There are two types of standard White algorithms [28, 29] which have been widely

used in the 1990s: Infinite-size DMRG algorithm and Finite - size algorithm.
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Infinite - size algorithm is invented to get the thermodynamic properties of the

1D quantum systems. Here, for simplicity, we consider a symmetric algorithm,

where system block and environmental block are supposed to be symmetric. The

algorithm is presented below:

Algorithm 2 Infinite-size DMRG algorithm

1: Consider Initial system and Environment blocks of a length l each ( e.g l=2), with Hamiltonians HS,E
init

respectively.
2: Enlarge every block by one site, so that now, each block will have l+1 sites. Hamiltonians of every enlarged

blocks are: HS,E
enl should be calculated.

3: Form a superblock (universe in our previous notation) Hamiltonian HSB
2l+2 out of these two blocks, so that

superblock will have 2l + 2 sites.
4: Diagonalize HSB

2l+2 and get ground state |Ψ〉.
5: Obtain density matrix using:ρS =

∑
j ψi,jψ

†
i′,j and diagonalize it. If the universe is symmetric ρS = ρE .

6: Form out of m given eigenvectors V of ρ with the largest eigenvalues a transformation matrix:

O =


...

...
...

...
V1 V2 . . . Vm
...

...
...

...


7: ’Rotate’ all necessary operators of Enlarged System and Environment Blocks and treat them as new Initial

System and Environment Blocks (i.e H̃S
init = O†HS

enlO)
8: Repeat procedure, i.e enlarge new Initial System and Environment Blocks and form new Superblock and

continue the process until the desired chain length is reached.

As shown in the algorithm below, one should start with the finite length sym-

metric blocks, so that 2l + 2 superblock Hamiltonian should be computational

ease to diagonalize it. Of course, this condition depends on the local degree of

freedom of sites, because of the dimension of HSB
2l+2 = d2l+2. Since diagonaliza-

tion has the biggest contribution to the computational cost of the algorithm, one

should balance with the accuracy of the results and initial block sizes. In any

case, in practice, even small size of initial blocks give very accurate results.

For diagonalization procedure one can use standard diagonalization algorithms

(i.e Davidson) and should exploit symmetries of a given Hamiltonian.
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Figure 2.3: White’s Infinite-size DMRG algorithm

2.2.3.1 Numerical implementation details of DMRG

Model definition

At this section we elucidate the algorithm above in a more formal and mathe-

matical representation for a given Hamiltonian. Suppose, a given Hamiltonian

for a chain of N sites is:

H =
N∑
i=1

J(Szi S
z
i+1 +

1

2

(
S−i S

+
i+1 + S+

i S
−
i+1

)
) (2.11)

Here we assume S = 1 so that the local degree of freedom is d = 3. The matrix

representations of corresponding operators are:

Sz =


1 0 0

0 0 0

0 0 −1

 (2.12)

S+ =
√

2


0 1 0

0 0 1

0 0 0

 (2.13)
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S− =
√

2


0 0 0

1 0 0

0 1 0

 (2.14)

Initial Blocks settlement

We define Initial System and Environment blocks with 2 sites:

HS
init = Sz ⊗ Sz +

1

2

(
S− ⊗ S+ + S+ ⊗ S−

)
(2.15)

which has the following matrix representation:

HS
init =



1.0000 0 0 0 0 0 0 0 0

0 0 0 1.0000 0 0 0 0 0

0 0 −1.0000 0 1.0000 0 0 0 0

0 1.0000 0 0 0 0 0 0 0

0 0 1.0000 0 0 0 1.0000 0 0

0 0 0 0 0 0 0 1.0000 0

0 0 0 0 1.0000 0 −1.0000 0 0

0 0 0 0 0 1.0000 0 0 0

0 0 0 0 0 0 0 0 1.0000


(2.16)

Also, one should keep left-most site operators for system and right-most for en-

vironment, since one needs them when making Hamiltonian for enlarged blocks:

S+
sysRight = I3 ⊗ S+

SzsysRight = I3 ⊗ Sz
(2.17)

One can easily get the matrix representation of operators. Similarly, right-most

operators for initial environment block should be saved.
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Blocks Enlargement

Next, one should enlarge the initial blocks: the system block from the right side,

the environment from left. Hamiltonian can be written in the following form:

HS
enl = HS

init ⊗ I3 + SzsysRight ⊗ Sz +
1

2

(
S+
sysRight ⊗ S

− + S−sysRight ⊗ S
+
)

(2.18)

The correspondingHS
enl matrix has the dimensions 33×33 and it’s sparsity portrait

is shown in the figure below.
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Enlarged Environment Block’s Hamiltonian can be obtained by the following

the logical path of the equations above. One should also upgrade leftmost and

rightmost operators for enlarged environment and system blocks respectively.
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Superblock HSB diagonalization

The next step is obtaining the superblock Hamiltonian HSB
l=6 with the dimensions

36 × 36:

HSB
l=6 = HS

enl ⊗ Idim(HE
enl)

+HE
enl ⊗ Idim(HS

enl)
+

+ SzenlsysRight ⊗ SzenlenvLeft +
1

2

(
S+
enlsysRight ⊗ S

−
enlenvLeft + S−enlsysRight ⊗ S

+
enlenvLeft

)
(2.19)

The sparsity portrait is shown in the figure below. The ground state energy of

ESB
GS = −7.3703J and it’s corresponding eigenstate can be found when HSB

l=6 is

diagonalized.
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Density matrix formation and it’s diagonalization

To form system density matrix, one should firstly define ψij matrix and use

ρS =
∑

j ψi,jψ
†
i′,j, so that it leads to numerical matrix reshaping and summation
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operations.

In our model, the corresponding ground state wavefunction has the dimension

of 1 × 36. Correct matrix manipulation leads to 33 × 33 matrix of ρs with the

following non-zero eigenvalues:

ρ =



0.3281 0 0 0 0 0

0 0.3281 0 0 0 0

0 0 0.3281 0 0 0

0 0 0 0.0113 0 0

0 0 0 0 0.0007 0

0 0 0 0 0 0.0007


(2.20)

The exponential decay ofeigenvalues can be observed, since out of 27 eigenvalues

only 6 states have non-zero values up to fifth digit. This is true for gapped spin

chains, and as we now from previous sections, AFH spin-1 chain ground state is

in Haldane phase and gapped. Particularly this result means that if only m=6

states are kept, truncation error will be exponentially small.

Transformation matrix formation

To work in ρ basis, one need transformation matrix which can be formed as:

O =


...

...
...

...

V1 V2 . . . V6

...
...

...
...

 (2.21)

where V1, V2 ... V6 are eigenvectors with non-zero eigenvalues. One can easily

check that O†O = I6×6

Operator rotations

At this stage, one should ’rotate’ all operators of enlarged system and environment

blocks to a new basis. They dimension will be reduced and rotated Hamiltonian
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HS
enl has the following form:

HS
enl ==



0.0000 −0.0000 0.0000 −0.4344 −0.0000 −0.0000

−0.0000 −0.8501 −0.0000 −0.0000 0.0000 0.2439

0.0000 −0.0000 0.8501 0.0000 −0.0000 0.0000

−0.4344 −0.0000 0.0000 0.0000 0.6562 −0.0000

−0.0000 0.0000 −0.0000 0.6562 0.0000 −0.0000

−0.0000 0.2439 0.0000 −0.0000 −0.0000 −0.5685


(2.22)

Similarly, other needed operators i.e Szenl should be rotated.

Repeat the procedure

When it is done, one should accept rotated operators as the operators of initial

system and environment blocks and enlarge them. The procedure should be done

until the chain of length N is reached.

Results

In this section we check results stability of the code which was realized as a part

of numerical package ’BilkentDMRG’.

Ground state energy

Firstly, ground state energy per site ε = EGS
L

is calculated for a system with

length L = 124. The number of kept states are m = 4, 8, 10.

As shown in Fig. 2.4 (a) ε decays algebraically from ε = −1.26J for the superblock

of size l = 6 to ε = −1.388J . The blue line corresponds to the most accurate

numerical result available [9] which is equal to ε = −1.401484093J . In Fig. 2.4

(b) the same trend can be observed in logarithmic scale for a different number of

sites kept. Almost in all three cases, the absolute error starts ≈ 10−1 when the
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Figure 2.4: Ground state energy per site calculation for AFHC with S=1

superblock length is l ≈ 10 and reach the error of ≈ 10−2 when the full chain

length is achieved.

Truncation error

Next, to see the value distribution of density matrix eigenvalues ωα, we plotted

it when the full length of the chain is reached. From Fig. 2.5 (a) it is clear that

keeping only m=10 states guarantees the truncation error of the order 10−6.

Indeed, from fig. b one can see that the truncation error gets closer to the 10−6

when the value of m is changing from m = 8 and m = 10.

2.2.4 Finite-size DMRG algorithm

Using the infinite size algorithm we cannot get wavefunction form with a good

accuracy. The reason is the nature of the algorithm: in every iteration, we are

cutting our basis, so that for the next iteration additional errors emerge with

some information lost. To overcome this Finite Size DMRG (FS-DMRG) was

introduced in the original paper of White [29]. The algorithm is shown below.
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∑
α ωα for L = 124

Algorithm 3 Finite-size DMRG algorithm

1: Perform infinite - size DMRG to get the chain of the length L. In every iteration step, one should save
all necessary operators. At this point, we have System Block of the size L/2 and symmetric Environment
Block.

2: LEFT SWEEP: Enlarge System and ’previous’ Environment blocks by one site, while keeping the length
of the total fixed, i.t System Block will have l = L/2 + 1, while Environment Block will have the length
L/2 − 1. For this, one should enlarge not the last Environment block, but the previous one, so that the
number of sites will be fixed.

3: Do procedures explained in infinite size DMRG algorithm. Save new rotated operators.
4: Repeat: Keep growing System Block until the Environment Block block reaches Initial Environmental

Block. At this stage, left sweeping is finished.
5: RIGHT SWEEP: When the initial Environment Block is reached, the process should be reversed, i.e

Environment Block should be grown when System Block is shrunk. The process should be repeated until
the initial System Block is reached.

6: Repeat left and right sweepings until the given criteria on energy convergence is reached.
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The idea of the algorithm is based on the sweepings: expanding a system block

while environment block is shrunk and reverse.

Figure 2.6: Finite - Size sweeping process

Initially, we do infinite size algorithm, until the desired chain length L is

reached. For this, suppose M iterations were done. The corresponding envi-

ronment and system blocks will have the same size l = L
2
. At this point, one

should have all operators saved in every iteration. Next, left sweeping should be

done, which starts with enlarging System Block by 1 site. Enlarging environment

block of (M−2)th iteration by 1 site leads to the Environment Block with a length

of l′ = L
2
−1 . Thus, a total number of site L is kept. Next step is identical to the

infinite size algorithm procedure from forming a superblock till rotating the basis

set. By procedures described above, we grow our System Block while shrinking

Environment Block. One should repeat this process until the last environment

block to enlarge is the initial one.
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For right sweeping, one repeats the same procedures, but in reverse direction.

To be able to do that, one should save all operators in previous left-sweeping

enlargements. The final point is reached when the last System Block to grow is

the initial System Block.

One can repeat left and right sweepings until the desired accuracy for a given

parameter is reached. Finally, one should sweep back to the center of the chain,

to make the measurement process easy.

2.2.5 Measurement

Except calculating of ground state energy, DMRG also allows calculating ex-

pectation values of defined operators A: 〈Ψ|A|Ψ〉. However, the calculation of

these quantities is not straightforward as calculating EGS. For this, one needs

to transform corresponding operators when blocks are enlarged and when the

transformation matrix is applied.

Suppose one needs to calculate Szi on the i site, where the operator representa-

tion in the block B
[
S̃zi

]B
α,α′

is given. Here, {α, α′} is the basis set of the block B.

