

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 1368–1391

TWO ALGORITHMS FOR THE MINIMUM ENCLOSING BALL
PROBLEM∗

E. ALPER YILDIRIM†

Abstract. Given A := {a1, . . . , am} ⊂ R
n and ε > 0, we propose and analyze two algorithms for

the problem of computing a (1+ ε)-approximation to the radius of the minimum enclosing ball of A.
The first algorithm is closely related to the Frank–Wolfe algorithm with a proper initialization applied
to the dual formulation of the minimum enclosing ball problem. We establish that this algorithm
converges in O(1/ε) iterations with an overall complexity bound of O(mn/ε) arithmetic operations.
In addition, the algorithm returns a “core set” of size O(1/ε), which is independent of both m and n.
The latter algorithm is obtained by incorporating “away” steps into the former one at each iteration
and achieves the same asymptotic complexity bound as the first one. While the asymptotic bound on
the size of the core set returned by the second algorithm also remains the same as the first one, the
latter algorithm has the potential to compute even smaller core sets in practice, since, in contrast
to the former one, it allows “dropping” points from the working core set at each iteration. Our
analysis reveals that the leading terms in the asymptotic complexity analysis are reasonably small.
In contrast to the first algorithm, we also establish that the second algorithm asymptotically exhibits
linear convergence, which provides further insight into our computational results, indicating that the
latter algorithm indeed terminates faster with smaller core sets in comparison with the first one.
We also discuss how our algorithms can be extended to compute an approximation to the minimum
enclosing ball of more general input sets without sacrificing the iteration complexity and the bound
on the core set size. In particular, we establish the existence of a core set of size O(1/ε) for a much
wider class of input sets. We adopt the real number model of computation in our analysis.

Key words. minimum enclosing balls, core sets, approximation algorithms

AMS subject classifications. 90C25, 90C46, 65K05

DOI. 10.1137/070690419

1. Introduction. Given a finite set of points A := {a1, . . . , am} ⊂ R
n, we are

concerned with the problem of computing an approximation to the minimum enclosing
ball of A, which we shall denote by MEB(A).

For c ∈ R
n and a nonnegative ρ ∈ R, let Bc,ρ ⊂ R

n denote the ball centered at c
with radius ρ, i.e.,

Bc,ρ := {x ∈ R
n : ‖x− c‖ ≤ ρ},

where ‖ · ‖ denotes the Euclidean norm.
Given ε > 0, a ball Bc,ρ is said to be a (1 + ε)-approximation to MEB(A) if

(1) A ⊂ Bc,ρ, ρ ≤ (1 + ε)ρA,

where BcA,ρA := MEB(A).
A subset X ⊆ A is said to be an ε-core set (or a core set) of A if

(2) ρX ≤ ρA ≤ (1 + ε)ρX ,

where BcX ,ρX := MEB(X). Small core sets play an important role in designing efficient
algorithms for large-scale problems, since they provide a compact representation of

∗Received by the editors May 3, 2007; accepted for publication (in revised form) May 22, 2008;
published electronically November 21, 2008.

http://www.siam.org/journals/siopt/19-3/69041.html
†Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

(yildirim@bilkent.edu.tr). This research was partially supported by TÜBİTAK (Turkish Scientific
and Technological Research Council) Grant 107M411.

1368

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1369

the input set A. If a small ε-core set X is available, then solving the problem on X
already yields a good approximation to MEB(A). Since the center cA of MEB(A) lies
in the convex hull of A (cf. section 2), it follows from Carathéodory’s theorem that
there always exists a 0-core set of size at most n + 1.

Minimum enclosing balls have numerous important applications in clustering,
nearest neighbor search, data classification, support vector machines, machine learn-
ing, facility location, collision detection, computer graphics, and military operations.
We refer the reader to [24] and the references therein. In particular, many of these
applications give rise to large-scale instances of the MEB problem, and a reasonably
small accuracy suffices for such applications.

The minimum enclosing ball problem has a fairly rich literature dating back to
at least the 19th century [37]. One of the earliest known solution methods is given by
Sylvester [38], which is attributed to Peirce, and later rediscovered by Chrystal [9].
The reader is referred to [6] for a detailed account of the earlier history of this problem.
More recent references include [25, 14, 28, 11, 8, 35, 7, 23, 22, 27, 31, 40, 16, 17, 4, 2,
24, 42, 13, 12, 29, 30, 21, 44, 32].

The earliest known algorithm due to Chrystal and Peirce [38, 9] computes the
exact minimum enclosing ball of m points in the plane in O(m2) operations in the
worst case. For a fixed dimension n, the minimum enclosing ball of m points can be
computed in O(m) operations [27, 40]. However, the dependence on the dimension
n is exponential. Bădoiu, Har-Peled, and Indyk [4] established the existence of an
ε-core set of size O(1/ε2). Note that the size of the core set is independent of m and n.
Based on this result, their algorithm can compute a (1+ε)-approximation to MEB(A)
in O

(
mn/ε2 + (1/ε10) log(1/ε)

)
operations. Bădoiu and Clarkson [2] and Kumar,

Mitchell, and Yıldırım [24] independently discovered the existence of an ε-core set of
size O(1/ε). As noted in [2], this improved core set result can be combined with the al-
gorithm of [4] to obtain an improved running time of O

(
mn/ε + 1/ε5

)
. The algorithm

of [24] achieves a slightly improved complexity bound of O
(
mn/ε + (1/ε4.5) log(1/ε)

)
using second-order cone programming combined with column generation. In addi-
tion, Bădoiu and Clarkson [2] proposed another simple algorithm that computes a
(1 + ε)-approximation in O(mn/ε2) operations. In another paper, the same authors
established a tight upper bound of �1/ε� on the size of an ε-core set [3]. However,
their construction is based on the assumption that n ≥
1/ε�. The algorithm of Pan-
igrahy [33] computes a (1 + ε)-approximation in O(mn/ε) operations. Note that this
algorithm has the best known dependence on ε, and each of these algorithms is poly-
nomial for fixed ε. If ε is viewed as part of the input data, the minimum enclosing ball
can be formulated as an instance of convex programming problem and can be solved
using the ellipsoid method in O

(
n3m log(1/ε)

)
operations [19]. Alternatively, interior-

point methods yield an overall complexity bound of O
(
n2m3/2 log(1/ε)

)
operations

if the problem is formulated as an instance of second-order cone programming [24].
In this paper, we focus on large-scale instances of the minimum enclosing ball

problem for which a reasonably small value of ε is satisfactory. Throughout this paper,
we adopt the real number model of computation [5], i.e., we assume that arithmetic
operations with real numbers and comparisons can be done at unit cost. We propose
and analyze two algorithms that compute a (1 + ε)-approximation to MEB(A) for a
given ε > 0. Our first algorithm is closely related to the Frank–Wolfe algorithm [15]
applied to the dual formulation of the problem. At each iteration, the algorithm can
only add points to the working core set. The second algorithm is obtained by incorpo-
rating “away” steps into each iteration of the first one (see, e.g., [41, 20]). As such, the

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1370 E. ALPER YILDIRIM

latter algorithm has the potential to compute a smaller core set than the former one,
since it allows “dropping” points from the working core set at each iteration. A simi-
lar algorithm has recently been proposed for the minimum-volume enclosing ellipsoid
problem [39]. Both of our algorithms compute a (1 + ε)-approximation to MEB(A)
in O(mn/ε) operations, which matches the currently best known dependence on ε. In
addition, each algorithm explicitly computes an ε-core set of size O(1/ε). Our analysis
reveals that the leading terms in the complexity analysis are reasonably small, which
further contributes to the efficiency of our algorithms. Furthermore, we establish that
the second algorithm asymptotically exhibits linear convergence. Our computational
results indicate that the sizes of the core sets returned by our algorithms are generally
much smaller than the corresponding worst-case estimates. Furthermore, as expected,
the latter algorithm almost always outperforms the former one both in terms of the
running time and the core set size.

