ABEMverubsy Classkination
 An Aopllstation

Oxdemilie:

Hormetpur.

ABC INVENTORY CLASSIFICATION

AN APPLICATION:

OZDEMIRLER

A THESIS
SUBMITTED TO THE DEPARTMENT OF MANAGEMENT AND THE INSTITUTE OF MANAGEMENT SCIENCES OF BILKENT UNIVERSITY
IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION

By
MEHMET DURU
January, 1989

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Business Administration.

Assist. Prof. Erdal Ere

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Business Administration.

Assist. Prof. Dilek Yeldan

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Business Administration.

Assist. Prof. Kürṣat Aydogan

Approved for the Institute of Management Sciences

Prof. Dr. Sübidey Togan

ABSTRACT

ABC INVENTORY CLASSIFICATION

AN APPLICATION:

OZDEMIRLER

MEHMET DURU
M.B.A. in management Supervisor: Assist. Prof. Erdal Erel

January 1989, 44 Pages
ABC inventory classification can result in more effective
control of business. In this work, ABC method is applied to
Ozdemirler to examine the inventory profile of the store, and
to be able to aid the management in allocating control effort
among items more effectively.

Keywords: Inventory Control, ABC inventory Classification, Stock Keeping Unit, Distribution By Value

ÖZET

ABC ENVANTER SINIFLANDIRMASI

BIR UYGULAMA:
OZDEMIRLER

MEHMET DURU
Yüksek Lisans Tezi, Sosyal Bilimler Enstitüsü Tez Yöneticisi: Assist.Prof. Erdal Erel

Ocak 1989, 44 sayfa

ABC envanter siniflandirmasi yönetimde daha etkin kontrol sağlayabilir. Bu çalısmada, Ozdemirler Koll. Şti.'ne ABC metodu uygulanarak, maḡazanin envanter profili incelenmis, ve yöneticilere mamuller arasında daha etkin kontrol dağıtımı yapabilmeleri icin yol gösterilmiştir.

Anahtar Kelimeler: Envanter Kontrol, ABC Envanter	
	Sınıflandırması Stok Birimi, Değer Dağılımı

ACKNOWLEDGEMENT

I would like to express my gratitude to Assist. Prof. Erdal Erel for his patient supervision. I am also grateful to Assist. Prof. Dilek Yeldan and Assist. Prof. Kursat Aydogan for their suggestions.

TABLE OF CONTENTS

ABSTRACT iii
ÖZET iv
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES viii

1. INTRODUCTION 1
1.1. THE INVENTORY CONCEPT 1
1.2. FUNCTIONS OF INVENTORY 3
1.3. PURPOSE OF THE THESIS 5
1.4. BACKGROUND OF THE FIRM 6
1.5. OUTLINE OF THE THESIS 7
2. INVENTORY CONTROL TECHNIQUES 9
2.1. OBJECTIVES OF INVENTORY CONTROL 9
2.2. BASIS FOR INVENTORY DECISIONS 10
2.3. INVENTORY CONTROL SYSTEMS 12
2.4. ABC INVENTORY CLASSIFICATION 14
2.4.1. CONTROL OF CLASS A ITEMS 17
2.4.2. CONTROL OF CLASS 日 ITEMS 19
2.4.3. CONTROL OF CLASS C ITEMS 20
3. AN APPLICATION: OZDEMIRLER 22
3.1. SAMPLE 22
3.2. DATA COLLECTION 23
3.3. CLASSIFICATION 23
3.4. RESULTS 25
4. CONCLUSION 27
APPENDICES:
TABLE 1 29
FIGURE 1 35
FIGURE 2 36
REFERENCES 37

LIST OF TABLES

TABLE PAGE

1. INVENTORY LIST OF OZDEMIRLER 29
LIST OF FIGURES
FIGURE PAGE
2. DISTRIBUTION BY VALUE CURVE 35
3. PERCENTAGES OF DV AND ITEMS OF EACH CLASS 36

1. INTRODUCTION

1.1. THE INVENTORY CONCEPT

Inventories represent stock of goods that are held for a short term before being converted into sales liras. They are one of the most active elements of business operations, and appear on the financial statements of the firms. They have a two-way effect on the financial position of the firm. On one hand, they are assets and therefore represent stored value that, when sold, will generate revenue and profit. On the other hand, inventories are usually a major investment and financed by equity and debt. Therefore, inventory levels directly affect the return on investment, which represents the ratio of profit and the average investment (or level of assets). Return is reduced by the cost of capital while investment is increased by inventory. Thus, unnecessarily high inventory levels have a double negative impact on the return on investment.

Current ratio, the ratio of current assets to current liabilities, which is the most commonly used measure of liquidity, is also highly affected by inventory level changes (7). Since inventories are classified as one of the current essets of an organisation, a reduction in their level lowers assets relative to liabilities. However, the funds freed by a reduction in inventories normally would be used to acquire other types of assets or to reduce liabilities. Such actions directly influence the current ratio.

1.2. FUNCTIONS OF INVENTORY

Inventories are nonproductive assets which earn no return and which are subject to loss, pilferage, obsolescence, and taxes. The main reason for holding inventories is that they cover discontinuities in the supply-demand relationship. In that sense they serve a number of important functions:

1) Inventories are kept on the shelf to satisfy anticipated, but variable customer demand. The exact demand pattern is not known with certainty, and products are therefore stocked to cover the uncertainty involved.
2) Firms that experience seasonal patterns in demand, often build up inventories during off season periods in order to meet overly high requirements that exist during certain periods. This demand pattern results in an inventory buildup followed by a rapid inventory depletion.
3) Inventory may be stockpiled in anticipation of supply disruptions, such as weather, strikes or problems with a supplier.
4) Delayed deliveries and unexpected increases in demand increase the risk of shortages. This risk can be reduced by holding safety stocks, which are stocks in excess of anticipated demand. The safety stock inventory level is a function of the anticipated forecast error and the number of
```
stock-outs that can be tolerated.
```

5) In order to minimize the order costs and/or to take advantage of price breaks or quantity discounts or meet the suppliers minimum order requirements, it may be necessary to buy quantities that exceed immediate usage requirements.
6) At times of price increase expectations, purchases are realized earlier in order to make savings and higher profits in future.
7) In order to allow full loads or consolidation of shipments and more efficient use of containers, it may be more feasible to buy in larger quantities, which result in inventories. (9)

In order to make the best use of these functions of inventories, managers need decision and control systems. This study deals with the utilization of inventory control methods as a management tool.

1.3. PURPOSE OF THE THESIS

The thesis is based on an application made in a retail store that sells building and construction materials. The purpose is to practice the application of ABC inventory classification method. This purpose is matched with the needs of that store towards easing and solving the problems related with managing the great numbers of inventory units. There are nearly $30 \square \square$ units to control and the only control system used by the store is the physical counting of the items once a year. Since there is no continuous control system, and so no up-to-date inventory data, store management has difficulties in making decisions on allocating time and investment on each item. Currently, such decisions are made on judgemental basis, depending on their past experiences. This is a very time consuming task, and makes it impossible to plan the future and improve the business.