Block enlargement and further basis rotation leads to:

[
S̃zi

]B′
β,β′

=
∑

α,α′,zd,z
′
d

Oβ;α,zd

[
S̃zi

]B
α,α′

O†β′;α′,z′d
(2.23)

where {zd, z′d} is the basis set of the single site. Now, when the operator repre-

sented in the new block B′, we can calculate expectation value:

〈Ψ|Szi |Ψ〉 =
∑

β,β′,zd,z
′
d,γ

ψ†β,zd,z′d,γ

[
S̃zi

]B′
β,β′

ψβ′,zd,z′d,γ (2.24)

Similarly, one can calculate two-point correlators of the form: 〈Ψ|Szi Szj |Ψ〉. As

one noticed, this is very inconvenient numerically to calculate long range corre-

lators.
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(a) Infinite - size DMRG result
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(b) Finite-size DMRG result

Figure 2.7: Comparison of bond strength expectation value for two DMRG algo-
rithms

Bond strength and optimized wavefunction

Here we compared infinite size DMRG and finite size DMRG wavefunctions accu-

racy by calculating expectation values of the ’bond-strength’ 〈Ψ|~Si~Si+1|Ψ〉, which

is shown in the Fig.2.7 : From Fig. 2.7 it is clear, that even if the bond strength

value saturates exponentially to the average value of EGS/L from the edges of

the chain, in Infinite-size calculations it has nonphysical peaks in the middle of

the chain. When 2 full sweepings are completed in Finite size algorithm and

wavefunction is optimized, these peaks disappear, as one can see in the Fig.(2.7

(b)).

Summary, in this chapter fundamental idea behind the DMRG method is dis-

cussed. We mainly highlighted the core points of DMRG and explained standard

White’s algorithms implementation details. In the next chapter, we are going to

discuss the main aspects of Matrix Product States and MPS based DMRG.
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Chapter 3

Matrix Product States and

Matrix Product Operators

In the first part of this chapter, we introduce briefly the concept of Matrix Product

States (MPS). For this, the basic diagrammatic notations of tensor networks

will be discussed. Next, the canonical forms of MPS will be introduced. Also,

calculation of overlaps and calculation of expectation values will be shown.

In the second part of the chapter, we introduce Matrix Product Operators (MPO)

and show how to construct MPO for a given local Hamiltonian.

Lastly, we formulate two main MPS based DMRG algorithms which will be used

as a numerical tool for this thesis. Throughout the chapter, we consider only

chains with OBC.

One can find an extended review of MPS, MPO, and DMRG in Schollowck’s

review paper [30].
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3.1 Matrix Product States

A general wavefunction of the system with a number of sites L can be represented

as:

|Ψ〉 =
∑

σ1,σ2...σL

Cσ1;σ2;...;σL |σ1, σ2, . . . , σL〉 (3.1)

where

|σ1, σ2, . . . , σL〉 = |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σL〉 (3.2)

and Cσ1;σ2;...;σL is tensor of the rank L. The set {σi} contain all possible site states,

i.e d elements. As in the case of the example above, we can write a tensor element

as the multiplication of local matrices such that:

|Ψ〉 =
∑

σ1,σ2...σL

∑
a1,a2...aL−1

Mσ1
1,a1

Mσ2
a1,a2

. . .MσL
aL−1,1

|σ1, σ2, . . . , σL〉 (3.3)

For any given site i, d matrices Mai−1,ai of the dimensions dim(M) = ai−1×ai are

defined. Indexes {σi} are called bond indexes or auxiliary indexes. In the first

and the last sites they are just simple vectors of dimensions dim(M(1)) = 1× a1

and dim(M(L)) = aL−1 × 1 respectively . This guarantees of getting a number

when all matrices are multiplied. One can compact these d matrices as the tensor

of rank RM(i) = 3, noting it as Mσi
ai−1,ai

. Similarly, one can get the 〈Ψ| state:

〈Ψ| =
∑

σ1,σ2...σL

∑
a1,a2...aL−1

M∗σ1
1,a1

M∗σ2
a1,a2

. . .M∗σL
aL−1,1

〈σ1, σ2, . . . , σL| (3.4)

It should be noted that from the first edge of the chain the dimension of M(i) will

be getting exponentially large up to the center and then decrease symmetrically

till the end, becoming vector at the edge.

Thus, one can put a restriction on the maximum auxiliary bond index as χ =

max(aj), which allows us to approximate our |Ψ〉. It means we fix maximum the

dimension M(i) matrices, i.e they will have the dimension of χ × χ whenever it

ai−1 > χ. This is similar to the cutting out m states out of Hilbert space of ρS

in standard DMRG algorithm.
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3.1.1 Tensor networks notation

In this stage, it is useful to introduce a tensor network diagrammatic notations.

These notations make operations with tensors very versatile and have demonstra-

tive character.

Figure 3.1: Diagrammatic tensor notations

A tensor of a rank n can be represented as geometric figure (rectangle in our

case) with n legs. As it is clear from the graph, a general vector has 1 leg, when

a matrix has 2 legs. Obviously, a scalar has no legs at all. Next, the following

notations for operation with tensors will be useful:

33



Figure 3.2: Diagrammatic notations of operations with tensors

• Permutation - in this operation the tensor legs will be interchanged. Sym-

bolically, it means Ai;j;k → Aj;i;k.

• Reshaping - if we have n legs, one can unify l out of n legs, so the number

of legs will be decreased. In symbolic notation Ai;j;k → Aij;k. Similarly, one

can reshape 1 leg with dimension q to 2 other legs r and t , so that q = rt.

• Tracing - this operation traces out two legs. For this, of course, the dimen-

sions of the legs should be the same.
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3.1.2 Tensor contraction

The most common operation while working with tensors is a contraction. Con-

traction is a generalized version of matrix multiplication in higher dimensions.

However, matrix multiplication is very commonly used in real life, so that there

are highly optimized packages like LAPACK, which do this operation fast. Thus,

one needs to reshape high-rank tensors to the matrices perform matrix multipli-

cation and reshape back.

The basic contraction operations are shown in the figure below:

Figure 3.3: Diagrammatic notations for tensor contractions: (a) vector - vector

multiplication; (b) vector - matrix multiplication (c) General tensor contraction

3.1.3 Tensor notations for MPS

Since MPS site unites are Mσi
ai−1,ai

tensors with rank 3, we can represent MPS as

the contracting tensors:
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Figure 3.4: Diagrammatic notations of MPS |Ψ〉: (a) single-site tensor (b) MPS

representation for 〈Ψ| and (c) for |Ψ〉

In the figure above MPS representation for 〈Ψ| and (c) for |Ψ〉 are shown.

Auxiliary bond dimensions am × am+1 also shown in every bond.

3.2 Canonical MPS representations

In this part we discuss 3 main MPS representations, namely:

• Left-canonical MPS

• Right-canonical MPS

• Mixed-canonical MPS

It should be mentioned that there is also common Vidal’s Γ− Λ notation which

gives extensive information about symmetries of ground state wavefunction and

entanglement for any bipartition [30]. We will not discuss it here, while realized

in the BilkentDMRG.
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3.2.1 Left-Canonical MPS

For a given wavefunction tensor Cσ1;σ2;σ3...σL of equation (3.1) one can obtain

canonical MPS. Here, we describe the procedure of obtaining Left- Canonical

MPS (L-MPS).

Suppose Cσ1;σ2;σ3...σL is given. In diagrammatic notations it has L legs, as it is

shown in fig. One stars with converting this tensor to the matrix K of dimensions

σ1 ×
∏L

j=2 σj where L is the total number of sites: Kσ1;σ2∗σ3∗σ4...σL

Figure 3.5: Diagrammatic representation of L-MPS generation process

Next, performing SVD of K gives:

Kσ1;σ2∗σ3∗σ4...σL =
∑
a1

Uσ1;a1Sa1;a1V
†
a1;σ2∗σ3∗σ4...σL =

∑
a1

Uσ1;a1C
[2]
a1;σ2∗σ3∗σ4...σL (3.5)

where C [2] is obtained by multiplying S ∗ V † At this point, we reshape Uσ1;a1 to

Aσ11;a1
. Next iteration starts with reshaping C

[2]
a1;σ2∗σ3∗σ4...σL to K

[2]
a1∗σ2;σ3∗σ4...σL and
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following SVD:

Cσ1;σ2;σ3...σL =
∑
a1,a2

Aσ11;a1
∗ Ua1∗σ2;a2Sa2;a2V

†
a2;σ3∗σ4...σL =

∑
a1,a2

Aσ11;a1
Aσ2a1;a2

C [3]
a2;σ3∗σ4...σL

(3.6)

One needs to repeat the process untill A matrices are obtained for all sites. At

the end of the procedure one has:

Cσ1;σ2;σ3...σL =
∑

a1,a2,a3...aL

Aσ11;a1
Aσ2a1;a2

Aσ3a2;a3
. . . AσLaL−1;1 (3.7)

so that one can write wavefunction |Ψ〉 as:

|Ψ〉 =
∑

a1,a2,a3...aL

Aσ11;a1
Aσ2a1;a2

Aσ3a2;a3
. . . AσLaL−1;1 |σ1, σ2, . . . , σL〉 (3.8)

The main property of tensors Aσii−1;i is that they are left-normalized, i.e:∑
σi

(Aσi)†Aσi = I (3.9)

3.2.2 Right-Canonical MPS

The procedure of generation of Right Canonical MPS (R-MPS) out of tensor

Cσ1;σ2;σ3...σL is similar to the generation procedure of L-MPS with a slight differ-

ence. The difference is that one should proceed from the right side of the chain,

and reshape V †s as site matrices. So:

Cσ1;σ2...σL−2;σL−1;σL = Kσ1∗σ2...σL−2∗σL−1;σL =

=
∑
aL−1

Uσ1∗σ2...σL−2∗σL−1;aL−1
SaL−1;aL−1

V †aL−1;σL
=
∑
aL−1

C [2]
σ1∗σ2...σL−2∗σL−1;aL−1

B
σL−1

aL−1;1

=
∑
aL−1

K [2]
σ1∗σ2...σL−2;σL−1∗aL−1

B
σL−1

aL−1;1 =

=
∑

aL−1,aL−2

Uσ1∗σ2...σL−2;aL−2
SaL−2;aL−2

V †aL−2;σL−1aL−1
BσL
aL−1;1 =

=
∑

aL−1,aL−2

C [3]
σ1∗σ2...σL−2;aL−2

BσL−1
aL−2;aL−1

BσL
aL−1;1

(3.10)
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As one can see from equation (2.10) the logic behind of the procedure is the same

as for L-MPS generation. At the end, one gets:

|Ψ〉 =
∑

a1,a2,a3...aL

Bσ1
1;a1

Bσ2
a1;a2

Bσ3
a2;a3

. . . BσL−1
aL−2;aL−1

BσL
aL−1;1 |σ1, σ2, . . . , σL〉 (3.11)

Figure 3.6: Diagrammatic representation of R-MPS generation process

The B tensors satisfy right-normalization condition, i.e∑
σi

Bσi(Bσi)† = I (3.12)

Now, for an arbitrary given quantum state of a chain of L sites we are able to get

L-MPS and R-MPS representations.
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3.2.3 Mixed-Canonical MPS

One can bipartite the chain of the length L to two parts from a given site l < L

and represent left side of the chain by L-MPS when right side with R-MPS. This

is so called Mixed-Canonical MPS (M-MPS). Firstly, L - MPS up to site l can be

obtained, i.e:

Cσ1;σ2;σ3...σL =
∑
al

(Aσ1Aσ2 . . . Aσl)alSal;alV
†
al;σl+1∗σl+2...σL

(3.13)

Now, we can reshape V †al;σl+1∗σl+2...σL
to Kal∗σl+1∗σl+2...σL−1;σL so that it allows us

to do R-MPS generation procedure and get a set of B tensors.

When the process is finished one gets:

Cσ1;σ2;σ3...σL =
∑
al

(Aσ1Aσ2 . . . Aσl)1;alSal;al(B
σl+1Bσl+2 . . . BσL)al;1 (3.14)

As en example, the diagrammatic M-MPS representation of the chain of L = 6

sites is show in the figure below.

Figure 3.7: Diagrammatic M-MPS representation of a chain with L = 6 sites

Physical interpretation

At this point it is important to mention the physical meaning behind the Eq.

3.14. If we define new basis set by:

|al〉A =
∑
σ1...σl

(Aσ1Aσ2 . . . Aσl)1;al |σ1;σ2;σ3 . . . σl〉 (3.15)

|al〉B =
∑

σl+1...σL

(Bσl+1Bσl+2 . . . BσL)al;1 |σl+1;σl+2;σl+3 . . . σL〉 (3.16)
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Then, one can write Schmidt decomposition of bipartite chain as:

|Ψ〉 =
∑
al

sa |al〉A |al〉B (3.17)

Orthonormality of new basis sets is guaranteed by the properties of A and B

tensors.