We also discuss how our algorithms can be extended to compute an approximate
minimum enclosing ball of more general input sets. In particular, we establish that
the asymptotic core set size of O(1/ε) extends to a much larger class of input sets.

We first compare our algorithms with the one proposed by Panigrahy [33], which
computes a (1 + ε)-approximation to the minimum enclosing ball of a finite set of
points in O(mn/ε) arithmetic operations. Panigrahy’s algorithm starts with a ball
whose radius is known to be smaller than that of the minimum enclosing ball and
maintains an upper bound ζ on the difference between these two radii. At each iter-
ation, the algorithm moves the current ball toward the furthest point from the center
until the ball touches that particular point without changing the radius of the ball.
After repeating such iterations O(1/ζ) times, the algorithm either provides a certifi-
cate that an approximate solution has been computed or decides that either the radius
can be increased or the error bound ζ can be decreased. The whole procedure is then
repeated using the new parameters for the radius and the error bound. Similarly to
Panigrahy’s algorithm, each of our algorithms also constructs a sequence of balls, and
our first algorithm moves the center toward the furthest point from the center of the
current ball at each iteration. However, the center moves by only a fraction of this
distance. Furthermore, the second algorithm also allows us to move the current center
away from the closest point in the working core set. Unlike Panigrahy’s algorithm,
our algorithms construct balls of strictly increasing radii in each iteration, and the ra-
dius and the error bound are updated at each iteration. While Panigrahy’s algorithm
checks the termination criterion after each set of O(1/ζ) iterations, our algorithms
employ a simpler termination criterion in each iteration. This strategy has the poten-
tial advantage of earlier termination than that predicted by the theoretical worst-case
estimate. Finally, while Panigrahy exclusively works with an input set of finite points
with more general enclosing shapes, our algorithms can easily be modified to compute
an approximation of the minimum enclosing ball of a much wider class of input sets
without sacrificing the core set bound of O(1/ε).

After the first version of this manuscript had been submitted, Clarkson [10] an-
nounced several results concerning the convergence properties of the Frank–Wolfe
algorithm, which is the main ingredient in both of our algorithms. He studied the
problem of maximizing a general concave function over the unit simplex, of which the
dual formulation of the minimum enclosing problem is a special case. By giving a
general definition of an additive ε-core set, he established core set results for several
variants of the Frank–Wolfe algorithm in a more general setting. Due to the special
structure of the objective function in the dual formulation of the minimum enclosing

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1371

ball problem, his additive core set definition almost matches with our multiplica-
tive core set definition given by (2). He presented an improved complexity bound of
O(mn/ε) for a slightly modified version of the algorithm of [2], which matches the
complexity bounds of our algorithms.

On the other hand, he establishes an ε-core set size of O(1/ε2) for the general
problem using his Algorithm 1.1, which, apart from the choice of the initial solutions,
coincides with our first algorithm that computes a core set of size O(1/ε). He pro-
poses a more sophisticated algorithm (cf. Algorithm 4.2 in [10]), which requires the
computation of the optimal solution of a sequence of subproblems restricted to the
smaller faces of the unit simplex, to establish the improved core set result of O(1/ε).
In addition, he also studies a variant of the Frank–Wolfe algorithm that uses “away”
steps (cf. Algorithm 5.1), for which he establishes a core set size of O(1/ε). However,
this algorithm differs from our second algorithm, since it again requires the computa-
tion of the optimal solution of a sequence of subproblems. In contrast, we establish a
core set size of O(1/ε) using much simpler (and lazier) algorithms. We derive explicit
small constants inside the asymptotic bounds. Finally, we extend each of our algo-
rithms to much more general input sets and establish the existence of core sets of size
O(1/ε). Therefore, while Clarkson’s results apply to a more general class of problems,
we achieve the same or stronger results using simpler algorithms for the special case
of the minimum enclosing ball problem, but we allow more general input sets.

This paper is organized as follows. In the remainder of this section, we define
our notation. In section 2, we discuss optimization formulations for the minimum
enclosing ball problem. Section 3 presents our first algorithm. The second algorithm
is the topic of section 4. We discuss the extensions of our algorithms in section 5.
The computational results are presented in section 6. Finally, we conclude the paper
with some future research directions in section 7.

1.1. Notation. Vectors are denoted by lowercase Roman letters. For a vector
p, pi denotes its ith component. Inequalities on vectors apply to each component.
We reserve ej for the jth unit vector. Uppercase Roman letters are reserved for
matrices. We use log(·) to denote the natural logarithm. Functions and operators are
denoted by uppercase Greek letters. Scalars except for m and n are represented by
lowercase Greek letters unless they represent components of a vector or elements of
a sequence of scalars, vectors, or matrices. We reserve i, j, and k for such indexing
purposes. Uppercase script letters are used for all other objects such as sets, balls,
and ellipsoids.

2. Optimization formulations. In this section, we review the optimization
formulations of the minimum enclosing ball problem. We remark that most of the
material of this section already appears in the earlier literature (see, e.g., [11, 26]).
Some results and proofs are included for the sake of completeness.

Let A := {a1, . . . , am} ⊂ R
n. The minimum enclosing ball of A can be computed

by solving the following optimization problem:

(P1) minc,ρ ρ
subject to ∥∥ai − c

∥∥ ≤ ρ, i = 1, . . . , m,

where c ∈ R
n and ρ ∈ R are the decision variables. By squaring the constraints and

defining γ := ρ2, (P1) can be converted into the following optimization problem with

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1372 E. ALPER YILDIRIM

smooth, convex quadratic constraints:

(P2) minc,γ γ
subject to

(ai)T ai − 2(ai)T c + cT c ≤ γ, i = 1, . . . , m.

The Lagrangian dual of (P2) is given by

(D) maxu Φ(u) :=
m∑

i=1

ui(ai)T ai −
(

m∑
i=1

uia
i

)T (m∑
i=1

uia
i

)

subject to
m∑

i=1

ui = 1,

ui ≥ 0, i = 1, . . . , m,

where u ∈ R
m is the decision variable.

Since (P2) is a concave maximization problem with linear constraints, it follows
from the Karush–Kuhn–Tucker optimality conditions that (cA, γA) ∈ R

n × R is an
optimal solution of (P2) if and only if there exists u∗ ∈ R

m such that

m∑
i=1

u∗
i = 1,(3a)

cA =
m∑

i=1

u∗
i a

i,(3b)

(ai)T ai − 2(ai)T cA + (cA)T cA ≤ γA, i = 1, . . . , m,(3c)
u∗

i

(
(ai)T ai − 2(ai)T cA + (cA)T cA − γA

)
= 0, i = 1, . . . , m,(3d)

u∗ ≥ 0.(3e)

A simple manipulation of the optimality conditions reveals that

(4) γA = Φ(u∗),

which implies that u∗ ∈ R
m is an optimal solution of (D) and that strong duality

holds between (P2) and (D). Note that the center cA of the minimum enclosing ball
of A is given by a convex combination of the elements of A by (3b). In addition, it
follows from (3d) that only the components of u∗ corresponding to the points on the
boundary of MEB(A) can have a positive value.

Lemma 2.1. Let A = {a1, . . . , am}. The minimum enclosing ball of A exists and
is unique. Let u∗ ∈ R

m denote the optimal solution of (D). Then, MEB(A) = BcA,ρA ,
where

(5) cA =
m∑

i=1

u∗
i a

i, ρA =
√

Φ(u∗).