The owners of this store are at the point of deciding on "computerizing the management" and especially the inventory control mechanism. At this stage, the current study concentrates on the means of system-automation feasibility. In fact, this study contains the first stage of implementing an inventory control system, but as it is intended to help management decide on such an issue, it is believed to be sufficient. Extending the content of this effort will be feasible only in case of approval from the management. In this study, we will confine our work to the inventory

```
classification, and aiding the store management in their
decision making regarding the inventory issues.
```

```
    1.4. BACKGROUND OF THE FIRM
The firm subject to the application of this study is a retail
store in the field of construction materials. It was founded
in 1964, as "Ozdemir Duru ve Ortaklari Koll. Sti.", in
Kadikoy, istanbul.
```

In sixties, the construction sector was attractive for traders, and the competition was not treathening. The firm made a good start, and formed strong relations with the local construction firms. The rapid growth in sales and profits enabled the firm to move to a bigger (current) store location. The name was changed to "Ozdemirler" in 1970.

The situation changed in seventies. The construction sector was in recession, and the market was influenced by inflation. Another factor contributing to the unattractiveness of the business in $70 \leq$ was the high competition. Big construction firms segment was captured by the wholesaler firms founded by construction materials manufacturers.

Changing characteristics of the market influenced Ozdemirler, and this was reflected in their customer profile.

```
Accordingly, the firm faced decreases in their sales volume,
and profits. Rather than adapting to the environment,
Ozdemirler tried reducing the general expenditures of the
store, and this caused them to fall behind the competition.
```

Their new market segment is the local households. The products appealing to that segment certainly are different from the former segment of construction firms. However, Ozdemirler has not changed the inventory profile which had been its differential advantage since the beginning. They have been carrying 300Ø different items, but they can not use this advantage effectively, due to lack of control over the inventory.

1.5. OUTLJNE OF THE THESIS

This thesis consists of two main parts; theory and application. In the second chapter, the physical control techniques are examined. Short and long-term objectives of inventory control, and functions necessary for an effective control system are explained and some of the prominent techniques are cited. Function of ABC inventory classification - as a base for the control techniques - is described, and the steps to be followed in classifying the items and controlling each class are listed.

Third chapter explains the application of ABC classification to Ozdemirler. The procedure followed in sampling, data collection, and clasification is explained and the results are evaluated.

The last chapter describes implications of the application study results, and the further steps that should be taken by the firm.

2. INVENTORY CONTROL TECHNIQUES

2.1 OBJECTIVES OF INVENTORY CONTROL
Companies attempt to achieve a proper balance
benefits of carrying large inventories and the benefits
obtained by reducing inventories to a very low level. The
difficulties associated with attaining this balance on a
solely judgemental basis, lead the management of the firms to
apply "scientific inventory control systems". The long
range objective of any effective inventory control system is
to increase the total return on total investment employed by
the company. Some of the short term objectives are :
1) Keeping out-of-stock conditions at a level as low as
practical.
2) Minimizing the costs of carrying and ordering.
3) Maintaining a turnover rate of stocks commensurate
the level of sales activity. (6).
Furthermore, there will be many additional immediate
objectives which will be important to management at the
particular time. The goal should be to satisfy the maximum
number of the specific objectives as well as the general
bjectives for any inventory control system.

2.2. BASIS FOR INVENTORY DECISIONS

There are many factors which must be considered when
establishing stock levels. Some of these factors are:

1) The demand for the inventory items must be determined.
This may be established from historical records, or it may be
based on sales forecasts if they are available. The
anticipated demand must allow for fluctuations and must be
frequently modified. A simple inventory system is best
utilized when inventory movement is relatively steady, and
when large random fluctuations are the exceptions. It is
important to review demand rates periodically and adjust the
inventory levels.
2) The lead time for the item must be determined. Lead time is defined as the time period between the order of an item and the moment it is placed in stock for use. It includes ordering lead time as well as vendor production lead time. Like demand, lead times are not always exactly predictible, and, therefore, some allowance for variability must be made.
3) Storage facilities: the availability of storage facilities, or the lack of them, will influence decisions regarding inventory levels.
4) Another influence on inventory levels is price. Low value items might be purchased in large quantities taking advantage of quantity discounts, while higher value items might be
purchased more frequently in smaller quantities.

Abstract

5) Carrying, ordering and shortage costs are other factors that must be considered in establishing inventory levels. Carrying (holding) costs include interest, insurance, taxes, depreciation, obsolescence, deterioration, spoilage, pilferage, breakage and storage costs. Carrying costs also include opportunity costs associated with having funds tied up in inventory that could be used elsewhere. Ordering costs are the costs associated with ordering and receiving inventory. They include determining how much is needed, typing up invoices, inspecting goods upon arrival for quality and quantity, and moving the goods to temporary storage. Shortage costs result when demand exceeds the supply of inventory on hand. The costs can include the opportunity cost of not making a sale, loss of customer goodwill, lateness charges, and similar costs. (7).

6) Frequency of engineering changes or the danger of
obsolescence: In industries where technological changes are
rapid or where style changes usually occur, a big risk is
taken when high levels of inventories are maintained.

In the next section as we examine the physical inventory control systems, we will assume that the demand, lead time and the costs are known or estimated, 50 that we can base our inventory level decisions accordingly.

2.3. INVENTORY CONTROL SYSTEMS

There are numerous systems being used by organizations to control their inventories. In some organizations--due to the characteristics of the inventory items--combinations of several systems may be used together. The most common inventory control systems are:

1) Min-Max System : This system involves continuous review of the inventory. A replenishment is made whenever the inventory position drops to the reorder point. A maximum level of inventory which demand will normally not exceed, and a minimum level which is the margin of safety deemed necessary to prevent out-of-stock conditions from arising is established. When the minimum level is reached, an order is placed. (6).
2) Two-Bin System : In this system the stock of each item is seperated into two piles in such a way that one pile contains enough stock to satisfy the demand, and the other pile contains the safety level. When the first pile is finished, the replenishment order is made, and the stock in the second pile is used to cover the demand during lead time. The twobin system reduces the amount of record keeping, and also makes it unnecessary to take physical counts, since an automatic reorder point has been set up. "One disadvantage of the system appears to occur when a single demand is bigger than the fixed reorder quantity. In such cases, one should
```
order integer multiples of preset order quantity in order to
bring the stock level above the safety stock level." (1)
```

3) Order Cycling System : In this system the quantities on hand of each item is reviewed periodically by making physical counts. The time periods between each count differs depending on the type of items. At each review period, orders are placed to bring storks up to predetermined levels. If the demand and the lead times are known with certainty, the amount to be ordered at each review period and the inventory level can be determined by the length of the ordering cycle. But as soon as uncertainty is introduced, safety allowances for unpredictable variations in demand or lead time must be calculated. The greater the variability in demand and the longer the lead time and variability in such lead time, the greater must be these safety allowances. (6).

An advantage of this system is that orders for many items occur at the same time and there can be savings in processing and orders. The disadvantages of the system are the lack of control between reviews, the need to protect against shortages between review periods by carrying extra stock, and the need to make a decision on order quantities at each review.
4) Online Inventory Control System : In case of a computerized inventory control system, every transaction of the stock items are recorded. Whenever an item is removed

Abstract

from inventory, the date of removal, quantity, material requisition number are recorded, and the new balance on hand is calculated. Such a continious record keeping procedure keeps the inventory control up-to-date every moment. The difficulty of recording each item, especially in multi-item inventories, usually leads management to make distinctions between the items with respect to their annual-usage-values. This generally leads to a policy of keeping on-line control of the higher value items while utilizing the other predescribed systems for other items.

In order to decide on which items to be controlled by which system, ABC inventory classification is the most commonly used method. "ABC inventory classification is a tool of management for focusing attention on and apply effort in the area that will give the greatest results."(7).