Assuming entanglement spectrum in the matrix s is sorted in descending order,

one can judge about the entanglement character of the system, as it was discussed

in Chapter 2.

3.2.4 Calculation of overlaps and expectation values

In this section, we discuss the wavefunction overlaps and calculating the general

type of expectation values. As it was mentioned in Chapter 2, unlike standard

DMRG algorithms, the procedure of calculating any type of correlators is a very

easy job and can be numerically realized effectively.

We will calculating overlaps of the form: 〈ψ|φ〉. We assume that for |ψ〉 MPS M

and for 〈φ| MPS N are given. Then, their overlap can be calculated as:

〈ψ|φ〉 =
∑

σ1,σ2,...,σL

Nσ1†Nσ2† . . . NσL†Mσ1Mσ2 . . .MσL (3.18)

Diagrammatically it has the following form:

Figure 3.8: Diagrammatic representation of overlap calculation
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Equation 3.18 can be regrouped as:

〈φ|ψ〉 =
∑
σL

NσL†(. . . (
∑
σ2

Nσ2†(
∑
σ1

Nσ1†Mσ1)Mσ2))MσL (3.19)

Obviously, it satisfies normalization condition 〈ψ|ψ〉 when MPS is left - normal-

ized since, in every step of tensor contraction, one has identity matrices of the

corresponding bond dimensions. As one can see, the calculation of overlaps leads

to the tensor contractions.

Similarly, one can calculate the general type of expectation values with a slight

difference.

Figure 3.9: An example of MPS diagram for expectation value calculation

Suppose, for every site i an operator Oi is given. Then, one can easily calculate:

〈ψ|O1O2 . . . OL|ψ〉 =
∑
σL,σL′

OσL,σL′MσL†(. . . (
∑
σ2,σ2′

Oσ2,σ2′Mσ2†(
∑
σ1,σ1′

Oσ1,σ1Mσ1†Mσ1′)Mσ2′))MσL′

(3.20)

A general recipe for calculation of the correlators and overlap values is the fol-

lowing:

For calculating overlaps: calculate a set of matrices

C [l] =
∑
σl

Mσl†C [l−1[Mσl (3.21)

iteratively, where C [0] = 1 and the last matrix C [L] is the overlap to be calcu-

lated. For calculating of expectation values:

C [l] =
∑
σl,σl′

Oσl,σl′Mσl†C [l−1]Mσl′ (3.22)

where C [L] gives the expectation value for a given set of O’s (See also Fig. 3.11).
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3.3 Matrix Product Operators

In this section, we show how operators can be written in MPS-like language,

namely we introduce the concept of Matrix Product Operators (MPO). General

representation of operator in the |σ1;σ2;σ3 . . . σL〉 basis set is the follwoing:

Ô =
∑

σ1,σ2,...σL

∑
σ1′,σ2′,...σL′

Oσ1σ1′;σ2σ2′;...;σLσL′ |σ1;σ2;σ3 . . . σL〉 〈σ1′, σ2′, . . . σL′|

(3.23)

If any operator is given in a tensor form, it will have 2 ∗ L legs and one needs to

do SVD to get MPO. The diagrammetic form of arbitrary given MPO is shown

in figure.

Figure 3.10: Diagrammatic representation of MPO

For every site, we have four-leg tensor Wi. As one can notice, similarly to the

auxiliary bonds ai of MPS, we have auxiliary bonds of MPO bi. We rewrite (3.23)

as:

Ô =
∑

σ1,σ2,...σL

∑
σ1′,σ2′,...σL′

∑
b1,b2,...bL−1

W σ1σ1′
1;b1

W σ2σ2′
b1;b2

; . . . ;W σLσL′
bL−1;1 |σ1;σ2;σ3 . . . σL〉 〈σ1′, σ2′, . . . σL′|

(3.24)

Expectation values 〈ψ|Ô|ψ〉 can be diagrammatically representented as:

Figure 3.11: Diagrammatic representation of 〈ψ|Ô|ψ〉
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One can use the technique explained in the previous section, to calculate it.

3.3.1 Explicit form of MPO

Mostly, we are interested on construction of Hamiltonian MPOs for a chain of L

sites with a given local operators hi. As an example, we consider the following

nearest-neighbor OBC Hamiltonian:

H =
L−1∑
i=1

hihi+1 (3.25)

where local basis representation of hi is assumed to be known. In tensor form, it

can be written as:

Hσ1σ1′,σ2σ2′...σLσL′ = hσ1σ1′1 ⊗ hσ2σ2′2 ⊗ Iσ3σ3′3 ⊗ · · · ⊗ IσLσL′L +

+ Iσ1σ1′1 ⊗ hσ2σ2′2 ⊗ hσ3σ3′3 ⊗ Iσ4σ4′4 ⊗ · · · ⊗ IσLσL′L +

. . .

+ Iσ1σ1′1 ⊗ Iσ2σ2′2 ⊗ Iσ3σ3′3 ⊗ · · · ⊗ hσL−1σL−1′
L−1 ⊗ hσLσL′L

(3.26)

The equation above, can be written as MPO:

W σ1σ1′
1 =

[
Iσ1σ1′ hσ1σ1′1 0

]

W σiσi′
i =


Iσiσi′ hσiσi′i 0

0 0 hσiσi′i

0 0 Iσiσi′i



W σLσL′
L =


0

IσLσL′

hσLσL′L


(3.27)

One can check this result by the direct matrix multiplication and get the same

result.

Similarly, one can get MPO for 1D Heisenberg Hamiltonian in a magnetic field

with general spin value S which is defined as (XXX Heisenberg chain):

H =
L−1∑
i=1

J ~Si~Si+1 − h
L−1∑
i=1

Szi (3.28)
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.

W σ1σ1′
1 =

[
Iσ1σ1′ J

2
[S+]

σ1σ1′ J
2

[S−]
σ1σ1′ J [Sz]σ1σ1′ −h [Sz]σ1σ1′

]

W σiσi′
i =



Iσiσi′ J
2

[S+]
σiσi′ J

2
[S−]

σiσi′ J [Sz]σiσi′ −h [Sz]σiσi′

0 0 0 0 [S−]
σiσi′

0 0 0 0 [S+]
σiσi′

0 0 0 0 [Sz]σiσi′

0 0 0 0 [I]σiσi′



W σLσL′
L =



−h [Sz]σiσi′

[S−]
σiσi′

[S+]
σiσi′

[Sz]σiσi′

[I]σiσi′



(3.29)

There are several analytical algorithms [31] which can be used to construct

MPO for a given Hamiltonian of a general type, but this topic is the out of the

scope of this thesis.

3.4 Variational MPS DMRG

Now, when MPS and MPO are introduced, we can formulate analog of Finite-size

White’s DMRG procedure in the language of MPS and MPOs. The idea is the

same: by the procedure of sweeping one minimizes ground state energy EGS.

Here, as an example, we will consider XXZ spin S = 1
2

Heisenberg chain with

L sites under the magnetic field and explain the main idea of the algorithm step

by step.

1: Generate R-MPS One starts with creating Right-Normalized random

MPS, which is assumed to be normalized. Since the auxiliary bond dimensions of
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MPS grows fast, one needs to cut it whenever al > χ. When 〈Ψrand|H|Ψrand〉 is

calculated, it brings random number, since R-MPS is random. The idea behind

the algorithms is to update the MPS site by site beginning from the first.

At this point it makes to grasping process easier if ’Right-Block’ and ’Left-Block’

tensors are introduced. By Right-Block R
[j]

aj ;bj ;a′j
we mean the tensor of the rank

3, which holds all information about other part of the chain with l > j. Thus,

in order to get R[j] one needs to contract all tensors which are in the right.

Obviously, R
[L]
1;1;1 = 1. In the figure below, as an example it is shown R

[2]

a2;b2;a′2

of the chain of L = 4 sites. Similarly, the Left-Block L
[j]

aj−1;bj−1;a′j−1
contains all

information about from l = 1 to j − 1. Mathematically, they can be defined as:

R
[j]

aj ,bj ,a′j
=

∑
σ[j+1:L];σ

′
[j+1:L]

∑
a[j+1:L];a

′
[j+1:L]

∑
b[j+1:L]

(
B
∗σj+1′
a′j ;a

′
j+1
W

σj+1σ
′
j+1

bj ;bj+1
Bσj+1
aj ;aj+1

)
× . . .

· · · ×B∗σL′a′L−1;1W
σLσ

′
L

bL−1;1B
σL
aL−1;1

(3.30)

. and for the Left - Block:

L
[j]

aj−1,bj−1,a′j−1
=

∑
σ[1:j=1];σ

′
[1:j−1]

∑
a[1:j−2];a

′
[1:j−2]

∑
b[1:j−2]

(
A∗σ1′1;a′1

W
σ1σ′1
1;b1

Aσ1′1;a′1

)
× . . .

· · · × A∗σj−1′
a′j−2;a′j−1

W
σj−1σ

′
j−1

bj−2;bj−1
Aσj−1
aj−2;aj−1

(3.31)

.

Figure 3.12: Righ-Block R2 tensor for L = 4
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As one can see from the figure, if all necessary bonds are contracted only three

legs will be remained: [a2; b2; a′2]

Step 2: Generate Right-Blocks To find the most optimized MPS for the

first site one needs to calculate R[j]’s for all j’s. For our example with L = 4 one

has to calculate R[1,2,3,4] tensors, where the last one is identity tensor of rank 3.

Step 3: Generate MPO for a given Hamiltonian Prepare MPO for a

given Hamiltonian. In our XXZ Hamiltonian MPO is given by equation (3.29) ,

so that for L sites you have L 4-leg tensors of the form W
σj ;σ

′
j

bj−1,bj
.

Step 4: Obtain Hamiltonian matrix At this point, we start to describe

Right-sweeping on which we are going to optimize every site from l = 1 to l = 4.

We start with optimizing the first site MPS. For this, one needs Rl=1 and Ll=1 = 1.

Contract R
[1]

a1;b1;a′1
with W

σ1,σ′1
b0;b1

. Then resulting 4-leg tensor Gσ1;σ′1;a1;a′1
can be con-

tracted with L
[1]

a0;b0;a′0
, which should be reshaped to Hamiltonian H

[1]

σ1∗a0∗a1;σ′1∗a′0∗a′1
. So for any given site j one can form Hamiltonian of the form:

H
[j]

(σj∗aj−1∗aj);(σ′j∗a′j−1∗a′j)
=
∑
bj ;bj−1

L
[j]

aj ;bj−1;a′j−1
W

σj ,σ
′
j

bj−1;bj
R

[j]

aj ;bj ;a′j
(3.32)
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Figure 3.13: Tensor contractions to obtain Hamiltonian

Step 5: SVD of the GS wavefunction When Hamiltonian H [1] is ob-

tained, one can get ground state by diagonalization of the matrix:

H [1] |ψ〉 = EGS |ψ〉 (3.33)

Next step is one should do SVD of obtained |ψ〉 and reshape Uaj−1∗σ;aj to a new

site tensor A
σj
aj−1,aj . This step is needed to keep all left side tensors left nor-

malized, so that after full right sweeping we have left normalized MPS. For our

specific example, finally we have Aσ1a0,a1 and the ground state energy E
[1]
GS. One

can use s ∗ V † as a guess when updating the next site

Step 6: Left-Block generation for j = 2 Now, when we have new A[1]

tensor for site j = 1, we can generate Left-Block tensor L[2]. Then, one can repeat

step 4 to contract L[2]−W [2]−R[2] and to get new Hamiltonian and consequently

get new left-normalized tensor for site j = 2 A[2] with E
[2]
GS . One needs to repeat

the site update process until the end of the chain. At this point, right-sweeping

process is finished. During the process, ground state energy should decrease by

the value in every new site update, i.e E
[1]
GS > E

[2]
GS > · · · > E

[L]
GS.
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Step 6: Left sweeping When full right sweeping is done, we have L-MPS

with corresponding left blocks L[1...L]. The process of left - sweeping is identical

to the right sweeping one: one needs to generate new B[l] tensors for every site

iteratively beginning from the end of the chain.