Proof. Note that A ⊂ B0,ρu , where ρu := maxi=1,...,m

∥∥ai
∥∥. By adding the

redundant constraint γ ≤ (ρu)2 to (P2), the feasible region becomes a closed and
bounded set and the objective function is continuous, which establishes the existence
of MEB(A). If there were two different minimum enclosing balls, one can then con-
struct a ball of smaller radius that encloses the intersection of the two balls and

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1373

hence also A, which is a contradiction. The relationships (5) directly follow from the
discussions preceding the lemma.

By Lemma 2.1, MEB(A) can be computed by solving the dual problem (D), which
will be the basis of both of our algorithms in this paper. We close this section by the
following technical result, which will play an important role in finding a good initial
feasible solution in our algorithms. The reader is referred to [18, 4, 12] for the proof
of this result.

Lemma 2.2. Let A = {a1, . . . , am}, and let MEB(A) = BcA,ρA . Then, any
closed half-space that contains cA also contains at least one point aj ∈ A such that∥∥aj − cA

∥∥ = ρA.

3. The first algorithm. Given A := {a1, . . . , am} ⊂ R
n and ε > 0, we present

our first algorithm that computes a (1+ ε)-approximation to MEB(A) in this section.

Algorithm 3.1 The first algorithm that computes a (1 + ε)-approximation to
MEB(A).
Require: Input set of points A = {a1, . . . , am} ⊂ R

n, ε > 0.
1: α← argmaxi=1,...,m

∥∥ai − a1
∥∥2

, β ← argmaxi=1,...,m

∥∥ai − aα
∥∥2;

2: u0
i ← 0, i = 1, . . . , m;

3: u0
α ← 1/2, u0

β ← 1/2;
4: X0 ← {aα, aβ};
5: c0 ←

∑m
i=1 u0

i a
i;

6: γ0 ← Φ(u0);
7: κ← arg maxi=1,...,m

∥∥ai − c0
∥∥2

;

8: δ0 ←
(∥∥aκ − c0

∥∥2
/γ0
)
− 1;

9: k ← 0;
10: While δk > (1 + ε)2 − 1, do
11: loop
12: λk ← δk/[2(1 + δk)];
13: k ← k + 1;
14: uk ← (1− λk−1)uk−1 + λk−1eκ;
15: ck ← (1− λk−1)ck−1 + λk−1aκ;
16: Xk ← Xk−1 ∪ {aκ};
17: γk ← Φ(uk);
18: κ← arg maxi=1,...,m

∥∥ai − ck
∥∥2;

19: δk ←
(∥∥aκ − ck

∥∥2
/γk
)
− 1;

20: end loop
21: Output ck,Xk, uk,

√
(1 + δk)γk.

We now describe Algorithm 3.1 in more detail. In step 1, the algorithm computes
the furthest point aα ∈ A from a1 ∈ A and then computes the furthest point aβ ∈ A
from aα. Steps 2 and 3 initialize the vector u0 ∈ R

m. Note that u0 is a feasible
solution of the dual problem (D). The core set X0 is initialized at step 4. At each
iteration, the algorithm implicitly constructs a “trial” ball with center ck and radius
(γk)1/2. By Lemma 2.1, this ball coincides with MEB(A) if and only if uk is an
optimal solution of (D). Otherwise, at least one point in A lies outside of this ball.
Note that δk satisfies

∥∥aκ − ck
∥∥2 = (1 + δk)γk, where aκ ∈ A is the furthest point

from ck. It follows that the trial ball encloses A if its radius is expanded by a factor

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1374 E. ALPER YILDIRIM

of (1 + δk)1/2, i.e., Φ(uk) ≤ Φ(u∗) ≤ (1 + δk)Φ(uk). Unless the termination criterion
is satisfied, the new center ck+1 is computed by shifting ck toward the furthest point
aκ, which is added to the working core set Xk+1, and uk+1 is updated accordingly
to ensure that dual feasibility is maintained. The algorithm continues in an iterative
manner by computing a new trial ball corresponding to uk+1.

Algorithm 3.1 is the adaptation of the Frank–Wolfe algorithm to the dual problem
(D). At each iteration, the quadratic objective function Φ(u) of (D) is linearized at
the current feasible solution uk. Since the feasible region of (D) is the unit simplex,
the unit vector eκ, where κ is the index of the furthest point in A from ck, solves the
linearized subproblem. It is easy to verify that

λk = arg max
λ∈[0,1]

Φ
(
(1− λ)uk + λeκ

)
.

We remark that Algorithm 3.1 uses only the first-order approximation to the
objective function Φ. As such, each iteration is fairly cheap, but the number of iter-
ations is usually significantly higher than other algorithms that use second-order in-
formation such as interior-point methods. However, such general-purpose algorithms
become computationally infeasible for larger problems, since each iteration is usually
much more expensive. This observation provides one of our motivations to develop a
specialized algorithm for this problem.

3.1. Analysis of the first algorithm. This subsection is devoted to the anal-
ysis of Algorithm 3.1.

Lemma 3.1. u0 ∈ R
m satisfies γ0 = Φ(u0) ≥ (1/3)Φ(u∗) = (1/3)γA, where

u∗ ∈ R
m and γA are the optimal solution and the optimal value of (D), respectively.

Furthermore, δ0 ≤ 8.
Proof. For any vectors y, z ∈ R

n and any ϕ ∈ R, it is easy to verify that

(6) ‖(1 − ϕ)y + ϕz‖2 = (1− ϕ)‖y‖2 + ϕ‖z‖2 − ϕ(1 − ϕ)‖y − z‖2.

Note that

(7) Φ(u0) = (1/2) ‖aα‖2 + (1/2)
∥∥aβ

∥∥2 −
∥∥(1/2)

(
aα + aβ

)∥∥2
= (1/4)

∥∥aα − aβ
∥∥2

,

where we used (6) to derive the second equality. The proof is based on establishing
that at least one of aα and aβ is sufficiently away from the center cA of MEB(A).

First, suppose that
∥∥a1 − cA

∥∥ ≥ (1/
√

3)ρA, where ρA is the radius of MEB(A).
Let H be the hyperplane passing through cA that is perpendicular to a1 − cA. Let
H+ denote the closed half-space whose boundary is H and which does not contain a1.
By Lemma 2.2, H+ contains a point aj ∈ A such that

∥∥aj − cA
∥∥ = ρA. Therefore,∥∥aα − a1

∥∥2 ≥
∥∥a1 − cA

∥∥2 + (ρA)2 ≥ (4/3)γA, where γA = Φ(u∗) = (ρA)2 is the
optimal value of (D). It follows from (7) that

Φ(u0) = (1/4)
∥∥aβ − aα

∥∥2 ≥ (1/4)
∥∥a1 − aα

∥∥2 ≥ (1/3)Φ(u∗).

Suppose now that
∥∥a1 − cA

∥∥ = θρA, where θ < 1/
√

3. In this case,
∥∥a1 − aα

∥∥ ≤∥∥a1 − cA
∥∥+ ‖cA − aα‖, which implies that

‖cA − aα‖ ≥
∥∥a1 − aα

∥∥− ∥∥a1 − cA
∥∥ ≥ (1 + θ2)1/2ρA − θρA = [(1 + θ2)1/2 − θ]ρA,

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1375

where we again invoked Lemma 2.2 to obtain a lower bound on
∥∥a1 − aα

∥∥. Therefore,
one more application of Lemma 2.2 yields

Φ(u0) = (1/4)
∥∥aβ − aα

∥∥2

≥ (1/4)
(
‖aα − cA‖2 + (ρA)2

)
≥ (1/4)

(
1 + θ2 + θ2 − 2θ(1 + θ2)1/2 + 1

)
γA

= (1/2)
(
1 + θ2 − θ(1 + θ2)1/2

)
γA.