2.4. ABC INVENTORY CLASSIFICATION

In most businesses, a relatively small number of inventory
items account for a relatively large percent of the total
inventory value. By transferring available control effort
from low-value to high-value items, the control effort will
result in maximizing the degree of control over the total
inventory. The ABC inventory classification system divides
the items into categories, and suggests the proper degree of
control for each category of items. In doing that, the

```
criterion used is the "annual-usage-value", which is
calculated by multiplying the quantity demanded in a year
(past or forecasted) (D), by the unit cost (v) of the item.
```

The steps to be followed in classifying the items are as follows:

1) Dbtain the price per unit for each manufactured or purchased item. (v)
2) Dbtain the demand in units for each item for the past year, or from a forecast for some future period of time. (D)
3) Calculate the product of the price per unit (v), and the usage for the item (D). This will yield the annual-usagevalue, which is the value of the item going into the company's operations over the period.
4) Arrange the items in the order of decreasing annual-usagevalue.
5) Convert these values into percentages by expressing the value of each item as a percent of the total value of all items.
6) Roughly divide the list of values into three groups, namely, $A, \quad h i g h-v a l u e, ~ B, ~ m e d i u m-v a l u e, ~ a n d ~ C, ~ l o w-v a l u e$ items. (6).
```
In making that division, a graph with y-axis as "rumulative
percentage of total annual usage", and x-axis as "percentage
of total number of s.k.u.(stock keeping unit)" can be used.
The resulting graph (Figure 1) makes it easier to divide the
inventory, since the two points where the slope of the curve
changes significantly, reveal the annual-usage-value breaks.
Due to the lack of strict rules, the division is determined
by applying judgment, supported with experience.
```

In most cases, class A items come out to be the first 5 to 10
percent of total s.k.u. However; since, those are the high
value items, they account for nearly 50 percent of total
annual-lira-usage of the population of items under
consideration.

The largest number of s.k.u. fall into class B. Usually more than 50 percent of total s.k.u--that account for most of the remaining 50 percent of the annual-lira-usage--are worthy of being labelled B items in any inventory. This percentage is between 10 to 20% of the total money tied up.

Class C items make up only a minor part of total inventory investment. This group consists of the items that remain after the A and B classes.

2.4.1. CONTROL OF CLASS A ITEMS

This group of items should receive the most "personolized" attention from management. Routine controls using the mathematical models is not enough, and the art of management becomes important in dealing with them.

Silver and Peterson (1985) suggest the following guidelines for the control of A items:

1) Inventory records should be maintained on a perpetual (transactions recording) basis, particularly for the more expensive items. This need not be through the use of a computer; the relatively small number of A items makes the use of a manual system quite attractive.
2) Keep top management informed. Frequent reports (for example, monthly) should be prepared for at least a portion of the A items.
3) Estimate and influence demand. This can be done in three ways:
a) Manual input to forecasts, for example, knowledge of intentions of important customers.
b) If the demand is of a special planned nature there is no need to carry protection stock. On the other hand, where the demand occurs without warning, some protective stock may be appropriate.
c) Seasonal or random fluctuations can sometimes be
```
    reduced by altering price structures, negotiating
    with customers, smoothing shipments, and so forth.
```

4) Estimate and influence supply. Negotiations with suppliers may reduce the average replenishment lead time, its variability, or both.
5) Use "conservative initial provisioning."(7). For class A items which have very high unit values, and relatively low demand rates, the initial provisioning decision becomes particularly necessary. For such items erroneous initial overstocking (due to overestimating the demand) can be extremely expensive. Thus, one should be conservative in initial provisioning.
6) Review decision parameters frequently. Frequent review of such quantities, as the order points and order quantities is advisable for A items.
7) Determine precise values of control quantities. Order quantities of A items should be based on the most exact analysis possible.
8) "Confront shortages as opposed to setting service levels." (7). Rather than setting customer service levels and sitting back, take action to avoid or eliminate the stock-outs immediately. Associated costs of such actions should be taken into account when determining the safety stock levels. On the
```
other hand, since A items are replenished frequently, it may
be satisfactory to operate with very low safety stock. (7).
```

```
2.4.2. CONTROL OF CLASS B ITEMS
This group carries the greatest number of items (about 50% of
total s.k.u.) in the inventory. The total annual-usage-value
(Dv) of these items are less than of class A items, thus they
rate a moderate but significant amount of attention.
```

When a computer facility for inventory control is available,
Silver and feterson (1985) (7) suggest that as many $5 . k . u$ as
possible be monitored and controlled by a computer-based
system. This seems to be highly attractive in the near
future, given the increasing costs of clerical labor and the
potential costs of human error, versus the constantly
decreasing cost of data processing. Having a larger
proportion of s.k.u. on a computer system also has the
advantage of making a larger data bank available for more
effective and timely management reporting and sales analysis.

If the inventory system is not computerized, management can try to routinize the decision making by use of manual-based clerical systems. Under such circumstances the fraction of s.k.u classified as B items should be reduced, and the fraction of C items be increased to take advantage of the lower costs of less paperwork and clerical handling.

```
With or without the computer, the inventory control system of
B class items is the "on-line" inventory control system. All
transactions will be recorded and the stock-on-hand data will
be available and up-to-date each moment. There will still be
need for the physical counts, since continuous recording of
many items will cause a high probability of error. Annual
physical counts may help lower the errors in the inventory
records. In computerized systems, the user will be informed
(by the computer) for each item reaching its reorder point,
and as the ordered items arrive, they will be added to the
stock-on-hand, concurrently being subtracted from stock-on-
order. (1)
```

2.4.3. CONTROL OF CLASS C ITEMS
Class C items generally have low totals of replenishment,
carrying, and shortage costs. Regardless of the type of
control system used, management cannot achieve sizable
savings on these costs. Therefore, the inventory control of
this group of items should be based on simple procedures,
that keep the control costs per s.k.
keeping the labor and paperwork per item to a minimum.
"In most cases it may be most appropriate to not maintain any inventory record of a C item, but, instead simply rely on an administrative mechanism for reordering, such as placing an order when the last box in a bin is opened" (7). If an

```
inventory record is maintained, it should not require
recording of each transaction. But, for demand estimation,
and order control purposes a record of the dates of
placement, and of receipts of replenishment orders, can be
kept.
```

Following inventory control methods can be feasible for class C items:

1) Periodic review with a relatively long interval (order-cycling-system)
2) Two-bin-system, which requires continious review but not a physical stock count nor the updating of the stock status.

Grouping of C items that have a common supplier, may be helpful. This method may reduce the ordering costs since when one item in the group needs ordering, several others will be included in the ordering cost.

Abstract

3. AN APPLICATION : OZDEMIRLER

Application of inventory classification study was aiming to examplify the advantages of systematizing the inventory control effort of the firm and the potential benefits of continuous control. Since the management of the store felt the need for changes in their business structure, they accepted the idea of evaluating the feasibility of inventory control automation. However, they still were suspicious of the difficulties, and even the impossibilities of such a change. Therefore, the most difficult part of the study was to persuade them into accepting the benefits of scientific management.

3.1. SAMPLE

We limited our classification study to a sample of the total inventory, because there was the probability of rejection of our proposal for the new system. Even though our sample contains only 232 items, they are chosen with care to be able to reflect the inventory profile of the firm to a great extent. The selection of the size of the sample was not based on any criteria other than the judgement of the store management. The literature on this issue accepts the intuitive sample size selection (7). Those items that are totally disregarded by the management are eliminated at the
beginning. Some of the high-value items were also disregarded, due to our perception of unreliable data.