Algorithm 4 Variational MPS algorithm

1: Create random MPS. Right-Normalize it.
2: Right Sweeping: Create right blocks Rj

3: Generate MPO for a given analytic Hamiltonian.
4: Form Hamiltonian Matrix out of Left-Block and Right-Blocks, and MPO and diagonalize it.
5: Do SVD on obtained |ψ〉 and save U as the site MPS A. Multiply sV † and save it for next iteration

wavefunction guess.
6: Get Left-Block including new obtained site.
7: Repeat the procedure until the last site is updated.
8: Perform Left-sweeping.
9: Perform Right-Left sweepings until the energy converged with a given accuracy
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Figure 3.14: Variational MPS algorithm
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Figure 3.15: Ground state energy per site calculated using VMPS algorithm

3.4.1 Variational MPS for XXX Heisenberg chain

In this section, we check our implemented Variational MPS algorithm which is

a part of BilkentDMRG program in the example of XXX Heisenberg chain with

the following parameters:

• Model parameters: Jx = Jy = Jz = 1;

• DMRG parameters: N = 100;χ = 10;Nsw = 3;;

Ground state calculations

In the Figure 3.15 (a) one can see calculated E
[j]
GS per site in every site update

in every full sweepings. It has the value of EGS = 0 in the beginning of the

process, and converges to the value of EGS ≈ −0.435J when first left sweeping

is performed. Next sweepings results on change of the value to EGS = 0.4385J

as it can be seen in Figure 3.15 (b). In the figure also the exact analytic Bethe

Ansatz value in EGS = 1/4 − ln(2) ≈ −0.4431J thermodynamic limit is shown.

Even if for a large number of sites EGS are stable and well converged, the VMPS
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algorithm fails when there are local minima around. These minima make VMPS

gets stuck on them and as a result wrong |ψ〉 will be accepted as ground state

wavefunction. The problem cannot be even solved when the number of sweepings

increased. This is because our initial guess was a set of random matrices. As

an example, the figure below shows the VMPS algorithm implemented for L = 6

site XXX Heisenberg chain. Even after 3 sweeps, energy is not well converged

and has spike values in some site updates. This means to get correct value one

needs good initial guess of the initial wavefunction. This can be obtained by

infinite-size MPS DMRG algorithm.
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Figure 3.16: Ground state energy per site calculated using VMPS algorithm

3.5 Infinite-size MPS DMRG

In this part we are going to describe Infinite-size DMRG (iDMRG) [30] in terms

of MPS. This algorithm provides a very good initial guess of the wavefunction so

that VMPS can be implemented to make it precise ground state wavefunction.
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Here we consider only two-site iDMRG, while it can be extended easily by fol-

lowing the logical path behind the method.

The algorithm is very similar to standard White’s IDMRG and has the same idea

behind it. Here we briefly explain the basic idea behind the algorithm.

Step 1 Get MPO for a given analytically defined Hamiltonian; This step is

similar to one in VMPS algorithm.

Step 2 Make two identity left-block and right block tensors of the rank 3.

That is L
[1]

a0;b0;a′0
and R

[L]

aL;bL;a′L
where all indexes are a0 = b0 = a′0 = aL = bL =

a′L = 1.

Step 3 Contract the left-block tensor to the first site MPO W
σ1σ′1
b0,b1

and the

last site MPO W
σLσ

′
L

bL−1,bL
with the right-block and then contract them together.

Reshape the resulting tensor to get a Hamiltonian matrix.

Step 4 Diagonalize the Hamiltonian matrix. Perform SVD to the reshaped

ground state |ψ〉. Save U as the first site tensor Aσ1a0;a1
and V † as the last site

tensor BσL
aL−1;aL

.
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Figure 3.17: General iDMRG procedure: L-W-W-R contractions

Step 5 Enlarge the left - block contracting it with Aσ1a0;a1
tensor and the

right- block with BσL
aL−1;aL

. Resulting tensors are R
[L−1]

aL−1;bL−1;a′L−1
and L

[2]

a1;b1;a′1
.

Step 6 Repeat the process: contract two new W 2
b1;b2

and WL−1
bL−2;bL−1

and then

contract them with R
[L−1]

aL−1;bL−1;a′L−1
and L

[2]

a1;b1;a′1
. Form new Hamiltonian and get

the ground state tensor. Reshape it and do SVD. At this point it is important to

mention that the auxiliary bond dimensions of A
σj
aj−1;aj and B

σL−j
aL−j+1;aL−j increases

in every step. When it becomes larger then given χ, one needs to keep only

χ vectors of U matrix and χ vectors of V † matrix, so that the resulting aj =

aL−j+1 = χ.

As a result, one has M-MPS bipartited in the middle of the chain. Now, one can

Right-Normalize M-MPS and perform VMPS.

Ground state energy EGS calculation

For the famous XXX Heisenberg chain with a given set of parameters:
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Figure 3.18: VMPS sweeping process

• Model parameters: Jx = Jy = Jz = 1;

• DMRG parameters: N = [6 : 100];χ = 10;Nsw = 3;;

we performed iDMRG and following VMPS calculation of EGS per site. As one

has noticed, the converging process of iDMRG is similar to one in standard algo-

rithm. Following 3 sweeps of VMPS calculation makes calculated energy per site

to converge to the value EGS = −0.4411635J .
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Figure 3.19: General iDMRG procedure: L-W-W-R contractions

Fig.3.19 shows EGS values during 3 sweeping VMPS calculation of a chain

with L = 6 sites.The guess wavefunction now is R-MPS which is obtained after

the iDMRG procedure. As one can see, there are not any spikes, and the energy

per site is well converged to the value EGS = −0.415596J , which has an absolute

error of the order 10−7 with respect to the exact diagonalization value. These

good results suggest to perform iDMRG firstly and then do VMPS calculations

to get well-converged ground state wavefunction.

Bond strength and Correlation functions

In this section, we show calculated physical properties of XXX chain of the length

L = 100. The maximum auxiliary bond has a value of χ = 10 and Nsw = 3. The

bond strength is defined as 〈Ψ|~Si~Si+1|Ψ〉, as in the previous section. As one can

see from Fig. 3.20 (a) bond strength averages to a value of EGS per spin. Also

one can notice that at the edges of the chain, oscillation amplitude is high due to

finite size effects. This result matches with a result of White obtained in original

paper [28].
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Figure 3.20: VMPS calculation followed after iDMRG procedure

Next, we calculated correlation function Czz(r) for XXZ model with ∆ = 1
2

for longer chain with N = 200. It is an oscillating function in a distance and

|Czz(r)| shows power - law decaying behavior . Numerical values for three nearest

neighbors Czz(1) = −0.12 ,Czz(2) = 0.0273 and Czz(3) = −0.0224 are in a good

agreement with an exact theoretical values Czz(1) = −0.125, Czz(2) = 7
256
≈

0.0273 and Czz(3) = 401
16384

≈ −0.0245 [32]. These values can be calculated more

accurate by an increase of auxiliary bonds of MPS χ.

Phases of XXZ chain

To check numerical stability and availability of phase transition detection, we use

our package to identify 2 main phases of XXX chain under the magnetic field,

namely the XY phase and Ferromagnetic phase [33]. Also, we will check the

ground state phase of the XXZ chain with ∆ = 2 >> Jx,y, which is known to be

in the Neel phase.

We use standard correlation functions to identify Neel order (AF), Ferromagnetic
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order which are defined as:

OF = lim
r→∞

Gzz
F (r) = lim

r→∞
〈Ψ|Szi Szi+r|Ψ〉 (3.34)

and for Neel order:

ON = lim
r→∞

Gzz
N (r) = lim

r→∞
(−1)|i−r| 〈Ψ|Szi Szi+r|Ψ〉 (3.35)

We used following parameters:

• Model parameters: Jz = 2; Jx = Jy = 1; L = 160;

• DMRG parameters: χ = 20; Nsw = 3;
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Figure 3.21: Two point correlators behavior in different XXZ chain phases

As one notices, XXX chain in the limit if big h >> Jx,y = 1 has ferromagnetic

phase, while in the absence of a magnetic field, the ground state in disordered XY

phase. Also, one can get Neel phase in the limit of big z-component anisotropy

∆ >> Jx,y.

At this point, we conclude that in the numerical package BilkentDMRG is giving

consistent results and can be used for research further.
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Chapter 4

Bond-Alternating Heisenberg

Chain

In this chapter, we consider our main model BAHC to study quantum trivial

zero-temperature quantum phase transition under the magnetic field. Firstly,

for this purpose, we use the Jordan-Wigner fermionization of the chain, which

maps the model to a fermionic 1D chain. We calculate ground state energy per

spin and also zero temperature magnetization and susceptibility for a correspond-

ing fermionic model. To get a more intuitive picture of ground state phase, we

calculate spin-spin correlation functions for every spin components both analyti-

cally and numerically. For numerical treatment, we use MPS-DMRG algorithms

presented in the previous chapter.

4.1 Fermionization approach for quantum spin

chains

While quantum many-body physics for fermions and bosons are well developed,

for quantum spin chains it is not. The reason behind it is the more involved

algebra, a rather standard Heisenberg-Weyl algebra which makes physics more
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complicated. Thus, it is better to transform spin algebra to one of the previously

mentioned algebra: for bosons or fermions.

From the perspective of mapping to bosons, the non-linear transformation of

Holstein-Primakoff [34] can be used to map any spin S to a bosonic system by :

S+
i =

√
2S − a†iaiai;

S−i = a†i

√
2S − a†iai

Szi = a†iai −
1

2

(4.1)

However, it suffers from two major problems: Kinematic problem and non-

linearity. The kinematic problem is related to the fact that the dimension of

bosonic Hilbert space is infinity, while spin has a finite dimension of Hilbert

space, meaning one needs to restrict the maximum number of bosons per site.

While the second can be solved by expanding the non-linear term for large S, the

first one hard to solve.

In any case, mapping to the bosonic system is not convenient for our purpose,

since we have spin S = 1/2 system. Thus, in this work, instead of mapping

to bosonic algebra, we use the Jordan-Wigner fermionization, which has more

elegant form rather than bosonic projectors.

4.1.1 Jordan-Wigner transformation

The Jordan-Wigner transformation maps spin S = 1
2

to fermions, by non-local

transformation. To clarify the idea behind of Jordan-Wigner transformation

(JWT), we start with commutation relations of spins and fermions.

Fermions obey to canonical anticommutation relation for the same site:{
c†i , ci

}
= I (4.2)

so for different sites [i; j] {
c†i , cj

}
= 0 (4.3)

It is well known that spins on the different sites [i; j] commute, while on the same

site anticommute: [
S+
i , S

−
j

]
= 2Szi δi,j; (4.4)
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One can get anticommutation relations of spins:{
S+
i , S

−
j

}
=
[
S+
i , S

−
j

]
+ 2S−j S

+
i = 2Szi δi,j + 2S−j S

+
i (4.5)

From equation above, one can derive that for the the same sites{
S+
i , S

−
i

}
= I (4.6)

while for different sites i and j,{
S+
i , S

−
j

}
= 2S−j S

+
i (4.7)

By comparing anticommutation relations, one can see that anticommutation re-

lation is similar to the fermionic one on the same sites, while for different sites it

is different.

The question to which JWT answers is that whether spins anticommutation rela-

tions can be satisfied by using fermionic operators. Mathematically, can we find

such operators consisting of fermionic operators such that they satisfy anticom-

mutation relations of spins?

To do this, Jordan and Wigner [35] in 1932 proposed the following relations :

S+
i = c†ie

iπ
∑
k<i c

†
kck (4.8)

S−i = e−iπ
∑
k<i c

†
kckci (4.9)

Szi = c†ici − 1/2 (4.10)

The intuitive physical picture can be grasped from last equation: if there is no

fermion at site i (ni = 0) , in equivalent spin chain at that site spin has mz
i = −1

2
.