It is easy to verify that (1/2)
(
1 + θ2 − θ(1 + θ2)1/2

)
is a decreasing function of θ.

Since θ < 1/
√

3, it follows that

Φ(u0) ≥ (1/2) (1 + 1/3− 2/3)γA = (1/3)Φ(u∗),

which completes the first part of the proof.
Let aκ be the furthest point in A from c0 = (1/2)(aα + aβ). Then,∥∥aκ − c0

∥∥ ≤ ‖aκ − aα‖+
∥∥aα − c0

∥∥ ,

≤
∥∥aβ − aα

∥∥+ (1/2)
∥∥aβ − aα

∥∥ = (3/2)
∥∥aβ − aα

∥∥ ,

where we used the definition of c0 and the fact that aβ is the furthest point in A
from aα to derive the second inequality. Therefore, δ0 = (‖aκ − c0‖2/γ0) − 1 ≤
[4(9/4)(γ0/γ0)] − 1 = 8, where we used (7). The second part of the assertion fol-
lows.

Lemma 3.1 establishes several properties of the initial feasible solution u0 ∈ R
m.

The next lemma relates the dual objective function values evaluated at the successive
iterates generated by Algorithm 3.1.

Lemma 3.2. For each k = 0, 1, . . . , the following relationship is satisfied:

(8) γk+1 = γk

(
1 +

δ2
k

4(1 + δk)

)
.

Proof. Let aκ denote the furthest point from ck. Then, uk+1 =
(
1− λk

)
uk+λkeκ.

Therefore,

γk+1 = Φ
(
(1− λk)uk + λkeκ

)
= (1 − λk)

m∑
i=1

uk
i (ai)T (ai) + λk(aκ)T (aκ)−

∥∥∥∥∥(1− λk)

(
m∑

i=1

uk
i ai

)
+ λkaκ

∥∥∥∥∥
2

= (1 − λk)

⎛
⎝ m∑

i=1

uk
i (ai)T (ai)−

∥∥∥∥∥
m∑

i=1

uk
i ai

∥∥∥∥∥
2
⎞
⎠+ λk(1 − λk)

∥∥∥∥∥
m∑

i=1

uk
i ai − aκ

∥∥∥∥∥
2

= (1 − λk)γk + λk(1 − λk)
∥∥aκ − ck

∥∥2

= (1 − λk)γk + λk(1 − λk)(1 + δk)γk

= γk

(
1 +

δ2
k

4(1 + δk)

)
,

where we used (6) in the third equality, the definitions of ck and δk in the fourth and
fifth equalities, respectively, and the definition of λk in the last equality.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1376 E. ALPER YILDIRIM

We now focus on establishing an upper bound on the number of iterations required
to have an iterate uk with δk sufficiently small. To that end, let us define

(9) τν := min
{

k : δk ≤
1
2ν

}
, ν = 0, 1,

Lemma 3.3. τν satisfies the following relationships:

τ0 ≤ 9,(10a)
τν − τν−1 ≤ 12.5(2ν) ν = 1, 2,(10b)

Proof. Let us first consider τ0. At each iteration k < τ0, we have δk > 1. By
Lemma 3.2,

γk+1 = γk

(
1 +

δ2
k

4(1 + δk)

)
,

≥ γk(1 + 1/8),

where we used the fact that 1 + (1/4)(x2/(1 + x)) is an increasing function of x.
Iterating this inequality, we obtain γk+1 ≥ (9/8)k+1γ0. By Lemma 3.1 and the
feasibility of uk+1, we have

γA ≥ γk+1 ≥ (9/8)k+1γ0 ≥ (9/8)k+1 (γA/3) ,

which implies that τ0 ≤ k + 1 ≤ log(3)/ log(9/8) or, equivalently, that τ0 ≤ 9.
Let us now consider τν − τν−1 for ν = 1, 2, Let μ := τν−1. At each iteration

k with δk > 1/2ν, we similarly have

γk+1 = γk

(
1 +

δ2
k

4(1 + δk)

)
≥ γk

(
1 +

1
22+ν(2ν + 1)

)
.

At iteration μ, we have δμ ≤ 1/2ν−1. Since the ball centered at cμ with radius
[(1 + δμ)γμ]1/2 encloses A, it follows that γμ ≤ γA ≤ (1 + δμ)γμ ≤ (1 + (1/2ν−1))γμ.
Together with the repeated application of the inequality above, we have

γA ≥ γμ+k ≥ γμ

(
1 +

1
22+ν(2ν + 1)

)k

≥ γA
1 + (1/2ν−1)

(
1 +

1
22+ν(2ν + 1)

)k

,

which implies that

τν − τν−1 ≤
log
(
1 + 1

2ν−1

)
log
(
1 + 1

22+ν(2ν+1)

)

≤ 1
2ν−1

1
22+ν(2ν+1) + 1

1
22+ν(2ν+1)

=
2
2ν

+ 8(2ν + 1)

≤ 9 + 8(2ν) ≤ (12.5)2ν,

where we used the inequalities log(1 + x) ≤ x for x > −1 and log(1 + x) ≥ x/(x + 1)
for x > −1.

The following lemma establishes an upper bound on the number of iterations to
obtain an iterate with δk ≤ δ.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1377

Lemma 3.4. Let δ ∈ (0, 1). Algorithm 3.1 computes an iterate k satisfying δk ≤ δ
in at most 9 + 50/δ iterations.

Proof. Let σ be an integer such that 1/2σ ≤ δ ≤ 2/2σ. Therefore, after at most
τσ iterations, Algorithm 3.1 computes an iterate k satisfying δk ≤ δ. By Lemma 3.3,

τσ = τ0 +
σ∑

ν=1

(τν − τν−1) ≤ 9 + 12.5
σ∑

ν=1

2ν ≤ 9 + 25(2σ) ≤ 9 + 50/δ.

We now have all of the ingredients to establish the iteration complexity of Algo-
rithm 3.1.

Theorem 3.1. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), Algorithm 3.1

computes a (1 + ε)-approximation to MEB(A) in at most 9 + 25/ε iterations.
Proof. Let uη denote the final iterate computed by Algorithm 3.1, and let γη =

Φ(uη). Then, the trial ball centered at cη with radius [(1+ δη)γη]1/2 encloses A. Note
that uη is a feasible solution of (D), and δη ≤ (1+ε)2−1 by the termination criterion.
Therefore, (γη)1/2 ≤ ρA ≤ [(1 + δη)γη]1/2 ≤ (1 + ε)(γη)1/2, which implies that the
ball centered at cη with radius [(1 + δη)γη]1/2 is a (1 + ε)-approximation to MEB(A).

By Lemma 3.4, Algorithm 3.1 computes such an iterate with δ ≤ (1 + ε)2 − 1 in
at most 9 + 50/(2ε + ε2) ≤ 9 + 25/ε iterations.

Theorem 3.1 establishes that Algorithm 3.1 converges in O(1/ε) iterations. The
next result presents the overall complexity.

Theorem 3.2. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), Algorithm 3.1

computes a (1 + ε)-approximation to MEB(A) in at most O(mn/ε) arithmetic opera-
tions.

Proof. The computation of the initial feasible solution u0 requires two furthest
point computations, which can be performed in O(mn) operations. At each iteration,
the dominating work is the computation of the furthest point from the center of the
current trial ball, which also requires O(mn) operations (note that γk can be updated
using (8) in O(1) operations). The result follows from Theorem 3.1.