Abstract

3.2. DATA COLLECTION

Data on the items were collected from the records of the firm. They had annual physical count records for each year, and the purchase invoices. We used 1986 and 1987 inventory records and 1987 invoices. So, our base year was 1987.

l986 records gave us the beginning-inventory, and 1987
records gave us the ending-inventory of each item.
Subtracting the beginning from the ending-inventory, and
adding the total purchases made during the year, we obtained
the annual demand of each item (with the assumption that
there was no unsatisfied demand, so that demand was equal to
sales) (see Tablel - column 3). As the value of the item, we
used the unit cost of the last purchase, and this enabled us
to evaluate them on the same basis. follecting such data
revealed that, they were recording the members of an item
category in seperated manner, fue to the lack of
standardization in identification and the counting procedure.
This caused us to search all through the records for each
item, and bring together the ones that are given more than
one name.

[^0]```
(Table 1-column 2), and obtain the annual-usage-value (DV)
(column 3). We, then, sorted the previous list of items with
```



In order to construct the distribution-by-value graph (figure 1), we placed the values in column 5 on $y$-axis, and column 6 on $x$-axis, and obtained a concave graph, which helped us in dividing the inventory into classes ( $A-B-C$ ), and calculating the percentages of each class.

Since there is no specific rule on how to make the division process, we consulted the store management at that stage. Their familiarity and experience with the nature of items, and the already existing examples of ABC classifications in the literature lead us to make the following categorization: The first 22 of the sample of 232 items were identified as Class $A$, the next 133 items as Class $B$, and the last 77 items as Class C.
3.4. RESULTS

Such a classification yields the following results, and figure 2.

| Classification | $\begin{aligned} & \text { No. of } \\ & \text { s.k.u } \end{aligned}$ | $\begin{aligned} & \text { Percent } \\ & \text { s.k.u } \end{aligned}$ | $\begin{gathered} \sum \mathrm{DV} \\ (\mathrm{TL}) \end{gathered}$ | $\Sigma \mathrm{Dv}$ percent of tot. Dv |
| :---: | :---: | :---: | :---: | :---: |
| A | 22 | 9.48\% | 111,794,558 | 70.5\% |
| B | 133 | $57.32 \%$ | 45,312,959 | 28.6\% |
| C | 77 | 33,20\% | 1,563,674 | $0.9 \%$ |
| totals | 232 | $100.00 \%$ | 158,671,191 | $100.00 \%$ |

The figures above show that a very small portion of total sample, i.e., $9.48 \%$ is accounting for $70.5 \%$ of total value. This is class A. The next set of items is class $B$, containing 133 items, which is $57.32 \%$ of all s.k.u, and constitutes $28.6 \%$ of total value. The last group is class C, which proves itself to be very low in total annual-usage-value. The 77 items in this class, which is $33.2 \%$ of all s.k.u, account for only $0.9 \%$ of total value.

```
The division points were also traced on the distribution-by-
value graph and it was observed that they reflect the points
where the slope of the curve changes significantly. This
constituted a control of reliability of our classification.
The increasing concave nature of DBV curve reveals the
different characteristic groups, by its changing slope
areas.(Figure 2)
Class \(A\) constitutes the part of the curve where the slope is high. This is directly related with high cumulative percentage of \(D V\) of such a small group. Class \(B\) items are in the area of a less steep slope, with a long range. High number of items in this group (133), compared with 22 of class \(A\), has much lower percentage of total DV. This is reflected on the change of the slope. Class \(C\) items are placed on the last part of the curve, where the slope is very close to zero. The small percentage of cumulative \(D V\) causes a very slight increase on the \(y\)-axis (0.7\%).
```

4. CONCLUSION


The sample used in this study contained 232 items. Taking the explained classification procedure as a base, the study needs to be continued to capture total inventory of the store. While doing that, data on order costs, reorder points, and lead times should also be collected or estimated, for the purposes of improving the inventory decision making process as well as inventory control.

The resulting table of items may guide the management in eliminating some of the items from the inventory. Those at the very end of the list seem to be the candidates for that. However the management should take into account the needs of