Obviously, S+
i S
−
i = c†ici and S−i S

+
i = cic

†
i . Thus,

[
S+
i , S

−
i

]
= (c†ici − cic

†
i ) =

(c†ici − (1− c†ici)) = 2c†ici − 1 = 2Szi ;

Also, anticommutation relation (4.6) on the same site is satisfied. Similarly, for

j > i one has:

S+
i S
−
j = c†ie

−iπ
∑k=j−1
k=i c†kckci = c†ie

−iπc†i cicie
−iπ

∑k=j−1
k=i+1 c

†
kck (4.11)

Next, it is useful to simplify: e−iπc
†
i ci = e−iπn̂i :

e−iπn̂i =

p=∞∑
p=0

(−iπn̂i)p

p!
= I + n̂i

p=∞∑
p=1

(−iπ)p

p!
= I + n̂i(e

−iπ − 1) = I− 2n̂i (4.12)
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Similarly, eiπn̂i = I − 2n̂i. Using these relations, equation (4.11) can be written

in the form:

S+
i S
−
j = c†ie

−iπc†i cicje
−iφ = c†i (I− 2n̂i)cje

−iφ = c†i (I− 2c†ici)cje
−iφ = c†icje

−iφ

(4.13)

where

φ = π

k=j−1∑
k=i+1

c†kck (4.14)

For S−j S
+
i we have

S−j S
+
i = e−iπ

∑
k<j c

†
kckcjc

†
ie
iπ

∑
k<i c

†
kck = cje

−iπ
∑k=j−1
k=i c†kckc†i = cj(I− 2c†ici)c

†
ie
−iφ =

= (cjc
†
i − 2cjc

†
icic

†
i )e
−iφ = −cjc†ie−iφ = c†icje

−iφ

(4.15)

It is clear that commutation relationship (4.4) for different [i; j] sites is satisfied.

4.1.2 Jordan-Wigner Transformation for XXZ model

One of the first application of JWT was for spin-1/2 XXZ model under the

magnetic field B. One more time, XXZ Hamiltonian has the following form:

H =
N∑
i=1

JzSzi S
z
i+1 +

J

2
(S+

i S
−
i+1 + S−i S

+
i+1)−B

N∑
i=1

Szi (4.16)

The first and the last terms, transforms easily with equation (4.10) to:

N∑
i=1

JzSzi S
z
i+1 =

N∑
i=1

Jz(c†ici − 1/2)(c†i+1ci+1 − 1/2) (4.17)

−B
N∑
i=1

Szi = −B
N∑
i=1

(c†ici − 1/2) (4.18)

Since Hamiltonian has only nearest neighbors, the related phase (4.14) is φ = 0, so

that S+
i S
−
i+1 = c†ici+1. The second kinetic term S−i S

+
i+1 = c†i+1ci can be obtained

using equation (4.12). Thus, kinetic term of Hamiltonian can be written in the

following form:

N∑
i=1

J

2
(S+

i S
−
i+1 + S−i S

+
i+1) =

N∑
i=1

J

2
(c†ici+1 + c†i+1ci) (4.19)
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So, summary Hamiltonian (4.16) can be written in the following form:

H =
N∑
i=1

Jz(n̂i − 1/2)(n̂i+1 − 1/2) +
J

2
(c†ici+1 + c†i+1ci)−B

N∑
i=1

(n̂i − 1/2) (4.20)

It should be noted, in the case of periodic boundary conditions (PBC) one needs

to include boundary term to Hamiltonian. However, it has the order of O(1/N)

to physical quantities, so that when the number of sites is sufficiently large, one

can neglect that terms.

This model equivalent to 1D interacting Hubbard model. Magnetic field B in

this case plays as a role of chemical potential, so that one can manipulate Fermi

level by changing B.

Hamiltonian (4.20) is exactly solvable, in the limit of Jz = 0. This is free fermionic

1D model, which has the dispersion ε(k) = J cos(k) − B. So, one can calculate

physical properties of quantum chain by studying fermionic chain.

4.1.3 Jordan-Wigner Transformation of BAHC

In this section we perform JWT of our BAHC model.

Figure 4.1: Bond-alternating Heisenberg chain

As one can see from the sketch above, the model has alternating values of spin

couplings J and J ′. The Hamiltonian of the model can written in the following

form:

H = J
N∑
i=1

~S2i−1 · ~S2i + J ′
N∑
i=1

~S2i · ~S2i+1 (4.21)

One can notice that it is similar to AFHC but with translation symmetry broken

up to 2 spins. Thus, to see more clearly fermionization process we can rewrite
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our Hamiltonian in the following form:

H =
N∑
i=1

J ~Sai · ~Sbi + J ′~Sbi · ~Sai+1 (4.22)

where by i we mean i-th unit cell. This notation makes fermionization procedure

more clearer. We can write it as H = H1 +H2 where

H1 =
N∑
i=1

J(S
z(a)
i S

z(b)
i +

1

2
(S

+(a)
i S

−(b)
i + S

−(a)
i S

+(b)
i )) (4.23)

and

H2 =
N∑
i=1

J ′(S
z(b)
i S

z(a)
i+1 +

1

2
(S

+(b)
i S

−(a)
i+1 + S

−(b)
i S

+(a)
i+1 )) (4.24)

Firstly, to find JWT form for BAHC model, we rewrite anticommutation relations

for our new notation :{
S

+(α)
i , S

−(β)
j

}
= 2S

z(α)
i δα,βδi,j + 2S

−(β)
j S

+(α)
i (4.25)

So, [
S

+(a)
i , S

−(b)
i

]
= 0 (4.26){

S
+(a)
i , S

−(a)
i

}
= I (4.27)[

S
+(a)
i , S

−(a,b)
j

]
= 0, i 6= j (4.28)

All these (anti)commutation relations are derived from standard (anti)commutation

relations. One can show that following JWT fulfills all (anti)commutation rela-

tions above:

S
+(a)
i = a†ie

iπ
∑
k<i(a

†
kak+b†kbk) (4.29)

S
+(b)
i = b†ie

iπ
∑
k<i(a

†
kak+b†kbk+a†iai) (4.30)

S
z(a)
i = a†iai − 1/2 (4.31)

Now, (anti)commutation relations above can be checked.

S
+(a)
i S

−(a)
i = a†ie

iπ
∑
k<i(a

†
kak+b†kbk)e−iπ

∑
k<i(a

†
kak+b†kbk)ai = a†iai (4.32)

S
−(a)
i S

+(a)
i = e−iπ

∑
k<i(a

†
kak+b†kbk)aia

†
ie
iπ

∑
k<i(a

†
kak+b†kbk) = aia

†
i = 1− a†iai (4.33)
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Thus, (4.27) is fulfilled. For 4.26:

S
−(a)
i S

+(b)
i = e−iπ

∑
k<i(a

†
kak+b†kbk)aib

†
ie
iπ

∑
k<i(a

†
kak+b†kbk+a†iai) =

= aib
†
ie
iπa†iai = aib

†
i (1− 2a†iai) = −b†iai(1− 2a†iai) = b†iai

(4.34)

S
+(b)
i S

−(a)
i = b†ie

iπ
∑
k<i(a

†
kak+b†kbk+a†iai)e−iπ

∑
k<i(a

†
kak+b†kbk)ai =

= b†ie
iπa†iaiai = b†i (1− 2a†iai)ai = b†iai

(4.35)

Now, we will show commutation relationship (4.28):

S
+(a)
i S

−(γ)
j = a†ie

iπ
∑
k<i(a

†
kak+b†kbk)e−iπ

∑
k<j(a

†
kak+b†kbk)+δγ,ba

†
jajγj =

= a†ie
−iπ(nai +nbi+δγ,ba

†
jaj)γje

−iπ
∑k=j−1
k=i+1 (a†kak+b†kbk) =

= a†i (1− a
†
iai)e

−iπ(nbi+δγ,ba
†
jaj)γje

−iπφ = a†ie
−iπ(nbi+δγ,ba

†
jaj)γje

−iφ =

= a†iγje
−iπ(φ+nbi+δγ,ba

†
jaj)

(4.36)

S
−(γ)
j S

+(a)
i = e−iπ

∑
k<j(a

†
kak+b†kbk)+δγ,ba

†
jajγja

†
ie
iπ

∑
k<i(a

†
kak+b†kbk) =

= (1− 2a†iai)γja
†
ie
−iπ(φ+nbi+δγ,ba

†
jaj) = −(1− 2a†iai)a

†
iγje

−iπ(φ+nbi+δγ,ba
†
jaj) =

= a†iγje
−iπ(φ+nbi+δγ,ba

†
jaj)

(4.37)

where φ =
∑k=j−1

k=i+1 (a†kak + b†kbk) Thus, commutation relation (4.28) is satisfied for

any i 6= j.

In the derivations above, we used the following (anti)commutation rules:{
a†i , bj

}
=
{
b†i , aj

}
=
{
b†i , a

†
j

}
= 0;∀i, j (4.38)

At this point it is clear that JWT above gives correct (anti)commutation rules.

Thus, we apply JWT to our Hamiltonian. For interaction parts of H we have:

• JSz(a)
i S

z(b)
i = J(a†iai − 1/2)(b†ibi − 1/2)

• J ′Sz(b)i S
z(a)
i+1 = J ′(b†ibi − 1/2)(a†i+1ai+1 − 1/2)

Next, we see transformation of kinetic parts of H1:

Hk
1 =

J

2
(S

+(a)
i S

−(b)
i + S

−(a)
i S

+(b)
i ) (4.39)
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• S+(a)
i S

−(b)
i = a†ie

iπ
∑
k<i(a

†
kak+b†kbk)e−iπ

∑
k<i(a

†
kak+b†kbk)e−iπn̂i

(a)bi = a†ibi

• S−(a)
i S

+(b)
i = e−iπ

∑
k<i(a

†
kak+b†kbk)aib

†
ie
iπ

∑
k<i(a

†
kak+b†kbk+a†iai) = −aib†i = b†iai

Now, we consider kinetic part of Hk
2 :

Hk
2 =

J ′

2
(S

+(b)
i S

−(a)
i+1 + S

−(b)
i S

+(a)
i+1 ) (4.40)

• S+(b)
i S

−(a)
i+1 = b†ie

iπ
∑
k<i(a

†
kak+b†kbk+a†iai)e−iπ

∑
k<i+1(a†kak+b†kbk)ai+1 =

= b†i (1− 2b†ibi)ai+1 = b†iai+1

• S−(b)
i S

+(a)
i+1 = e−iπ

∑
k<i(a

†
kak+b†kbk+a†iai)bia

†
i+1e

iπ
∑
k<i+1(a†kak+b†kbk) = bie

−iπb†i bia†i+1 =

= bi(1− 2b†ibi)a
†
i+1 = −bia†i+1 = a†i+1bi

At this point, we parametrise interaction of z-components with ∆ and ∆′.

Thus, finally we have H = H1 +H2 with:

H1 =
N∑
i=1

J∆(a†iai − 1/2)(b†ibi − 1/2) +
J

2
(a†ibi + b†iai) (4.41)

H2 =
N∑
i=1

J ′∆′(b†ibi − 1/2)(a†i+1ai+1 − 1/2) +
J ′

2
(b†iai+1 + a†i+1bi) (4.42)

If we put ∆′ = ∆ = 0, we get XX limit of BAHC and add magnetic field B in

z -direction, Hamiltonian will have following form :

Hxx =
N∑
i=1

J

2
(a†ibi+b

†
iai)+

J ′

2
(b†iai+1+a†i+1bi)−B((a†iai−1/2)+(b†ibi−1/2)) (4.43)

As one can notice, this is non-interacting Su-Schrieffer-Heeger (SSH) model [36].

Our model is more general since the values of J and J ′ can be positive or nega-

tive, when in SSH usually both of them are counted positive or negative. Also,

we neglect boundary terms appearing due to PBC, assuming that the chain is
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long enough for terms to be neglected.

In next section, we will zero temperature properties of the model under the mag-

netic field.

4.2 Zero-temperature properties of XX BAHC

model

By using JWT, the study of zero-temperature properties of BAHC model in

XX limit is transformed to study of ground state properties of generalized non-

interacting SSH model.