We remark that the overall complexity of Algorithm 3.1 is linear in the number
of points m and also linear in the dimension n. As such, the worst-case running time
asymptotically matches the currently best known bound due to [33]. In particular,
Theorem 3.2 suggests that Algorithm 3.1 is especially well-suited for large instances
of the minimum enclosing ball problem where a moderately small value of ε (such as
10−3) would be satisfactory.

We close this section by establishing that Algorithm 3.1 explicitly computes a
core set of size O(1/ε), which also asymptotically matches the currently best known
bound.

Theorem 3.3. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), let η denote the

index of the final iterate computed by Algorithm 3.1. Then, Xη ⊆ A is an ε-core set
of A. Furthermore, |Xη| = O(1/ε).

Proof. Let uη denote the final iterate returned by Algorithm 3.1, and let γη =
Φ(uη). Clearly, the restriction of uη to its positive entries is a feasible solution of
the dual formulation of the minimum enclosing ball problem for Xη. Therefore, γη ≤
(ρXη)2 ≤ (ρA)2, where ρXη is the radius of MEB(Xη). However, γA = (ρA)2 ≤
(1 + δη)γη ≤ (1 + ε)2γη by Theorem 3.1. Combining these inequalities, we obtain
ρXη ≤ ρA ≤ (1 + ε)(γη)1/2 ≤ (1 + ε)ρXη as desired.

Note that |Xη| is precisely equal to the number of positive components of uη.
However, the initial solution u0 has only two positive components. Each iteration can
add at most one positive component to uk. Therefore, |Xη| ≤ 11 + 25/ε = O(1/ε) by
Theorem 3.1.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1378 E. ALPER YILDIRIM

4. The second algorithm. In this section, we describe our second algorithm,
which is a modification of Algorithm 3.1.

Algorithm 4.1 The second algorithm that computes a (1 + ε)-approximation to
MEB(A).
Require: Input set of points A = {a1, . . . , am} ⊂ R

n, ε > 0.
1: α← argmaxi=1,...,m

∥∥ai − a1
∥∥2

, β ← argmaxi=1,...,m

∥∥ai − aα
∥∥2;

2: u0
i ← 0, i = 1, . . . , m;

3: u0
α ← 1/2, u0

β ← 1/2;
4: X0 ← {aα, aβ};
5: c0 ←

∑m
i=1 u0

i a
i;

6: γ0 ← Φ(u0);
7: κ← arg maxi=1,...,m

∥∥ai − c0
∥∥2

, ξ ← argmini:ai∈X0

∥∥ai − c0
∥∥2;

8: δ+
0 ←

(∥∥aκ − c0
∥∥2

/γ0
)
− 1, δ−0 ← 1−

(∥∥aξ − c0
∥∥2

/γ0
)
;

9: δ0 ← max{δ+
0 , δ−0 };

10: k ← 0;
11: While δk > (1 + ε)2 − 1, do
12: loop
13: if δk > δ−k , then
14: λk ← δk/[2(1 + δk)];
15: k ← k + 1;
16: uk ← (1− λk−1)uk−1 + λk−1eκ;
17: ck ← (1− λk−1)ck−1 + λk−1aκ;
18: Xk ← Xk−1 ∪ {aκ};
19: else

20: λk ← min
{

δ−
k

2(1−δ−
k)

,
uk

ξ

1−uk
ξ

}
;

21: if λk = uk
ξ/(1− uk

ξ), then
22: Xk+1 ← Xk\{aξ};
23: else
24: Xk+1 ← Xk;
25: end if
26: k ← k + 1;
27: uk ← (1 + λk−1)uk−1 − λk−1eξ;
28: ck ← (1 + λk−1)ck−1 − λk−1aξ;
29: end if
30: γk ← Φ(uk);
31: κ← arg maxi=1,...,m

∥∥ai − ck
∥∥2

, ξ ← argmini:ai∈Xk

∥∥ai − ck
∥∥2;

32: δ+
k ←

(∥∥aκ − ck
∥∥2

/γk
)
− 1, δ−k ← 1−

(∥∥aξ − ck
∥∥2

/γk
)
;

33: δk ← max{δ+
k , δ−k };

34: end loop
35: Output ck,Xk, uk,

√
(1 + δk)γk.

Algorithm 4.1 starts off with the same initial solution u0 as the one computed by
Algorithm 3.1. At each iteration, the furthest point in A from the center ck of the
trial ball is computed as in Algorithm 3.1. In contrast, each iteration of Algorithm 4.1
also includes the computation of the closest point to ck among all points in Xk ⊆ A.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1379

Geometrically, the parameter δ−k is the largest number such that the current ball
shrunken by a factor of (1− δ)1/2 does not contain any points in Xk for any δ > δ−k .
Algebraically, the step performed by Algorithm 4.1 in this case corresponds to moving
away from the vertex of the unit simplex that minimizes the linear approximation to
Φ(u) at uk, where the minimization is over the vertices {ej : uk

j > 0}. The feasible
solution uk is updated in different ways based on these two computations. If δk = δ+

k ,
then Algorithm 4.1 uses the exact same update as in Algorithm 3.1. Otherwise, the
new center ck+1 is obtained by moving the current center ck away from the closest
point aξ ∈ Xk. Therefore, Algorithm 4.1 is obtained by incorporating “away” steps
into Algorithm 3.1. For “away” steps, it is easy to verify that

(11) λk = arg max
λ∈[0,uk

ξ /(1−uk
ξ)]

Φ
(
(1 + λ)uk − λeξ

)
.

Note that the range of λ is chosen to ensure that the dual feasibility constraint uk+1 ≥
0 is satisfied.

4.1. Analysis of the second algorithm. The analysis of Algorithm 4.1 is
very similar to that of Algorithm 3.1. As in [39], we call iteration k a plus-iteration
if δk = δ+

k . If δk = δ−k and λk = (δ−k)/[2(1 − δ−k)], then we call it a minus-iteration.
The working core set remains unchanged at a minus-iteration. Finally, if δk = δ−k
and λk = uk

ξ/(1− uk
ξ), we then call it a drop-iteration, since the ξth component of uk

drops to 0 and aξ is removed from the working core set.
Our analysis mimics the analysis of [39] for a similar algorithm that computes

an approximation to the minimum-volume enclosing ellipsoid of a finite set of points.
The next lemma establishes a lower bound on the improvement at each plus- or
minus-iteration.

Lemma 4.1. At each plus- or minus-iteration,

(12) γk+1 ≥ γk

(
1 +

δ2
k

4(1 + δk)

)
, k = 0, 1,

Proof. At a plus-iteration, the result directly follows from Lemma 3.2. At a
minus-iteration, a similar application of (6) reveals that

γk+1 = Φ
(
(1 + λk)uk − λkeξ

)
= γk

(
1 +

(δ−k)2

4(1− δ−k)

)
.

The result easily follows from the observation that

(δ−k)2

4(1− δ−k)
≥ (δ−k)2

4(1 + δ−k)

and that δ−k = δk at a minus-iteration.
Lemma 4.1 establishes that Algorithm 4.1 makes at least as much improvement

as Algorithm 3.1 at each plus- or minus-iteration. At a drop-iteration, it is easy to
show that γk+1 ≥ γk. However, we can no longer find a positive lower bound on
γk+1 − γk ≥ 0. Using similar reasoning as in [39], each drop-iteration can be paired
with the most recent plus-iteration k at which uk

ξ was increased from 0, except for
the αth and βth components, which were positive at the initial solution and may be
decreased to zero for the first time. Therefore, we can double the iteration count
(and add two iterations to account for the initial positive components of u0) in the

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1380 E. ALPER YILDIRIM

analysis of Algorithm 3.1 to establish that Algorithm 4.1 can compute a (1 + ε)-
approximation to MEB(A) in at most twice as many iterations as that required by
Algorithm 3.1. Note that this does not affect the asymptotic iteration bound of
Algorithm 3.1. Furthermore, each iteration still requires O(mn) operations, which
implies that the asymptotic overall complexity of Algorithm 4.1 also remains the
same as that of Algorithm 3.1. Finally, the asymptotic bound on the size of the
core set is also unaffected. However, we remark that Algorithm 4.1 has the potential
to compute even smaller core sets than those returned by Algorithm 3.1 due to the
possible inclusion of minus- and drop-iterations. We summarize these results in the
following theorem.