```
the customers, the service level, and if the items are
complimentary or not.
The classification of the inventory may also help in planning the placement of the items in the store. Class \(A\) and \(B\) items can be placed in heavy traffic parts, while \(C\) items can be stored in the back or the second floor. Groups should not be divided, when placing with respect to classes; that is, if members of a group (i.e. water pipes) are seperated in classification (\(\square .5\) inch in class A, 1.25 inch inclass B), they should not be placed seperately since this will cause bigger problems in control (5).
```

This classification study, and allocation of appropriate control effort among classes will certinly improve the current situation of Ozdemirler. Planning the future will be possible with the up-to-date inventory reports available any time, and the investment decisions will have a reliable base.

CLASS A


CLASS B

| 23 Esem Banyo Dolabi |
| :---: |
| 24 Ustupu |
| 25 Termoteknik 70 1t. |
| 26 Mutlu Kapak Duz |
| 27 Bezli hortum 3/4" |
| 28 Gal. Boru $1^{\prime \prime}$ |
| 25 Cakmakli Terfi. |
| 30 Marshallux 5/1 |
| 31 Piras Boru 125/2000 |
| 32 Nipel 1/2" |
| 33 Fipas Boru 70/1000 |
| 34 Siyah Boru 3/4" |
| 35 Fimas Boru 70/2000 |
| 36 Inegal Te $11 / 4^{\prime \prime}$ |
| 37 fenkis Antipas 5/1 |
| 38 Gal. Te 1/2" |
| 39 Siyah Boru $1^{\prime \prime}$ |
| 40 Elettril Sayaci |

TABLE 1 CONTD．
CLASS E contd．

| － | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ND. S.K.U. ID. | ARN．DEMAND <br>  | UNIT VALUE <br> ニニニニニニニニニニ | $\begin{gathered} \text { DV } \\ =:=:=\approx=z== \\ \hline \end{gathered}$ | $\begin{aligned} & \text { CUK. DV } \\ & ===z===== \end{aligned}$ | Cum．\％fot Tot． ＝：＝u5age＝：＝ | $\begin{gathered} \text { CuE. \% of } \\ ====5 . k_{1}, u_{0}== \end{gathered}$ |
| 41 Cam Civisi | 254.00 | 2750.00 | 698500.00 | 128328589.00 | 80.8771 | 17.6724 |
| 42 liftsan 5／1 | 260.00 | 2640.00 | 686400.00 | 129014989.00 | 81.3096 | 18.1034 |
| 43 Gal．Boru $11 / 2^{\prime \prime}$ | 295.00 | 2252.00 | 659836.00 | 129674825.00 | 81.7255 | 18.5345 |
| 44 Siyah Boru 1／1／2＂ | 425.00 | 1500.00 | 637500.00 | 130312325.00 | 82.1273 | 18.9655 |
| 45 Gal．Horu 11／4＂ | 302.00 | 1967.00 | 594034.00 | 130906359.00 | 62.5017 | 19.3966 |
| 46 Gal．Dirsek 3／4＂ | 1030.60 | 560.00 | 576800.00 | 131483159.00 | 82.8652 | 19.8276 |
| 47 Pimas Boru 50／1000 | 709.00 | 800.00 | 567200.00 | 132050359.00 | 83.2226 | 20.2586 |
| 48 Pimas 100 A．Dirsek | 486.00 | 1113.00 | 540918.00 | 132591277.00 | B3． 5635 | 20.6897 |
| 49 Gomae Kilit | 621.00 | 870.00 | 540270.00 | 133131547.00 | 83.9040 | 21.1207 |
| 50 Termodin Yedegi | 709.00 | 750.00 | 531750.00 | 133663297.00 | 84.2392 | 21.5517 |
| 51 Fiam Kilit | 40.00 | 13125.00 | 525000.00 | 134188297.00 | 84.5700 | 21.9828 |
| 52 Kapi Yayi 3 | 32.00 | 16000.00 | 512000.00 | 134700297.00 | 84.8927 | 22.4138 |
| 53 Tel Civi | 858.00 | 585.00 | 501930.00 | 135202227.00 | 85.2091 | 22.8448 |
| 54 Diko 60 lt ． | 4.00 | 120000.00 | 480000.00 | 135682227.00 | 85.5116 | 23.2759 |
| 55 Pimas 100 K. Dirsek | 490.00 | 969.00 | 474810.00 | 136157037.00 | 85.8108 | 23.7069 |
| 56 Inegal Te $1^{\prime \prime}$ | 515.00 | 900.00 | 463500.00 | 136620537.00 | 86.1029 | 24.1379 |
| 57 Krep Cizme | 38.00 | 12000.00 | 456000.00 | 137076537．00 | 86.3903 | 24.5690 |
| 58 Bezli Hortum 1／2＂ | 771.00 | 584.00 | 450264.00 | 137526801.00 | 86.6741 | 25.0000 |
| 59 Pimas Boru 50／2000 | 289.00 | 1541.00 | 445349.00 | 137972150.00 | 86.9548 | 25.4310 |
| 60 Siyah Boru 2＂ | 217.00 | 2016.00 | 437472.00 | 138409622.00 | 87.2305 | 25.8621 |
| 61 6al．Dirsek $1^{\text {n }}$ | 530.00 | 810.00 | 429300.00 | 138838922.00 | 87.5010 | 26.2931 |
| 62 Siyah Boru 1 $1 / 4^{\circ}$ | 339.00 | 1248.00 | 423072.00 | 139261994．00 | 87.7677 | 26.7241 |
| 63 Kapi Kolu | 242.00 | 1650.00 | 399300.00 | 139661294.00 | 88.0193 | 27.1552 |
| 64 Pimas Boru 100／500 | 275.00 | 1425.10 | 391875.00 | 140053169.00 | 88.2663 | 27.5862 |
| 65 Siyah Boru 1／2＂ | 655.00 | 590.00 | 386450.00 | 140439619．00 | 88.5098 | 28.0172 |
| 66 Kil Faspas 55／100 | 41.00 | 9375.00 | 384375.00 | 140823994．00 | 88.7521 | 28.4483 |
| 67 Kil Paspas 40／70 | 65.00 | 5875.00 | 381875.00 | 141205869.00 | 88.9928 | 28.8793 |
| 68 Diko 40 lt ． | 3.00 | 125000.00 | 375000.00 | 1415B0E69．00 | 89.2291 | 29.3103 |
| 69 Gal．Boru ${ }^{\prime \prime}$ | 117.00 | 3183.00 | 372411.00 | 141953280.00 | 89.4638 | 29.7414 |
| 70 Pimas Boru 125／1000 | 120.00 | 3094.00 | 371280.00 | 142324560.00 | 89.6978 | 30.1724 |
| 71 Bezli Hortum $5 / 8^{*}$ | 546.00 | 662.00 | 361452.00 | 142686012.00 | 89.9256 | 30.6034 |
| 72 kovali Soba Amasyali | 9.00 | 38000.00 | 342000.00 | 143028012.00 | 90.1411 | 31.0345 |
| 73 Gal．Te 3／4＂ | 456.00 | 730.00 | 332880.00 | 143360892.00 | 90.3509 | 31.4655 |
| 74 Kil Paspas 35／60 | 75.00 | 4375.00 | 328125.00 | 143689017.00 | 90.5577 | 31.8966 |
| 75 Renkis Antipas 1／1 | 200.00 | 1620.00 | 324000.00 | 144013017.00 | 90.7619 | 32.3276 |
| 76 Kil Paspas 60／120 | 21.00 | 15000.00 | 315000.00 | 144328017.00 | 90.9604 | 32.7586 |
| 77 Tangit $1 / 2$ | 107.00 | 2850.00 | 304950.00 | 144632967.00 | 91.1526 | 33.1897 |
| 78 Toz Boya | 442.00 | 675.00 | 298350.00 | 144931317.00 | 91.3407 | 33.6207 |
| 79 Kapi Yayi 4 | 17.00 | 17500.00 | 297500.00 | 145228817.00 | 91.5282 | 34.0517 |