We assign new parameters and perform Fourier transform of the model:

• t = J
2

; t′ = J ′

2

a†i =
1√
N

∑
k∈BZ

e−ikRia†k (4.44)

ai =
1√
N

∑
k∈BZ

eikRiak (4.45)

The first term of Hamiltonian transforms as:

H1
xx =

N∑
i=1

t(a†ibi + b†iai) =
1

N

N∑
i=1

∑
k,q∈BZ

t(e−ikRaieiqRbia†kbq + e−iqRbieikRaib†qak) =

=
∑
q∈BZ

t(eiq(Rbi−Rai)a†qbq + e−iq(Rbi−Rai)b†qaq) =
∑
q∈BZ

t(ei
q
2a†qbq + e−i

q
2 b†qaq)

(4.46)

For the second term we have:

H2
xx =

N∑
i=1

t′(b†iai+1 + a†i+1bi) =
∑
q∈BZ

t′(ei
q
2 b†qaq + e−i

q
2a†qbq) (4.47)

Thus, the final form of k-space Hamiltonian can be written as:

Hxx =
∑
q∈BZ

(t′ei
q
2 + te−i

q
2 )b†qaq + (e−i

q
2 t′+ ei

q
2 t)a†qbq−B(b†qbq + a†qaq)−BN (4.48)
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In the matrix form HK = Hxx +BN can be written as:

HK =
[
a†qb
†
q

] [ −B (e−i
q
2 t′ + ei

q
2 t)

(t′ei
q
2 + te−i

q
2 ) −B

][
aq

bq

]
(4.49)

Thus, one needs to diagonalize kernel of Hk matrix. It is convenient to kernel

h(k) as:

h(k) = Gµσµ (4.50)

where G0 = −B, Gx = (t+ t′) cos
(
q
2

)
and Gy = (t− t′) sin

(
q
2

)
. Eigenvectors can

be found as:

|ψ〉+,− =
1√

2|G|(|G| ∓G3)

(
G1 − iG2

±|G| −G3

)
(4.51)

when eigenvalues are defined as:

E+,− = G0 ± |G| (4.52)

Using |G| =
√
t′2 + 2tt′ cos(q) + t2 brings:

E[+,−](q) = −B ±
√
t′2 + 2tt′ cos(q) + t2 (4.53)

Thus, Hamiltonian can be written in the following form:

Hxx =
∑
q∈BZ

(E−(q)α†qαq + E+(q)β†qβq)−BN (4.54)

Finally, due to particle hole symmetry, one can show that equation (4.54) can be

written as:

Hxx =
∑
q∈BZ

(E−(q)(α†qαq −
1

2
) + E+(q)(β†qβq −

1

2
)) (4.55)

Eigenvectors have the following form:

v1,2 =
1√
2

(
± E+(q)

ei
q
2 t′+e−i

q
2 t

1

)
(4.56)

4.2.1 Spectrum and ground state energy

We note that, in contrast to the standard SSH model, fermionic hopping param-

eters t and t′ in our model are extended and can have negative values also. The
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spectrum of the Hamiltonian at B = 0 is shown in the figure below, when intercell

hopping is kept, t′ = 1. We changed intracell hopping in a range t ∈ [−2, 2] . It

should be noted, that negative hopping in the fermionic model, corresponds to

ferromagnetic coupling in our XX spin chain, while a positive one corresponds to

antiferromagnetic interaction of spins.
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Figure 4.2: Energy spectrum of the model for t′ = 1

As one can notice, when t < 0 and |t| > t′ there is a gap in the spectrum.

For t = −2, the minimum gap of eg = 2 is reached in k = 0, while it reaches

maximum value of eg = 6 in k = ±π. The gap closures, when at t = −1, i.e

|t| = t′. The gap closure occurs at k = 0 point. This signals about topological

quantum phase transition, as it was mentioned in Chapter 1. Next increasing of

t opens a gap, making the band flatter. At t = 0 complete dimerized limit is

obtained. A further increment of t deforms the bands and makes two new Dirac

cones touching at t = ±π. This is another QPT point. And finally, when the t is

further increased, the gap opens again.
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Figure 4.3: Gap closure in QPT points

Fig. (4.3) shows in which points gap closures occur based on the formation of

Dirac cones. One can clearly see that at the points t = −1 and at t = 1 the gap

closures occur. We will discuss these signals about the QPT in the next section.

Ground state energy

The energy per site can be calculated from a dispersion.

εG =
EG
N

=
1

4π

∫ π

−π
E−(q)dq (4.57)

where addition 1
2

comes due to 2 sites per effective unit cell.

εG =
EG
N

= − 1

4π

∫ π

−π

√
t′2 + 2tt′ cos(q) + t2dq =

− 1

2π

∫ π

0

√
(t+ t′)2 − 4tt′ sin2(

q

2
)dq = −|t+ t′|

2π

∫ π

0

√
1− 4tt′

(t+ t′)2
sin2(

q

2
)dq =

= −|t+ t′|
π

∫ π
2

0

√
1− 4tt′

(t+ t′)2
sin2(

q

2
)d(

q

2
) = −|t+ t′|

π
E(

4tt′

(t+ t′)2
)

(4.58)
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where E(x) is the complete elliptic integral of the second kind. One can notice

that in dimerized limit t′ = 0 and

εG−dimer = − 1

π
|t|E(0) = −|t|

2
(4.59)

which is the energy of a singlet. For an insulating phase t = 1 and t′ = 2 we have

:

εG = − 1

π
|t|E(0) = − 3

π
E(

8

9
) ≈ −1.06354 (4.60)

In the figure below we show calculated ground state energy per site using i-DMRG

method. The model parameters were: J = 2 ; J ′ = 4 ;χ = 10

Blue dashed line represents anayltical result (4.58). As one can see, the results

are matching precisely.
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Figure 4.4: Energy per site calculated via i-DMRG for N = 100.

4.2.2 Zero - temperature quantum phase transition under

the magnetic field

Here we will study quantum phase transition of BAHC under magnetic field B.

In the model, mainly there are 3 main situations:
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• F -AF limit: t < 0 while t′ > 0.

• AF-AF limit: t > 0 and t′ > 0.

• Critical point: in a flat band regime and in Dirac cone, i.e t < 0 and |t| = t′

.

As we will see from algebra below, the two first cases have the same physics under

the magnetic field. We will consider only them.

F - AF and AF-AF limits

In F - AF limit we have t < 0 while t′ > 0, so that inside the unit cell spins

are coupling ferromagnetically, while intercell couplings are antiferromagnetic.

In this limit, we have the following dispersion relation:

E[+,−](q) = −B ±
√
t′2 − 2|t||t|′ cos(q) + t2 (4.61)
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Figure 4.5: Spectrum in F-AF limit under the magnetic field B=[0,3] for t = −4

and t′ = 2
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When there is no magnetic field, the spectrum is gapped, and the fermionic

chain is an insulator. One can show that the value of the maximum gap is

Egap = 2|(|t′| − |t|)| which occurs at q = 0 for F-AF and q = ±π for AF-AF

limits. When a magnetic field is applied, the reference energy (Fermi energy)

EF starts shifting, so that after critical value Bc1 it touches one of the bands,

depending on the direction of B. Due to the presence of particle-hole symmetry,

the magnetization curve should be a symmetric function of B. The value of Bc1

obviously depends on the value of the gap. For F-AF and AF-AF limits with the

same magnitudes of parameters, one has the same Egap, thus Bc1 is the same for

both systems. At this critical point, a magnetization of the chain starts. The

fermionic chain becomes metallic - 1D Luttinger liquid . Further increasing of B

leads to the second critical point Bc2, in which all spins become fully polarized,

i.e mc = 1
2
. The dynamics of magnetization is determined by excitation around

Fermi level in the metallic phase. To study it, we define a Fermi vector qF which

determines the properties of the metallic fermionic system. The magnitude of qF

for F-AF limit can be found as:

qF = arccos

(
t2 − t′2 −B2

2|t||t|′
)

(4.62)

The part of the band which is below the Fermi level is occupied, i.e :

nq ∈
[
−qF , qF

]
= 1 (4.63)

We can find the density :

n = 1 +
qF
π

(4.64)

Since JWT defines Sz = n̂ − 1
2
, similarly magnetization can be defined in the

same way:

m =
n− 1

2
=
qF
2π

(4.65)

Thus, magnetic susceptibility is χS = ∂m
∂B

:

χS =
∂m

∂qF

∂qF
∂B

=
B

2π|t||t|′
√

1− (t2+t′2−B2)2

4t2t′2

(4.66)
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Figure 4.6: Magnetization curve for F-AF limit

While the algebra is done for F-AF mode, for AF-AF limit the physics is the

same. This is because the bands of F-AF mode is just shifted bands of AF-AF

limit by q = π
2
. Figure 4.6 shows magnetization curve for t = 1 and t′ = ±2 calcu-

lated using i-DMRG for N=300 with the maximum bond dimension χ = 10. The

result is matching well with analytical solution (4.65), except the critical point

at B = 1 in which more bond dimension is needed to calculate m accurately.

4.2.3 Spin-Spin correlation functions

Using (4.56) one can write aq and bq in terms of αq and βq operators:

αq =
1√
2

(−Aqaq + bq) (4.67)

βq =
1√
2

(Aqaq + bq) (4.68)

where

Aq =
E+(2q)

eiqt′ + e−iqt
(4.69)
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Thus,

aq =
1√
2Aq

(βq − αq) (4.70)

bq =
1√
2

(αq + βq) (4.71)

The quasiparticle vacuum is defined as:

α†q |0〉 = 0

βq |0〉 = 0;∀q
(4.72)

From this definition of vacuum one can get following relationships:〈
b†kaq

〉
= − δq,k

2Ak
(4.73)

〈
a†kbq

〉
= − δq,k

2A∗k
(4.74)

One can show that, 〈
a†kaq

〉
=
〈
b†kbq

〉
=
δq,k
2

(4.75)

Using anticommutation relations one can get a remained matrix elements. Obvi-

ously, for even n−m correlation functions
〈
a†man

〉
=
〈
b†mbn

〉
vanish :

〈
a†man

〉
=
〈
b†mbn

〉
=

sin (π(n−m)
2

)

π(n−m)
= 0 (4.76)

Here, indexes do not correspond to the effective unit cell, but to a site, thus we

will work in a ’reduced Brillouin zone’.

Next, we evaluate non-vanishing correlation functions
〈
a†mbn

〉
; Further, we assume

n > m.

Wm,n =
〈
a†mbn

〉
= − 1

π

∫ π
2

−π
2

e−ik(n−m)

2A∗k
dk = − 1

2π

∫ π
2

−π
2

e−ik(n−m)(eikt+ e−ikt′)√
t′2 + 2tt′ cos(2k) + t2

dk

(4.77)

Another non-vanishing correlator is:

Zm,n =
〈
b†man

〉
= − 1

π

∫ π
2

−π
2

e−ik(n−m)

2Ak
dk = − 1

2π

∫ π
2

−π
2

e−ik(n−m)(eikt′ + e−ikt)√
t′2 + 2tt′ cos(2k) + t2

dk

(4.78)
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It is can be noticed that Wn,m = Zm,n and Zn,m = Wm,n. Integrals above for

nearest neighbors (i.e |n−m| = 1) are the linear composition of K(t, t′) and

E(t, t′)which are elliptic integrals of the first and the second kinds. For remain-

ing distances, the analytical solution is involved and the integration consists other

terms.

Correlation function for x - component of spins: Cxx
n,m

We consider correlation function of x - components of spin, i.e
〈
S

(a)x
m S

(b)x
n

〉
,

where indexes correspond to a site.

Cxx(a)
m,n =

〈
S(a)x
m S(b)x

n

〉
=

1

4

〈
(S(a)+

m + S(a)−
m )(S(b)+

n + S(b)−
n

〉
(4.79)

Index a in C
xx(a)
m,n shows that we look the correlation of a spin with others and it is

not equal to C
xx(b)
m,n unless t = t′. In fermionic representation it has the following

form:

Cxx(a)
m,n =

1

4

〈
a†me

iπ
∑
k<m(n̂

(a,b)
k ) + e−iπ

∑
k<m(n̂

(a,b)
k )am)(b†ne

iπ
∑
k<n(n̂

(a,b)
k ) + e−iπ

∑
k<n(n̂

(a,b)
k )bn

〉
=

=
1

4

〈
(a†m + am)eiπ

∑k=n−1
k=m (n̂

(a,b)
k )(b†n + bn)

〉
(4.80)

Since (a†m + am)eiπa
†
mam = (a†m − am) the equation above can be written as:

Cxx(a)
m,n =

1

4

〈
(a†m − am)eiπ

∑k=n−1
k=m+1(n̂

(a,b)
k )(b†n + bn)

〉
(4.81)

Thus, we have for every site one has exponential string operator:

eiπp
†
kpk = (1− 2p†kpk) = (p†k + pk)(p

†
k − pk) (4.82)

where p = a, b is fermionic operator. We introduce the following operators to

have convenient notation:

Am = (a†m − am) (4.83)

Bm = (a†m + am) (4.84)

Cm = (b†m − bm) (4.85)
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Dm = (b†m + bm) (4.86)

It is straightforward to derive anticommutation relations of the pairs for men-

tioned operators :

{Am, An} = {Cm, Cn} = −2δm,n (4.87)

{Bm, Bn} = {Dm, Dn} = 2δm,n (4.88)

While for any other pair N and M from the set above, we have:

{Mm, Nn} = 0 (4.89)

Then, equation (4.81 ) can be written as:

Cxx(a)
m,n =

1

4
〈AmDm+1Cm+1Bm+2Am+2 . . . Bn−1An−1Dn〉 (4.90)

One can evaluate this correlation function using Wick theorem, since operators

anticommute. Thus, we firstly evaluate expectation values of the form 〈NmMn〉
where N and M belong to a set of operators defined in (4.83- 4.86).