Theorem 4.1. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), Algorithm 4.1

computes a (1 + ε)-approximation to MEB(A) in O(mn/ε) operations. Furthermore,
upon termination, Xη ⊆ A is an ε-core set and |Xη| = O(1/ε), where η is the index
of the final iterate computed by Algorithm 4.1.

4.2. Linear convergence of the second algorithm. Despite the fact that
Algorithm 4.1 appears to be a simple modification of Algorithm 3.1, it turns out
that these two algorithms actually exhibit different characteristics. In particular,
we establish that Algorithm 4.1 enjoys linear convergence, while a similar rate of
convergence cannot, in general, be expected from Algorithm 3.1.

As observed in [41, 20], the search directions of Algorithm 3.1 always point toward
the extreme points of the unit simplex. Therefore, the angle between these directions
and the gradient of the objective function gets increasingly closer to the right angle in
the situation when the optimal solution lies on the boundary of the unit simplex and is
not an extreme point. For the minimum enclosing ball problem, an optimal solution of
the dual problem will almost always lie in a lower-dimensional face of the unit simplex,
except for the trivial cases such as a single input point or an input set sampled from
the surface of a ball. It follows that Algorithm 3.1 is, in general, expected to exhibit
a sublinear rate of convergence. In fact, this result has been formalized in [41] (see
also [20, Theorem 3]) for the Frank–Wolfe algorithm under even stronger assumptions
than those satisfied by the dual formulation of the minimum enclosing ball problem.

In an attempt to circumvent this drawback of Algorithm 3.1, Algorithm 4.1
works with an enlarged set of search directions by including those directions point-
ing away from the extreme points of the unit simplex. Such a general algorithm
that incorporates “away” steps into the Frank–Wolfe algorithm was first proposed by
Wolfe [41], and its convergence properties have been investigated by several authors.
For the general problem of maximizing a concave function over a polytope, Wolfe [41]
sketched and Guélat and Marcotte [20] detailed the proof of linear convergence un-
der the assumptions of Lipschitz continuity of the gradient of the objective function,
strong concavity of the objective function, and strict complementarity. More recently,
Ahipaşaoğlu, Sun, and Todd [1] established the linear convergence of such an algo-
rithm for the problem of maximizing a concave function over the unit simplex under
a slightly different set of assumptions. Unfortunately, none of these previous results
is directly applicable to our case, since either set of these assumptions implies the
uniqueness of the optimal solution, which is not, in general, satisfied by the dual
formulation of the minimum enclosing ball problem.

We therefore use an argument similar to that of [1] to establish the linear con-
vergence of Algorithm 4.1. We work with a perturbation of the primal formulation
(P2) and show that the distance from an optimal primal-dual solution of the per-
turbed problem to the set of optimal primal-dual solutions of (P2) and (D) satisfies

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1381

a Lipschitz condition using the stability results of Robinson [34] for general nonlinear
programming problems.

Let us define the following perturbation of (P2):

(P(z(u, δ))) minc,γ γ
subject to

(ai)T ai − 2(ai)T c + cT c ≤ γ + zi(u, δ), i = 1, . . . , m,

where u ∈ R
m lies on the unit simplex, δ ≥ 0, and z(u, δ) is given by

zi(u, δ) :=
{

δΦ(u) if ui = 0,
(ai)T ai − 2(ai)T c(u) + c(u)T c(u)− Φ(u) else, ; i = 1, . . . , m,

where

c(u) :=
m∑

i=1

uia
i.

Let zk := z(uk, δk), k = 0, 1, . . . , where uk ∈ R
m denotes the kth iterate and δk

is the corresponding measure as computed by Algorithm 4.1. By a definition of δk,

(ai)T ai − 2(ai)T ck + (ck)T ck − Φ(uk) ≤ δkΦ(uk), i = 1, . . . , m,

and

(ai)T ai − 2(ai)T ck + (ck)T ck − Φ(uk) ≥ −δkΦ(uk), if uk
i > 0,

which implies that |zk
i | ≤ δkΦ(uk) for i = 1, . . . , m. We remark that the latter inequal-

ity above is not necessarily satisfied by the kth iterate computed by Algorithm 3.1.
Furthermore,

(13) (uk)T zk =
∑

i:uk
i >0

uk
i (ai)T ai − 2(ck)T (ck) + (ck)T ck − Φ(uk) = 0,

where we used the definitions of ck and Φ(u) together with the fact that uk lies on
the unit simplex. Using the fact that c(uk) = ck, it follows that (ck, Φ(uk)) is a
feasible solution of (P(zk)). The next lemma establishes that (ck, Φ(uk)) is actually
an optimal solution.

Lemma 4.2. For all k = 0, 1, . . . , (ck, Φ(uk)) is an optimal solution of (P(zk)).
Proof. The feasibility of (ck, Φ(uk)) follows from the discussions preceding the

lemma. Since (P(zk)) is a convex optimization problem and (ck, Φ(uk)) satisfies the
optimality conditions along with uk as the Lagrange multipliers, the result
follows.

Let Ξ(z(u, δ)) denote the optimal value of (P(z(u, δ))). Note that Ξ is a convex
function of z(u, δ), and if u∗ is any Lagrange multiplier corresponding to the optimal
solution of P(0) (equivalently, of (P2)), then u∗ is a subgradient of Ξ at 0. Therefore,
for all k = 0, 1, . . . ,

(14)
Φ(uk) = Ξ(zk) ≥ Ξ(0) + (u∗)T zk

= Φ(u∗) + (u∗ − uk)T zk

≥ Φ(u∗)− ‖uk − u∗‖‖zk‖,

where we used Lemma 4.2 and (13).

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1382 E. ALPER YILDIRIM

Let Δ denote the diameter of the input set A, i.e., the maximum distance between
any pair of points in A. Since (1/4)Δ2 ≤ Φ(u∗) ≤ Δ2, we have, for all k,

|zk
i | ≤ δkΦ(uk) ≤ δkΦ(u∗) ≤ δkΔ2,

which implies that ‖zk‖ ≤
√

mΔ2δk.
We will next use the stability results of Robinson [34] to establish an upper bound

on ‖uk − u∗‖. We need to verify that all of the assumptions are satisfied for the un-
perturbed problem (P(0)). Since the problem is convex and Slater’s constraint quali-
fication is satisfied, the constraints are regular at any feasible solution. Furthermore,
let (c∗, γ∗) be the unique optimal solution of (P(0)), and let u∗ be any corresponding
Lagrange multiplier (i.e., any optimal solution of (D)). Then, the Lagrangian function
L : R

n × R× R
m → R for the problem (P(0)) is given by

L((c, γ), u) = γ +
m∑

i=1

ui

(
(ai)T ai − 2(ai)T c + cT c− γ

)
.