| 80 Celic 1.500 | 82.00 | 3600.00 | 295200.00 | 145524017.00 | 91.7142 | 34.4828 |
| 81 Renkis Astar 5／1 | 38.00 | 7700.00 | 292600.00 | 145816617．00 | 91.8986 | 34.9138 |
| 82 Sell．Tiner 4／1 | 77.10 | 3800.00 | 292600.00 | 146109217．00 | 92.0830 | 35.3448 |
| 83 Kuzine Amasyali | 4.00 | 73000.00 | 292000.00 | 146401217.00 | 92.2670 | 35.7759 |
| 84 Eeton Civisi | 551.00 | 510.00 | 281010.00 | 146682227.00 | 92.4441 | 36.2069 |

TAELE 1 CONTD.
CLASS E contd.

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ND. S.K.U. 10. | ANR. DEKAND <br>  | UNIT VALUE <br>  | $\begin{gathered} D V \\ =:=:=:=:=:= \end{gathered}$ | $\begin{aligned} & \text { CUM. DV } \\ & ========== \end{aligned}$ | Cue. \%of Tat. = $=$-u5age=: | $\begin{gathered} \text { Cum, \% of } \\ ====5 . k .4 .=== \end{gathered}$ |
| 85 Sadosan 1/1 | 111.00 | 2500.00 | 277500.00 | 146959727.00 | 92.6190 | 36.6379 |
| $86 \mathrm{Nifel} \mathrm{3/4"}$ | 1000.00 | 260.00 | 260000.00 | 147219727.00 | 92.7829 | 37.0690 |
| 87 Teflon Bant | 658.00 | 380.00 | 250040.00 | 147469767.00 | 92.9405 | 37.5000 |
| 88 Balta | 71.00 | 3500.00 | 248500.00 | 147718267.00 | 93.0971 | 37.9310 |
| 89 Siyah Dirsel: 1" | 411.00 | 580.00 | 238380.00 | 147956647.00 | 93.2473 | 38.3621 |
| 90 Pimas Boru 100/250 | 206.00 | 890.00 | 236740.00 | 148193387.00 | 93.3965 | 38.7931 |
| 91 6al. Dirsek 1 1/2" | 141.00 | 1650.00 | 232650.00 | 148426037.00 | 93.5432 | 39.2241 |
| 92 Kat Hidraforu | 2.00 | 115000.00 | 230000.00 | 148656037.00 | 93.6881 | 39.6552 |
| 93 Kil Faspas 50/90 | 30.00 | 7625.00 | 228750.00 | 148884787.00 | 93.8323 | 40.0862 |
| 94 Dito B0 1t, | 3.00 | 76000.00 | 228000.00 | 149112787.00 | 93.9760 | 40.5172 |
| 95 Bot Vernik $1 / 1$ | 81.00 | 2780.00 | 225180.00 | 149337967.00 | 94.1179 | 40.9483 |
| 96 Kapi Yayi 2 | 15.90 | 15000.00 | 225000.00 | 149562967.00 | 94.2597 | 41.3793 |
| 97 Sista Silicon | 51.00 | 4400.00 | 224400.00 | 149787367.00 | 94.4011 | 41.8103 |
| 98 Kil Faspas 30/55 | 65.00 | 3450.00 | 224250.00 | 150011617.00 | 94.5424 | 42.2414 |
| 99 Ince Bezir 5/1 | 42.00 | 5250.00 | 220500.00 | 150232117.00 | 94.6814 | 42.6724 |
| 100 Celic 2.000 | 80.00 | 2730.00 | 218400.00 | 150450517.00 | 94.8191 | 43.1034 |
| 101 Silindirli Dar Kilit | 31.00 | 6940.00 | 215140.00 | 150665657.00 | 94.9546 | 43.5345 |
| 102 Kil Paspas 45/80 | 35.00 | 5875.00 | 205625.00 | 150871282.00 | 95.0842 | 43.9655 |
| 103 Ealta 5api | 511.00 | 400.00 | 204400.00 | 151075682.00 | 95.2131 | 44.3966 |
| 104 Siyah Dirsek 3/4" | 634.00 | 320.00 | 202880.00 | 151278562.00 | 95.3409 | 44.8276 |
| 105 kruva 3/4" | 201.00 | 960.00 | 192960.00 | 151471522.00 | 95.4625 | 45.2586 |
| 106 Ytong Testere | 42.00 | 4500.00 | 189000.00 | 151660522.00 | 95.5816 | 45.6897 |
| 107 Pimas Boru 50/500 | 348.00 | 525.00 | 182700.00 | 151843222.00 | 95.6968 | 46.1207 |
| 108 Gal. Dirsek $11 / 4^{\prime \prime}$ | 120.00 | 1490.00 | 178800.00 | 152022022.00 | 95.8095 | 46.5517 |
| 109 Sinek Teli 80 | 680.00 | 260.00 | 176800.00 | 152198822.00 | 95.9209 | 46.9828 |
| 110 Flastik Hortua $1^{*}$ | 550.00 | 315.00 | 173250.00 | 152372072.00 | 96.0301 | 47.4138 |
| 111 Nipel ${ }^{\text {" }}$ | 529.00 | 320.00 | 169280.00 | 152541352.00 | 96.1368 | 47.8448 |
| 112 Marshallux 1/1 | 54.00 | 3040.00 | 164160.00 | 152705512.00 | 96.2402 | 48.2759 |
| 113 Cali Supurgesi | 1081.00 | 150.00 | 162150.00 | 152867662.00 | 96.3424 | 48.7069 |
| 114 Konik Rekor $11 / 2^{\prime \prime}$ | 57.00 | 2750.00 | 156750.00 | 153024412.00 | 96.4412 | 49.1379 |
| 115 7apa 1/2" | 1540.00 | 100.00 | 154000.00 | 153178412.00 | 96.5383 | 49.5690 |
| 116 Gal. Manson 1/2" | 680.00 | 225.00 | 153000.00 | 153331412.00 | 96.6347 | 50.0000 |
| 117 Sinek Teli 120 | 380.00 | 390.00 | 148200.00 | 153479612.00 | 96.7281 | 50.4310 |
| 118 Celik: Civi | 4800.00 | 30.00 | 144000.00 | 153623612.00 | 96.8188 | 50.8621 |
| 119 Izopan Cerceveli | 56.00 | 2560.00 | 143360.00 | 153766972.00 | 96.9092 | 51.2931 |
| 120 Sista Tup Silicon | 143.00 | 975.00 | 139425.00 | 153906397.00 | 96.9971 | 51.7241 |
| 121 Sinek Teli 100 | 420.00 | 325.00 | 136500.00 | 154042897.00 | 97.0831 | 52.1552 |
| 122 Siyah Manson 2" | 96.00 | 1300.00 | 124800.00 | 154167697.00 | 97.1617 | 52.5862 |
| 123 Siyah Dirsek 1 1/4" | 112.00 | 1080.00 | 120960.00 | 154288657.00 | 97.2380 | 53.0172 |
| 124 Deairdokum Kati Yakitli | 2.00 | 59000.00 | 118000.00 | 154406657,00 | 97.3123 | 53.4483 |
| 125 Sadosan $31 / 2$ | 21.00 | 5600.00 | 117600.00 | 154524257.00 | 97.3865 | 53.8793 |
| 126 Ferikis Sulyen 1/1 | 76.00 | 1530.00 | 116280.00 | 154640537.00 | 97.4597 | 54.3103 |
| 127 Emniyet Kilidi | 33.00 | 3450.00 | 113850.00 | 154754387.00 | 97.5315 | 54.7414 |
| 128 Flastik Hortum $3 / 4{ }^{4}$ | 625.00 | 180.00 | 112500.00 | 154866887.00 | 97.6024 | 55.1724 |
| 129 fientis Sulyen 5/1 | 19.00 | 5865.00 | 111435.00 | 154978322.00 | 97.6726 | 55.6034 |
| 130 Kruva 11/4" | 58.00 | 1900.00 | 110200.00 | 155088522.00 | 97.7421 | 56.0345 |
| 131 Nisasta | 265.00 | 413.00 | 109445.00 | 155197967.00 | 97.8111 | 56.4655 |
| 132 Esem Satunlur: | 54.00 | 1950.00 | 105300.00 | 155303267.00 | 97.8774 | 56.8966 |
| 133 Fiuas 125 K.Dirsek | 74.00 | 1400.00 | 103600.00 | 155406867.00 | 97.9427 | 57.3276 |

tafle 1 Contd．
CLASS B contd．