Using (4.76) it can be shown that for different sites 〈NmNn〉 = 0 for any N . Fur-

thermore, 〈AmBn〉 = 〈CmDn〉 = 0. For different pair of operators it is generally

non-zero:

〈AmCn〉 =
〈
b†nam − a†mbn

〉
(4.91)

However, from symmetry of integrals Wm,n and Zm,n, it is clear that 〈AmCn〉 = 0

also vanishes. Similarly, 〈BmDn〉 vanishes, i.e

〈BmDn〉 =
〈
−b†nam + a†mbn

〉
= 0 (4.92)

A non-zero elements are:

〈AmDn〉 =
〈
b†nam + a†mbn

〉
= 2

〈
a†mbn

〉
= 2Wm,n (4.93)

〈CmBn〉 =
〈
b†man + a†nbm

〉
= 2

〈
b†man

〉
= 2Zm,n (4.94)

One also can show that

〈AnDm〉 = 2
〈
b†man

〉
= 2Zm,n (4.95)

while

〈CnBm〉 = −2
〈
a†mbn

〉
= −2Wm,n (4.96)
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At this point, this information is enough to evaluate expression (4.90) using Wick

theorem. Theorem states that:

〈Ψ|O1O2..O2k|Ψ〉 =
∑

all pairings

(−1)p
∏

all pairs

(contraction of pair) (4.97)

Now, we know all contractions vanish except of (4.95-4.96). This makes our cal-

culation of (3.89) more easier.

One starts with following product of pairings :

〈AmDm+1〉 〈Cm+1Bm+2〉 〈Am+2Dm+3〉 . . . 〈An−1Dn〉 (4.98)

Obviously, this product is not vanishing. Then one needs to consider all other

not vanishing contractions with the corresponding permutation signature p. A

little math brings to the following result:

C
xx(a)
1,n =

1

4
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

2W1,2 0 2W1,4 0 . . . 2W1,n

0 2Z2,3 0 2Z2,5 . . . 0

2W3,2 0 2W3,4 0 . . . 2W3,n

0 2Z4,3 0 2Z4,5 . . . 0

. . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.99)

where matrix elements of Cxx for odd rows is defined by Wm,n elements, while for

even rows by Zm,n. While for the standard XY model [37] [38] the matrix Cxx
m,n is

a well studied Toeplitz matrix and approximate behavior of correlation function

can be derived analytically , in our case the matrix is a broken Toeplitz matrix,

where diagonal elements oscillate between two values.

It is clear that C
xx(a)
1,2 = 1

2
W1,2, while for C

xx(a)
1,2 = W1,2Z2,3. For further distance,

one can get calculating determinants of the matrix (4.99).

Obviously, C
xx(b)
m,n 6= C

xx(a)
m,n . One can get equivalent matrix as (4.99) for the

case C
xx(b)
m,n by changing Wn,m → Zn,m so that C

xx(b)
1,2 = 1

2
Z1,2. Since the model is

isotropic, the the correlation function for y - component behaves in the same ways.
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Correlation function for z - component of spins: Czz
n,m

Calculation of Czz
m,n is more straightforward. We firstly consider

〈
S

(a)z
m S

b(z)
n

〉
case,

i.e odd distances from a-sites:

Czz(a)
m,n =

〈
S(a)z
m S(b)z

n

〉
= −1

4

〈
eiπS

(a)z
m eiπS

(b)z
n

〉
= −1

4

〈
eiπa

†
mameiπb

†
nbn
〉

(4.100)

where we have used eiπS
z

= Sz

2i
. Using (4.82) the equation above can be written

as:

Czz(a)
m,n = −1

4
〈BmAmDnCn〉 (4.101)

The only non-zero contraction with p = 1 is:

〈BmCn〉 〈DnAm〉 (4.102)

Thus,

Czz(a)
m,n =

1

4
〈BmCn〉 〈DnAm〉 = −1

4
〈BmCn〉 〈AmDn〉 = −(Wn,m)2 (4.103)

Interestingly, the z -component correlation function for odd distances from a-

sites is just proportional to Wn,m.

For z-component of b− a spins it can be shown in a similar way that:

Czz(b)
m,n =

〈
S(b)z
m S(a)z

n

〉
= −(Zn,m)2 (4.104)

For even distances, C
zz(a,b)
m,n vanishes, due to the fact that all contractions of the

same type of fermions (i.e consisting only a ’s or b’s) vanish in any permutations.

Results

Here we performed comparison of numerical DMRG results and analytically ob-

tained results for C
xx(a,b)
m,n and C

zz(a,b)
m,n . For t = 2 and t′ = 1, we numerically

evaluated matrix elements Zn,m and Wn,m. Next, we obtained matrix (4.99)

and calculated subdeterminants of the matrix to get correlation function C
xx(a)
1,n .

Similarly, C
xx(b)
m,n is obtained by calculating of subdeterminants of corresponding

matrix. We calculated C
zz(a,b)
m,n as given in (4.103-4.104).
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Figure 4.7: Comparison of analytical and numerical i-DMRG results of C
xx(a,b)
1,n

For a given spin chain of length N = 100 with J = 4 and J ′ = 2 we performed

i-DMRG with following NSW = 3 sweepings. Maximum bond dimension was

χ = 12.

Before discussing results, we will discuss some basic properties of the system. We

start from limiting case: t′ = 0. In this limit, we have dimerized spins in every

unit cell. Wavefunction can be written in the following form depending on the

sign of the spin coupling within the unit cell t :

|Ψ〉 =

L
2∏
i=1

(|↑↓〉 ± |↓↑〉)√
2

(4.105)

where i runs through the all unit cells and by product sign we mean tensor product

of the local unit cell wave-functions. The singlet state in the unit cell corresponds

to t > 0 while triplet state to t < 0. Obviously, unit cell wavefunctions are not

entangled at all, while within the unit cell the spins are maximally entangled.

One can easily show that Czz =
〈
Sz(a)Sz(b)

〉
= −1

4
for both cases Cxx =〈

Sx(a)Sx(b)
〉

=
〈
Sy(a)Sy(b)

〉
= ±1

4
. At this point, we consider AF mode, i.e t > 0.

When we turn on intercell coupling, i.e t′ > 0, the singlet states becomes ’per-

turbed’. In Fig. (4.7) , we plotted the correlation function of x-component of

spins for given above parameters. As we can see, in contrast to dimerized limit,
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Cxx(a) 6= −1
4
. The value of Cxx(a) with the nearest neighbor (with the spin on

the same unit cell) decreases with the increment of t′, however the Cxx(a) with

other spins become non-zero, and starts oscillate with a distance. Also the second

spin in the unit cell starts to interact with the next spins, i.e Cxx(b) 6= 0 for any

t′ 6= 0. Because the system is ’insulator’, the modulus of amplitude exponentially

decrease and one can extract easily correlation length if needed. When t = t′, the

system becomes spin liquid and all correlation functions, including Cxx, decay by

power law.

In the similar form behaves Czz(a) and Czz(b). Obviously, for even distances

Czz = 0 and exponentially decreases with every next odd distance.

In Fig.(4.10 (a)) we have plot Cxx(a) for all t
t′

values. For t
t′
<< 0(t < 0) we

have triplet with total spin S = 1. Thus, all spins within the unit cell are coupled

purely ferromagnetically with Cxx(a) = 1
2

, as described before. This means

that correlation function C(a)xx within the unit cell is positive and exponentially

decreases with a distance. When t′ starts to compete with t, correlation length

increases. It should be noted that correlation with next unit cell spins C(a)xx < 0,

since unit cells are coupled antiferromagnetically with each other. This explains

the ’block’ like behavior of C(a)xx for t < 0.
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For t
t′
>> 0 , within the unit cell Cxx(a) ≈ −1

4
and decreases exponentially with

a distance. In competing region, t ≈ t′, we have quite noticeable interaction with

spins in another unit cells. Since we have antiferromagnetic coupling with all

spins, we have oscillating behavior for C(a)xx with the corresponding sign change.

(b)(a)

Figure 4.9: The behavior of Cxx(a) (a) and it’s absolute value (b) for all t
t′

range

For the case
∣∣ t
t′

∣∣ ≈ 1 we have power-law decrease of correlation function Cxx.

In fact, Czz also has the same behavior. This can be seen clearly in Fig. (4.9 (b)).

The power-law decrease of correlation functions that there is quasi-long-range or-

der, not pure long-range order. This is because, in 1D, any order is destroyed by

quantum fluctuations. Furthermore, as we know from the previous Chapter, the

t/t′ points in which power-law is observed, corresponds to a gap closure in the

system. In fact, this gap closure corresponds to the topological phase transition

as we will see in the next chapter.

Summary, conducted research in the current chapter gives an intuitive under-

standing of the system. In the next chapter, we are going to study the properties

of the Haldane phase of the current model.
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Chapter 5

Haldane phase in the BAHC

We start this chapter by studying topological quantum phase transition in our

bond-alternating fermionic chain in the non-interacting limit. Firstly, we calcu-

late the topological winding number, which is a standard order parameter for

1D exactly solvable fermionic chains. Secondly, we will show that it is possible

to use string order parameter to identify topological phases in the model under

consideration. Using MPS-DMRG numerically we show emerging edge states and

doubly degenerate character of entanglement spectrum in Haldane phase of the

model.

In the second part of the chapter, by the use of MPS-DMRG, we determine

Haldane phase boundary for non-zero z-component anisotropy ∆ values in anti-

ferromagnetic XXZ model (1.1).

5.1 Winding number

To identify the topological phase, namely Haldane phase in our spin model (in XX

limit), by calculating winding number of corresponding non-interacting fermionic

chain (4.55). One can use the integral form to calculate the winding number, but

we will show graphically as in Ref. [39]. To do this, redefining Fourier transform
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for unit cell, we rewrite our Hamiltonian (in the absence of magnetic field B) in

the following form:

HK =
[
a†k b†k

] [ 0 (e−ikt′ + t)

(t′eik + t) 0

][
ak

bk

]
(5.1)

We rewrite kernel h(k) as:

h(k) = hx(k)σx + hy(k)σy (5.2)

where

hx(k) = t+ t′cos(k) (5.3)

and

hy(k) = t′sin(k) (5.4)

-5 -4 -3 -2 -1 0 1 2 3 4 5

h
x

-1

-0.5

0

0.5

1

h
y

t/t  = -4

t/t  = -3

t/t  = -2

t/t  = -1

t/t  = 0

t/t  = 1

t/t  = 2

t/t  = 3

t/t  = 4

Figure 5.1: Graphical representation of winding number

To calculate the winding number, one needs to plot hx(k) vs hy(k)and see

how many times it crosses the origin of the plane. This is a procedure which

was done in [39] for SSH model. Our model has the only difference which is the

sign of hopping parameters t and t′. As one can see from the figure above, when

parameter t
t′
∈ [−4 : 4] is changed, the circle may consist origin of coordinate

system on it or may not. In the region
∣∣ t
t′

∣∣ > 1 the circle doesn’t consist zero

point (ν = 0), while for
∣∣ t
t′

∣∣ < 1 the point inside the circle, thus winding number

is unity ( ν = 1). In QPT point,
∣∣ t
t′

∣∣ = 1, the winding number is not defined and

the point lies on the circle line.

Thus, one can come to the conclusion that for
∣∣ t
t′

∣∣ < 1 we have topological

insulator (which is Haldane phase in corresponding spin chain) and for
∣∣ t
t′

∣∣ > 1

we have trivial insulator.
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5.2 String order parameter

In this part, we will calculate the string order parameter for our fermionic model.

As mentioned in Chapter 1, it has been used as a topological order parameter for

spin systems. Here we convert it into a fermionic version by the use of JWT.