By taking derivatives with respect to the primal variables (c, γ) ∈ R
n ×R, we obtain

∇(c,γ)L((c, γ), u) =
[

0
1

]
+

m∑
i=1

ui

[
−2ai + 2c
−1

]
,

∇2
(c,γ)L((c, γ), u) =

m∑
i=1

ui

[
2I 0
0 0

]
,

where I ∈ R
n×n denotes the identity matrix. Note that any direction d ∈ R

n+1

orthogonal to the gradient of the objective function of (P(0)) is of the form d =
[(d′)T , 0]T , where d′ ∈ R

n. Therefore, for any such direction d,

dT∇2
(c,γ)L(c∗, γ∗, u∗)d = 2(d′)T d′ = 2‖d‖2,

since u∗ lies on the unit simplex, which implies that Robinson’s second-order sufficient
condition is satisfied (see Definition 2.1 in [34]) by the optimal solution (c∗, γ∗) of
(P(0)) along with any dual optimal solution u∗. Therefore, by Theorem 4.2 in [34],
there exists a dual optimal solution u∗ and a positive constant � such that

(15) ‖uk − u∗‖ ≤ �‖zk‖ ≤ �
√

mΔ2δk

for all sufficiently small δk. Combining this inequality with (14), we obtain

(16) Φ(u∗)− Φ(uk) ≤ m�Δ4(δk)2

for all sufficiently small δk.
Suppose now that δk ≤ 1/2. Since Φ(uk) ≤ Φ(u∗) ≤ (1+ δk)Φ(uk) ≤ (3/2)Φ(uk),

it follows that

Φ(uk) ≥ (2/3)Φ(u∗) ≥ (1/6)Δ2.

At each plus- or minus-iteration, by Lemma 4.1, we obtain

(17) Φ(uk+1) ≥ Φ(uk)
(

1 +
δ2
k

4(1 + δk)

)
≥ Φ(uk) +

δ2
kΔ2

36
.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1383

Combining (16) and (17), at each plus- or minus-iteration, we obtain

(18) Φ(u∗)− Φ(uk+1) ≤ Φ(u∗)− Φ(uk)− δ2
kΔ2

36
≤
(

1− 1
36m�Δ2

)
(Φ(u∗)− Φ(uk))

for all sufficiently small δk. This establishes the linear convergence of Algorithm 4.1.
Theorem 4.2. Given A := {a1, . . . , am} ⊂ R

n, Algorithm 4.1 computes iterates
uk such that Φ(u∗)−Φ(uk) is nonincreasing. Asymptotically, this gap is decreased by
at least a factor of (1 − 1/(36m�Δ2)) at each plus- or minus-iteration. There exist
constants τ̄ and ϑ that depend on the input data such that Algorithm 4.1 computes a
(1 + ε)-approximation to MEB(A) in τ̄ + ϑ log(1/ε) operations for ε ∈ (0, 1).

Proof. Lemma 4.1 and the following discussions imply that Φ(u∗)−Φ(uk) is a non-
increasing sequence. The asymptotic linear convergence follows from (18). Therefore,
we need only to establish the last statement.

Let τ := max{τ1, τ
∗}, where τ1 is defined as in (9) and τ∗ is the smallest value of k

such that the inequality (15) is satisfied. After iteration τ , the sequence Φ(u∗)−Φ(uk)
satisfies the relationship (18). By the termination criterion of Algorithm 4.1, it suffices
to compute an iterate k∗ such that Φ(uk∗) ≤ Φ(u∗) ≤ (1+δk∗)Φ(uk∗) ≤ (1+ε)2Φ(uk∗).
This implies that the final iterate satisfies Φ(u∗) − Φ(uk∗) ≤ [(1 + ε)2 − 1]Φ(uk∗).
Since Φ(uk) ≥ (1/6)Δ2 for all k ≥ τ , it follows that the termination criterion is
satisfied if Φ(u∗) − Φ(uk∗) ≤ (1/6)[(1 + ε)2 − 1]Δ2. By (18), Φ(u∗) − Φ(uk+1) ≤
(1 − (1/μ̄))(Φ(u∗) − Φ(uk)) ≤ (1 − (1/μ̄))(Δ2 − (1/6)Δ2) = (5/6)(1 − (1/μ̄))Δ2 at
each plus- or minus-iteration for all k ≥ τ , where μ̄ := 36m�Δ2. Therefore, once
Algorithm 4.1 computes iterate τ , we have

Φ(u∗)− Φ(uτ+k̂) ≤ 5
6

(
1− 1

μ̄

)k̂

Δ2

after k̂ plus- or minus-iterations. Therefore, if

5
6

(
1− 1

μ̄

)k̂

Δ2 ≤ 1
6
(2ε + ε2)Δ2,

then the termination criterion is satisfied after k̂ plus- or minus-iterations. It follows
that k̂ satisfies

log 5 + k̂ log
(

1− 1
μ̄

)
≤ log ε + log(ε + 2).

Using the inequality log(1 + x) ≤ x for all x > −1, a sufficient condition in order for
the above inequality to be satisfied is given by

log 5− k̂

μ̄
≤ log 2 + log ε,

which implies that τ ′ + μ̄ log(1/ε) plus- or minus-iterations will suffice, where τ ′ =
μ̄ log(5/2). By the argument following Lemma 4.1, we can double the iteration
count and add two iterations to account for the drop-iterations, which completes the
proof.

We remark that Theorem 4.2 establishes a polynomial convergence result for
Algorithm 4.1 even if ε is part of the input data. In addition, it implies that the

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1384 E. ALPER YILDIRIM

convergence is “fast” once inequality (15) is satisfied. However, the bound on the
number of iterations depends on the data as it is not known a priori when the linear
convergence will kick in. As such, it does not provide a better global complexity
bound than that of Theorem 4.1. Nevertheless, the results of this section will shed
some light into the usually better practical performance of Algorithm 4.1 in section 6.

5. Extensions. In this section, we establish that the algorithmic frameworks of
sections 3 and 4 can be used to compute an approximation to the minimum enclosing
ball of more general input sets. While the cost of each iteration of the corresponding
algorithms may depend on the input set, the iteration complexity and the asymptotic
size of the core set remain unchanged. Therefore, the existence of an ε-core set of size
O(1/ε) extends to more general sets including those with uncountably many points.

We remark that the analysis of both of the algorithms heavily relies on the struc-
ture of the dual optimization formulation (D) of the minimum enclosing ball problem
of a finite set of points. In this section, we argue that the same algorithmic framework
can be applied to much more general input sets with minor modifications. We employ
similar arguments as in [43], where a Frank–Wolfe-type algorithm for the problem
of computing the minimum-volume enclosing ellipsoid of a finite set of ellipsoids is
studied. Given a possibly infinite set of points, the primal optimization formulation
(P2) can be extended to a semi-infinite optimization problem with a linear objective
function and infinitely many convex quadratic constraints. The main idea is to ap-
proximate the given input set using only a carefully selected finite subset of points and
then to refine this approximation by adding more points if necessary. This leads to an
approximation of the primal formulation with only a finite number of constraints, and
this approximation is refined by adding more constraints. In the dual formulation, we
therefore start with a finite number of variables and add more variables if necessary.

LetA ⊂ R
n be an arbitrary compact input set, and let us first consider Lemma 3.1,

which establishes the quality of the initial feasible solution computed by each of the
two algorithms. The initial working core set X0 provides the first approximation to
the given input set with only two points. Let Φ0(·) denote the objective function of
the dual formulation of the minimum enclosing ball problem for X0, and let γA denote
the optimal value of the aforementioned semi-infinite primal formulation. The result
of Lemma 3.1 continues to hold, since the proof relies on Lemma 2.2, which remains
true for arbitrary compact input sets. The proof of Lemma 2.2 is based on the argu-
ment that an enclosing ball of smaller radius can be constructed by moving the center
away from the half-space in the direction of the normal vector of the bounding hyper-
plane if the hypothesis of Lemma 2.2 is not satisfied by that half-space. Therefore,
we still have Φ0(u0) ≥ (1/3)γA, which implies that the quality of the initial solution
is independent of the input set.