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ANN．DEMAND <br> ニニニニニニニミニニニッニ | UNIT VALIE <br> モニニニエニニニッシ | $\begin{gathered} \text { DV } \\ ==:=:====== \end{gathered}$ | $\begin{aligned} & \text { CUM. DV } \\ & ========== \end{aligned}$ | Cum．\％of Tot． $==$ usagp＝＝＝ | $\begin{gathered} \text { Culu. \% of } \\ ====\text { s.l. U. }=== \end{gathered}$ |
| 134 Siyah Dirsel： $11 / 2^{*}$ | 78.00 | 1320.00 | 102960.00 | 155509827.10 | 98.0076 | 57.7586 |
| 135 lincir | 64.00 | 1600.00 | 102400.00 | 155612227.00 | 98.0721 | 58.1897 |
| 136 Banyo perdesi | 17.00 | 5750.00 | 97750.00 | 155709977.00 | 98.1337 | 58.6207 |
| 137 Siyah Manson 3／4＂ | 608.00 | 160.00 | 97280.00 | 155807257.00 | 98.1951 | 59.0517 |
| 138 Aspirator filtresi | 161.00 | 600.00 | 96600.00 | 155903857.00 | 98.2559 | 59.4828 |
| 139 Kalin Bezir 5／1 | 13.00 | 7000.00 | 91000.00 | 155994857.00 | 98.3133 | 59.9138 |
| 140 Boncuk tutkal | 54.00 | 1600.00 | 86400.00 | 156081257.00 | 98.3677 | 60.3448 |
| 141 Boya tabancasi | 3.00 | 28600.00 | 85800.00 | 156167057.00 | 98.4218 | 60.7759 |
| 142 Ince Bezir $1 / 1$ | 78.00 | 1080.00 | 84240.00 | 156251297.00 | 98.4749 | 61.2069 |
| 143 Nipel $3 / B^{\prime \prime}$ | 276.00 | 299.00 | 82524.00 | 156333821.00 | 98.5269 | 61.6379 |
| 144 Ishakol 1／1 | 36.00 | 2250.00 | 81000.00 | 156414821.00 | 98.5780 | 62.0690 |
| 145 Asansor kazani | 6.00 | 13000.00 | 78000.00 | 156492821.00 | 98.6271 | 62.5000 |
| 146 Deairdokua Termosifon | 1.00 | 75000.00 | 75000.00 | 156567821.00 | 98.6744 | 62.9310 |
| 147 Yonik Rekor 1＂ | 54.00 | 1250.00 | 67500.00 | 156635321．00 | 98.7169 | 63.3621 |
| 148 Kurel： | 67.00 | 1000.00 | 67000.00 | 156702321．00 | 98.7592 | 63.7931 |
| 149 Siyah Manson 1／2＂ | 670.00 | 100.00 | 67000.00 | 156769321.00 | 98.8014 | 64.2241 |
| 150 Siyah Dirsel：${ }^{*}$ | 37.00 | 1700.00 | 62900.00 | 156832221.00 | 98.8410 | 64.6552 |
| 151 Pimas 100 Temizleme | 32.00 | 1772.00 | 56704.00 | 156BBB925．00 | 98.8768 | 65.0862 |
| 152 Celik Dirsel 59 | 96.00 | 585.00 | 56160.00 | 156945085.00 | 98.9121 | 65.5172 |
| 153 Eseat Fircali Sabunluk | 18.00 | 3024.00 | 54432.00 | 156999517.00 | 98.9465 | 65.9483 |
| 154 Celit：Dirsek： 106 | 54.00 | 1000.00 | 54000.00 | 157053517.00 | 98.9805 | 66.3793 |
| 155 Konik Relor $21 / 2^{\prime \prime}$ | 6.00 | 9000.00 | 54000.00 | 157107517.00 | 99.0145 | 66.8103 |

CLASS C


| 1.00 | 48800.00 | 48800.00 | 157156317.00 | 99.0453 | 67.2414 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 270.00 | 170.00 | 45900.00 | 157202217.00 | 99.0742 | 67.6724 |
| 27.00 | 1625.00 | 43875.00 | 157246092.00 | 99.1019 | 68.1034 |
| 19.00 | 2250.00 | 42750.00 | 157288842.00 | 99.1288 | 68.5345 |
| 115.00 | 370.00 | 42550.00 | 157331392.00 | 99.1556 | 68.9655 |
| 191.00 | 220.00 | 42020.00 | 157373412.00 | 99.1821 | 69.3966 |
| 210.00 | 200.00 | 42000.00 | 157415412.00 | 99.2086 | 69.8276 |
| 22.00 | 1839.00 | 40458.00 | 157455870.00 | 99.2341 | 70.2586 |
| 25.00 | 1600.00 | 40000.00 | 157495870.00 | 99.2593 | 70.6897 |
| 33.00 | 1200.00 | 39600.00 | 157535470.00 | 99.2842 | 71.1207 |
| 41.00 | 960.00 | 39360.00 | 157574830.00 | 99.3090 | 71.5517 |
| 27.00 | 1412.00 | 38124.00 | 157612954.00 | 99.3331 | 71.9828 |
| 8.00 | 4400.00 | 35200.00 | 157648154.00 | 99.3552 | 72.4138 |
| 130.00 | 268.00 | 34840.00 | 157682994.00 | 99.3772 | 72.8448 |
| 24.00 | 1430.00 | 34320.00 | 157717314.00 | 99.3988 | 73.2759 |
| 22.00 | 1550.00 | 34100.00 | 157751414.00 | 99.4203 | 73.7069 |
| 28.00 | 1700.00 | 33600.00 | 157785014.00 | 99.4415 | 74.1379 |
| 15.00 | 2200.00 | 33000.00 | 157818014.00 | 99.4623 | 74.5690 |
| 39.00 | 830.00 | 32370.00 | 157850384.00 | 99.4827 | 75.0000 |
| 32.00 | 1000.00 | 32000.00 | 157882384.00 | 99.5029 | 75.4310 |

TARLE $\perp$ CONTD．
CLAS5 C contd．

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GNN．DEKARD <br>  | INIT VALUE ごニニ二ッニヲニ二 | DV | $\begin{aligned} & \text { CUM. DV } \\ & ========== \end{aligned}$ | Cum．\％of Tot． ＝＝＝u5age＝：＝ | $\begin{gathered} \text { Cum. \% of } \\ ====5 . k . u .=== \end{gathered}$ |
| 176 Celik Dirsel 69 | 29.00 | 1000.00 | 29000.00 | 157911384.00 | 99.5211 | 75.8621 |
| 177 Tangit 1／4 | 34.00 | 850.00 | 28900.00 | 157940284.00 | 99.5394 | 76.2931 |
| 178 Renlicis Astar 1／1 | 15.00 | 1920.00 | 28800.00 | 157969084.00 | 99.5575 | 76.7241 |
| 179 Aluminyun Boya 1／1 | 13.00 | 2200.00 | 28600.10 | 157997684.00 | 99.5755 | 77.1552 |
| 180 6al．Manson $2^{\prime \prime}$ | 41.00 | 680.00 | 27880．00 | 158025564.00 | 99.5931 | 77.5862 |
| 181 50ba Kuregi | 76.00 | 350.00 | 26600.00 | 158052164.00 | 99.6099 | 78.0172 |
| 182 Celik Halat 10 | 24.00 | 1070.00 | 25680.00 | 158077844.00 | 99.6261 | 78.4483 |
| 183 Tapa $2^{*}$ | 51.00 | 480.00 | 24480.00 | 158102324.00 | 99.6415 | 78.8793 |
| 184 Bally 1／2 | 17.00 | 1375.00 | 23375.00 | 158125699.00 | 99.6562 | 79.3103 |
| 185 Celik Dirsek 63 | 36.00 | 624.00 | 22464.00 | 158148163.00 | 99.6704 | 79.7414 |
| 186 Tup Bally Kucuk | 78.00 | 280.00 | 21840.00 | 158170003.00 | 99.6841 | 80.1724 |
| 187 Celik Halat 6 | 32.00 | 650.00 | 20800.00 | 158190803.00 | 99.6972 | 80.6034 |
| 188 Nipel $11 / 2^{\prime \prime}$ | 32.00 | 650.00 | 20800.00 | 158211603.00 | 99.7104 | 81.0345 |
| 189 Cekic 0.500 | 24.00 | 858.00 | 20592.00 | 158232195.00 | 99.7233 | 81.4655 |