String order parameter for our model can be defined as [10]:

OS = Oz(|n−m| → ∞) => Oz
m,n = −4

〈
Sz(b)m eiπ(S

z(a)
m+1+S

z(b)
m+2+···+Sz(b)n−1)Sz(a)

n

〉
(5.5)

Here, prefactor −4 is used to normalize, so that in the dimerized topological limit

t/t′ = 0 it brings Oz
m,n = 1. Using eiπS

z
= Sz

2i
Eq. (5.5) can be written as:

Oz
m,n =

〈
eiπ(S

z(b)
m +S

z(a)
m+1+S

z(b)
m+2+···+Sz(b)n−1S

z(a)
n )
〉

(5.6)

By the use of JWT, we convert string order parameter for spins to fermionic

string order parameter:

Oz
m,n =

〈
eiπ(b†mbm+a†m+1am+1+···+a†nan)

〉
(5.7)

which is obtained using the fact that the number of operators in exponent always

even. Using Eq.(4.82) it can be converted to a product of A−B−C−D operators

defined in (4.83-4.86):

Oz
m,n = 〈DmCmBm+1Am+1 . . . Dn−1Cn−1BnAn〉 (5.8)

Using Wick theorem, following the path from the previous chapter and including

only non -zero contractions, we get the following result:

OS = Oz(|m− n| → ∞) => Oz
1,n = det(Kn−1×n−1) (5.9)

where by site m = 1 we mean any chosen b site as reference and n any chosen

site a which follows b . Matrix elements Km,n are defined as:

Km,n =
1

2π

∫ 2π

0

e−ik(n−m)(e−2ikt+ t′)√
t2 + t′2 + 2tt′ cos(2k)

dk (5.10)

Interestingly, matrix K is a Toeplitz matrix, i.e any chosen diagonal has the con-

stant value. Even if attempts to find an approximate value of their determinant
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in large n → ∞ limit were done long time ago [40], their properties were well

studied after their application on statistical mechanics [41, 38, 42].

Generating function g(k) of our Toeplitz matrix is defined as:

g(k) =
(e−2ikt+ t′)√

t2 + t′2 + 2tt′ cos(2k)
(5.11)

Finally, string order parameter can be evaluated as the determinant of the

Toeplitz matrix in the large distance limit,

OS = lim
n→∞

det(Kn−1×n−1) (5.12)

Szegö theorem to evaluate String order parameter

To find the value of convergence in big distance limit OS, we will use Szegö

theorem [40]. Exact formulation of it can be found in Appendix A.

To apply Szegö theorem, a generating function shouldn’t have any zeros in interval

[0 : 2π) and should be smooth. The generating function (5.11) doesn’t have any

zeros for any
∣∣ t
t′

∣∣ < 1, i.e in topological phase. Thus, we can use the theorem

only in this limit. In trivial insulator phase, OS = 0 and one can use the Fisher-

Hartwig [42] conjecture to show this.

The edge limit is to set t = 0, i.e
∣∣ t
t′

∣∣ = 0. In this case, generating function

g(k) = 1. When intracell hopping t is turned on, the g(k) starts oscillating

around 1 , finally transforming to g(k) = |cos(k)| at t
t′

= 1 and g(k) = |sin(k)| at
t
t′

= −1. Thus, Szegö theorem is not applicable in these critical points .

The logarithm of the generating function V (k) = ln(g(k)) in the topological

dimerized limit
∣∣ t
t′

∣∣ = 0 is obviously vanishes. Thus, all Fourier coefficients also

vanish. Therefore,

OS = EeLV0 = 1, L→∞ (5.13)

where

E = e
∑r=∞
r=1 VrV−r (5.14)

and Vr are the Fourier coefficients of our V (k) function. In non-zero intracell

hopping term t, imaginary part of V (k) is non-zero with a period of T = 2π.
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Thus, still zeroth Fourier coefficient is V0 = 0 :

V0 =
1

2π

∫ 2π

0

V (k)dk = 0 (5.15)

From this equation, one can see that in expression (5.13) even if E is finite,

eV0L = 1. Thus, we come to the conclusion that string order parameter OS

doesn’t have exponential decay behavior, but has a finite value depending on the

Fourier coefficients of V (k).

Keeping
∣∣ t
t′

∣∣2 ≈ 0 and expanding the denominator leads to the following g(k) :

g(k) ≈ 1− i t
t′

sin(2k); (5.16)

and V (k):

V (k) ≈ ln(1− i t
t′

sin(2k)) ≈ −i t
t′

sin(2k) (5.17)

Thus, the Fourier coefficients can be written as:

Vr =
−it
2πt′

∫ 2π

0

e−1ikr sin(2k) =
−tδr,2

2t′
(5.18)

Finally, we can write string order parameter in the mentioned limit as:

OS ≈ e−
t2

4t′2 ;

∣∣∣∣ tt′
∣∣∣∣2 ≈ 0 (5.19)

In conclusion, we have seen that in the fully dimerized topological limit, string

order parameter is unity, and when intracell hopping t is turned on, OS starts to

decrease. In Fig. (5.2) above string order parameter OS calculated using Szegö

theorem (circle markers ) and also numerically estimated Toeplitz determinants

(solid lines) are shown. As one can see, the values of determinants converge to

the value predicted with the Szegö theorem, except points around QPT, in which

zeros of g(k) starts to appear. In Fig. (5.2. b) we show our calculation of OS( t
t′

)

using i-DMRG and numerically estimated Toeplitz determinants. For i-DMRG

calculations, we used the bond dimensions of MPS χ = 12 and L = 200. The

chain is taken sufficiently long since near QPT point Om,n decreases by a power

law.
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Figure 5.2: Calculation of string order parameter

String order parameter in trivial insulating phase Analytically, as it

was mentioned before, in trivial insulating phase, i.e
∣∣ t
t′

∣∣ > 1 our g(k) will have

zeros, thus Szegö theorem is not applicable. In any case, we can numerically

evaluate the Toeplitz determinant in this limit also.
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Figure 5.3: OS in the trivial insulating phase t/t′ = 1.5
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In Fig. (5.3) i-DMRG results’ plot of Om,n is shown for t
t′

= 1.5. As one

notices, Om,n decreases exponentially. Thus, OS = 0.

Finally, we present phase diagram of our model based on OS as a function t
t′

.

Figure 5.4: OS based phase diagram of non-interacting model

5.3 Edge states as an order parameter

(a) (b)

Figure 5.5: Topological Edge states in the Haldane phase
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As it was mentioned in Chapter 1, edge states are one of the most important char-

acteristics of topological phases. In this section, using i-DMRG we will show the

existence of edge states in the topological phase of the model under consideration.

We used N = 200, χ = 15 and calculated Sz for every site. Since the fermionic

model is half-filled, a local magnetization of the corresponding spin chain should

be mz
i = 〈Szi 〉 = 0.

However, in the topological phase at the edges of the chain fluctuations of Sz

can be observed. In the language of fermions, it means the occupation number

of fermions in the edge sites are not half-filled ( n 6= 1
2
).

In Fig. 5.5 (a) we presented local magnetization mz
i in Haldane phase for different

values of t/t′. One can see that in the fully dimerized Haldane limit (t/t′ = 0) we

have free edge spins with mz
1,N = ±1

2
. When an intracell hopping t is turned on,

the mz oscillates at the edges. One can notice that mz
1,N decreases also, with the

increment of t/t′. In fact, this behavior conserved up to the QPT point t/t′ = 1.

In Fig.5.5 (b) the logarithm of the local magnetization is shown. For convenience,

we redefined m̃z = 2mz, so that at the maximum edge state amplitude mz = 1
2

it

becomes m̃z = 1.

5.4 Entanglement spectrum as an order param-

eter

As it was mentioned in Chapter 1, entanglement spectrum in the gapped symme-

try - protected topological phase is doubly degenerate, when in trivial phase it is

not. In this section, we calculate a bipartite entanglement spectrum for a chain

of N = 400 with the bond dimension χ = 20 for t/t′ ∈ [0 : 1]. Doubly degenerate

behavior of all spectrum values can be observed in Fig.5.6 (a) for all t/t′ < 1,

while around QPT point the degeneracy is lifted and for trivial phase we don’t

have doubly degenerate behavior.
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(a) (b)

Figure 5.6: Entanglement Spectrum in the XX limit

5.5 When does the order parameters work?

When Hamiltonian has additional terms like an interacting part of Eq.(4.41) or

terms like Dzyaloshinskiy - Moriya interaction, not all the order parameters men-

tioned previously are able to identify the Haldane phase. The winding number

is a very general tool to identify non-trivial phases, however, the usage is limited

due to the fact that not all Hamiltonians are exactly solvable. The string order

parameter is able to identify the Haldane phase, which is protected by D2 sym-

metry, while it cannot identify when it is protected by other symmetries [43] . In

contrast, the degeneracy of the entanglement spectrum which is discussed above

can be applied to identify the Haldane phase for a general Hamiltonian . Thus

we can further use it as an order parameter for our interacting model.
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5.6 Haldane phase of bond-alternating XXZ

model

In this section, we use MPS-DMRG to identify the Haldane phase in our general

bond-alternating XXZ model (1.1) H = H1 +H2 :

H1 = J
N∑
i=1

(∆Sz2i−1S
z
2i + Sx2i−1S

x
2i + Sy2i−1S

y
2i) (5.20)

H2 = J ′
N∑
i=1

(∆′Sz2iS
z
2i+1 + Sx2iS

x
2i+1 + Sy2iS

y
2i+1) (5.21)

In this study, we set ∆ = ∆′, so that we the anistropy fraction is the same. We

set also J ′ = 1. Our model parameters were: N = 360, χ = 20. We varied the

z-component anisotropy ∆ and found in which value of ∆ Haldane phase→ Neel

phase transition occurs for every value of J/J ′.

(a) (b) (c)

Figure 5.7: Entanglement spectrum character for XXZ model

From Fig. (5.7 (a) - (c)) one can see evolution of the entanglement spectrum

character for the values J/J ′ = 0.4, 0.65, 0.9, when z-component anisotropy ∆ is

varied. It is clear that, for small values of J/J ′ one needs relatively big values

of ∆. For J/J ′ = 0.4 , the Haldane phase → Neel phase transition occurs at

∆ ≈ 4.8, while for J/J ′ = 0.9 this transition occurs at ∆ ≈ 1.63. Clearly, in the

pure XXZ limit (i.e J/J ′ = 1) , Neel order is reached for ∆ ≈ 1.

While the degeneracy of the entanglement spectrum predicts the phase transi-
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(b) Local magnetization mz
i for ∆ = 5.5

Figure 5.8: Local magnetization in two different phases of the model

tion points accurately, it doesn’t tell anything about the nature of the transition.

To confirm the phase transition to be from the Haldane phase to the Neel phase,

we calculated local magnetization and plotted in Fig. (5.7) for J/J ′ = 0.4 with

∆ = 2 and ∆ = 5.5. As one can see for ∆ = 2 one has a net bulk magnetization

of 〈M z〉 = 0, while at the edges we have localized topological states. However,

for ∆ = 5.5, we have Neel-ordered phase, as it is shown in Fig. (5.7 (b)).

Finally, we present the phase diagram for bond-alternating XXZ model. It

should be mentioned, that for J/J ′ > 1, one has gapped spin chain and the phase

diagram looks like exactly the same as Fig. (5.8) when it is drawn for J ′/J .
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Chapter 6

Conclusions

In this thesis, we have studied the bond-alternating XXZ model (1.1) analytically

and numerically. All considered problems are solved. Namely,

• I. By the use of the JWT we studied zero-temperature properties of the

model (1.1) in XX limit.

• (a) Quantum phase transition of the XX model (1.1) is studied under the

magnetic field.

• (b) Zero-temperature static correlation functions for bond-alternating XX

chain analytically derived and numerically checked.

• II (a) Trivial insulating → topological phase transition is studied using

fermionization of String order parameter in the XX limit.

• (b) Topological QPT Haldane phase → Neel phase is numerically studied

by using MPS-DMRG

For further perspectives we propose the following tasks:

• By the use of bosonization treat interacting fermionic models exactly.
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Appendix A

Szegö theorem

Suppose that the generation function φ(θ) satisfies the conditions,

• φ(θ) 6= 0 for all θ ∈ [0; 2π)

•
∑k=∞

k=−∞ |Vk|+
∑k=∞

k=−∞ |k||Vk|
2 <∞, where Vk are Fourier coefficients of the

following function:

V (θ) = ln(φ(θ)); (A.1)

Then, in the limit L→∞, the determinant of Toeplitz matrix with the generating

function φ(θ)

D[φ] = ESZe
V0L (A.2)

where

ESZ = e
∑k=∞
k=1 kVkV−k (A.3)

101