| 190 Gal．Manson 3／4＂ | 328.00 | 60.00 | 19680.00 | 158251875.00 | 99.7357 | 81.8966 |
| 191 Kruva 1＂ | 19.00 | 960.00 | 18240.00 | 158270115.00 | 99.7472 | 82.3276 |
| 192 Denir Buke Anahtari 12 | 15.00 | 1200.00 | 18000.00 | 158288115.00 | 99.7586 | E2．7586 |
| 193 6al，Te 1＂ | 26.00 | 675.00 | 17550.00 | 158305665．00 | 99.7696 | 83.1897 |
| 194 Tup Tangit Kucuk． | 26.00 | 670.00 | 17420.00 | 158323085.00 | 99.7806 | 83.6207 |
| $195 \mathrm{Tapa} 3 / 4^{\prime \prime}$ | 137.00 | 125.00 | 17125.00 | 158340210.00 | 99.7914 | 84.0517 |
| 196 Pally 1／4 | 27.00 | 630.00 | 17010.00 | 158357220.00 | 99.8021 | 84.4828 |
| 197 6al．Manson 1 1／4＊ | 58.00 | 270.00 | 15660.00 | 158372880.00 | 99.8120 | 84.9138 |
| 198 Gal ．Te $11 / 4^{\circ}$ | 13.00 | 1200.00 | 15600.00 | 158388480.00 | 99.8218 | 85.3448 |
| 199 Kruva $2^{*}$ | 45.00 | 325.00 | 14625.00 | 158403105.00 | 99.8310 | 85.7759 |
| 200 6al．Manson 1＂ | 144.00 | 100.00 | 14400.00 | 158417505.00 | 99.8401 | 86.2069 |
| 201 Akarsan Kilit | 1.00 | 14000.00 | 14000.00 | 158431505.00 | 99.8489 | 86.6379 |
| 202 Agac asti | 9.00 | 1500.00 | 13500.00 | 158445005.00 | 99.8574 | 87.0690 |
| 203 Musluk Contasi | 2218.00 | 6.00 | 13308.00 | 158458313.00 | 99.8658 | 87.5000 |
| 204 Cekic 0.400 | 16.00 | 813.00 | 13008.00 | 158471321.00 | 99.8740 | 87.9310 |
| 205 Esem Dis Fircalik | 6.00 | 2150.00 | 12900.00 | 158484221．00 | 99.8822 | 88.3621 |
| 206 Konik Rekor 3＇ | 4.00 | 3100.00 | 12400.00 | 158496621.00 | 99.8900 | 88.7931 |
| 207 Deair Bukae Anahtari 14 | 12.00 | 1000.00 | 12000.00 | 158508621.00 | 99.8975 | 89.2241 |
| 208 Siyah Manson 3＂ | 6.00 | 1900.00 | 11400.00 | 158520021.00 | 99.9047 | 89.6552 |
| 209 Siyah Dirsek 2 1／2＂ | 4.00 | 2650.00 | 10600.00 | 158530621.00 | 99.9114 | 90.0862 |
| 210 Aluminyua Boya 1／4 | 21.00 | 500.00 | 10500.00 | 158541121.00 | 99.9180 | 90.5172 |
| 211 Cekic 0.100 | 26.00 | 390.00 | 10140.00 | 158551261．00 | 99.9244 | 90.9483 |
| 212 lincir Kilidi | 30.00 | 330.00 | 9900.00 | 158561161.00 | 99.9307 | 01.3793 |
| 213 Nipel ${ }^{\prime \prime}$ | 11.00 | 900.00 | 9900.00 | 158571061.00 | 99.9369 | 91.8103 |
| 214 Celik Dirsek 61 | 15.00 | 624.00 | 9360.00 | 158580421.00 | 99.942 B | 92.2414 |
| 215 Konik Fiekor 1／2＂ | 15.00 | 600.00 | 9000.00 | 158589421.00 | 99.9485 | 92.6724 |
| 216 Ceric 0.150 | 21.00 | 425.00 | 8925.00 | 158598346．00 | 99.9541 | 93.1034 |
| 217 Izolebant | 28.00 | 300.00 | 8400.00 | 158606746.00 | 97.9594 | 93.5345 |
| 218 Bel kuret． | 8.00 | 950.00 | 7600.00 | 158614346.00 | 99.9642 | 93.9655 |
| 219 Demir Bukme Anantari 10 | 7.00 | 1075.00 | 7525.00 | 158621871.00 | 99.9689 | 94.3966 |
| 220 Celik Dirsel：170 | 3.00 | 2480.00 | 7440.00 | 158629311.00 | 99.9736 | 94.8276 |

TAELE 1 CONTI．

CLASS C contd．

| こ＝こニニニニニニ＝＝ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H0．S．V．U．ID． | ANH，DEMAMD | UHIT VALUE | DV | CUM，DV | Cum．\％of Tot． | Cum．\％of |
| ＝2＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝ | －＝＝＝＝＝＝＝＝＝ | ＝こ＝ニニ＝＝＝＝ |  | ニニニニニニニーニース | $=$＝－ucage＝＝＝ | $===$ c．k．u．$===$ |
| 221 Celit．Dirsel 88 | 6.00 | 1125．00 | 6750.00 | 158636061．00 | 99.9779 | 95.2586 |
| 22 D Denir Furae Arahtari 16 | 4.00 | 1500.00 | 6000.00 | 158642061.00 | 99.9816 | 95．6897 |
| 223 Motilya Vernigi 1／1 | 5.00 | 915．00 | 4575.00 | 158646636.00 | 99.9845 | 96.1207 |
| 224 1apa 1＂ | 24.00 | 175．00 | 4200.00 | 158650836．00 | 99.9872 | 96.5517 |
| 225 Esem Havlulut． | 1.00 | 4180.00 | 4180.00 | 158655016.00 | 99.9898 | 96.9828 |
| 226 Fedutsiyon $21 / 2^{\prime \prime}-2^{\prime \prime}$ | 8.60 | 520.00 | 4160.00 | 158659176．00 | 99.9924 | 97.4138 |
| 227 Urgan | 17.00 | 220.00 | 3740.00 | 158662916．00 | 99.9948 | 97.8448 |
| 228 Hipel 3＊ | 1.00 | 3000.00 | 3000.00 | 158665916.00 | 99.9967 | 98.2759 |
| 229 Celit Dirsek 120 | 2.00 | 1000.00 | 2000.00 | 158667916.00 | 99.9979 | 98.7069 |
| 230 Demir Eutae Arathari 1日 | 1.00 | 1900.00 | 1900.00 | 158669816．00 | 99.9991 | 99.1379 |
| 231 Alyen anehtar（7） | 10.00 | 90，00 | 900.00 | 158670716.00 | 99.9997 | 99．5690 |
| 232 ［elit：Dirsek 100 | 1.00 | 475．00 | 475.00 | 158671191．00 | 100.0000 | 100.0000 |



FIGURE 2


## REFERENCES

1) BILGE, C., DURU, M., KARAGOZ, B., Mis Design Project on Inventory Control Systems of Ozdemirler--How to Improve, Bilkent University Mis Course Term Paper, 1989.
2) BROWN, R.G., Desicion Rules for Inventory Management, Holt, Rinehart and Winston, New York, 1967.
3) BUCHAN, J., KOENIGSBERG, E., Scientific Inventory Management , Prentice-Hall Inc., Englewood, 1963.
4) GREENE, J.H., Production and Inventory Control Handbook, McGraw-Hill Book Co., 1987.
5) HAX, A.C., CANDEA, D., Production and Inventory Management, Prentice-Hall Inc., New Jersey, 1984.
6) HOFFMAN, A.R., Inventories: A Guide to Their Control and Effect Upon Income and Taxes, The Ronald Press Company, New York., 1962.
7) SILVER, E. A., PETERSON, R., Decision Systems for Inventory Management and Production Planning, John Wiley \& Sons., New York., 1985.
8) STARR, M.K., MILLER, D.W., Inventory Control: Theory and Practice, Prentice-Hall Inc., Englewood, 1962.
9) STEVENSON, w.J., Production and Operations Management, Irvin Inc., 1986.

[^0]:    3.3. CLASSIFICATION

    The first step in classification was to multiply the annual demand (D) of each item (Table 1-column 1), with its value(v)