Similarly, let Φk(·) denote the objective function of the dual formulation of the
minimum enclosing ball problem for Xk ⊂ A. At iteration k in each algorithm, Xk

provides the current finite approximation to A. Let ck ∈ R
n denote the current center.

Each algorithm computes the furthest point in A from ck. In Algorithm 3.1, Xk+1 is
obtained by adding this point to Xk. Unless the furthest point in A already belongs
to Xk, the dual formulation for Xk+1 differs from that for Xk in only one variable.
Therefore, [(uk)T , 0]T is a feasible solution for the new dual formulation that satisfies
Φk+1([(uk)T , 0]T) = Φk(uk), which implies that the improvement in each iteration still
obeys the relation given by Lemma 3.2, with γk+1 replaced by Φk+1(uk+1) and γk by
Φk(uk). Note that the dimension of uk+1 is one more than that of uk in this case. It
follows that the upper bound on the number of iterations required by Algorithm 3.1 to

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1385

achieve a prescribed accuracy as well as the bound on the core set remain unchanged
for a general compact input set A ⊂ R

n.
The preceding argument establishes the same improvement result at a plus-

iteration of Algorithm 4.1 for a general input set A. Since Xk is finite, the com-
putation of the closest point in Xk is straightforward independently of the input
set. At a minus-iteration, the dimension of the dual formulation remains the same.
Therefore, Lemma 4.1 still applies. At a drop-iteration, we can reverse the argument
employed at a plus-iteration, since the number of dual variables actually decreases in
this case. We conclude that the iteration complexity of Algorithm 4.1 and the upper
bound on the size of the core set also remain unchanged for a general compact input
set A ⊂ R

n. On the other hand, our analysis that leads to the linear convergence of
Algorithm 4.1 is not likely to be extended to more general input sets, since it explic-
itly relies on the stability results for nonlinear programming problems with a finite
number of constraints.

We give another perspective on the extension of the two algorithms to more
general input sets. Let Xη ⊂ A denote the finite set computed by either one of the
two algorithms upon termination on a general input set A. Then, each algorithm
would geometrically behave exactly the same way on the input set Xη as it would on
the original input set A. However, the termination criterion is satisfied for the whole
set A. Clearly, the set Xη ⊂ A is not known a priori and is sequentially generated
by each algorithm. Furthermore, the cost of each iteration is likely to be higher for
a general input set A in comparison with that for Xη. Therefore, the main work
involved in each algorithm is the extraction of the finite set Xη from A.

In order to transform this conceptual algorithmic framework into a practical al-
gorithm, we need to ensure that each operation required by either algorithm can be
carried out efficiently for a given input set. Note that both of the algorithms in this
paper compute the initial feasible solution in a similar fashion. This computation
entails finding the furthest point in the input set from a fixed point. In addition,
similar furthest point computations are performed at each iteration of both of the al-
gorithms. Therefore, the extent of input sets which are amenable to these algorithms
highly depends on the efficiency with which such computations can be performed.

We now specify several input sets for which similar algorithmic frameworks can
be applied.

5.1. Set of balls. Let A = {B1, . . . ,Bm} ⊂ R
n be a set of m balls. Given

Bc,ρ and x ∈ R
n, the furthest point in Bc,ρ from x is given by x∗ = c + ρ(c −

x)/‖c − x‖, which can be computed in O(n) operations. Therefore, each iteration
of Algorithm 3.1 still requires O(mn) operations, which implies that Algorithm 3.1
computes a (1 + ε)-approximation to MEB(A) in O(mn/ε) operations and returns an
ε-core set of size O(1/ε). In addition to computing the furthest point at each iteration,
Algorithm 4.1 also requires the computation of the closest point in a finite set. The
size of this set is bounded above by O(1/ε), which implies that each iteration can
be performed in O(mn + n/ε) operations. Therefore, Algorithm 4.1 can compute a
(1+ε)-approximation to MEB(A) in O(mn/ε+n/ε2) operations and returns an ε-core
set of size O(1/ε).

5.2. Set of ellipsoids. Let A = {E1, . . . , Em} ⊂ R
n be a set of m ellipsoids given

by Ei := {x ∈ R
n : (x − ci)T Qi(x − ci) ≤ 1}, where ci ∈ R

n and Qi ∈ R
n×n is sym-

metric and positive definite for i = 1, . . . , m. The furthest point in an ellipsoid from a
given point can be computed using a tight semidefinite programming relaxation with
a fixed number of constraints in O(nO(1)) operations in the real number model of com-

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1386 E. ALPER YILDIRIM

putation [43], where O(1) denotes a universal constant greater than three. Therefore,
Algorithm 3.1 computes a (1 + ε)-approximation to MEB(A) in O(mnO(1)/ε) opera-
tions and returns an ε-core set of size O(1/ε). Similarly, Algorithm 4.1 can compute a
(1 + ε)-approximation to MEB(A) in O(mnO(1)/ε + nO(1)/ε2) operations and returns
an ε-core set of size O(1/ε).

5.3. Set of half ellipsoids. H is said to be a half ellipsoid if it is given by the
intersection of an ellipsoid with a half-space. Let A = {H1, . . . ,Hm}, where Hi :=
{x ∈ R

n : (x − ci)T Qi(x − ci) ≤ 1, (f i)T x ≤ ωi}, where ci ∈ R
n, f i ∈ R

n, ωi ∈ R,
and Qi ∈ R

n×n is symmetric and positive definite for i = 1, . . . , m. Sturm and
Zhang [36] established that the maximization of any quadratic function over a half
ellipsoid can be cast as a semidefinite programming problem with a fixed number
of constraints similarly to quadratic optimization over an ellipsoid. Therefore, the
asymptotic overall complexity bounds of Algorithms 3.1 and 4.1 are identical to those
for the case of a set of ellipsoids. In particular, both algorithms return an ε-core set
of size O(1/ε).

5.4. Set of intersections of a pair of similar ellipsoids. Two n-dimensional
ellipsoids E1 and E2 are said to be similar if they both admit a representation using
the same semidefinite matrix. This implies that the length and the alignment of the
corresponding axes are the same. Let A = {T1, . . . , Tm}, where Ti := {x ∈ R

n :
(x − ci)T Qi(x − ci) ≤ 1, (x − hi)T Qi(x − hi) ≤ 1}, where ci ∈ R

n, hi ∈ R
n, and

Qi ∈ R
n×n is symmetric and positive definite for i = 1, . . . , m. It follows from the

results of [36] that any quadratic optimization problem over the intersection of a pair
of similar ellipsoids can be decomposed into two quadratic optimization problems over
two half ellipsoids. Therefore, the asymptotic complexity bounds of Algorithms 3.1
and 4.1 are identical to those for the case of a set of half ellipsoids. Similarly, both
algorithms return an ε-core set of size O(1/ε).

5.5. Further extensions. We have described several classes of more general in-
put sets for which an approximate minimum enclosing ball can be computed in poly-
nomial time (for fixed ε) using the appropriate extensions of Algorithms 3.1 and 4.1.
Obviously, the results can be extended to input sets that are composed of a combi-
nation of elements from each of the above classes. In particular, it is remarkable that
the existence of an ε-core set of size O(1/ε) extends to much more general classes of
input sets including those with uncountably many points.

Similarly to the discussion in [43], the extent of input sets to which similar algo-
rithmic frameworks can be applied largely depends on the efficiency of the furthest
point computation required at each iteration of each of the two algorithms. It is well
known that the maximization of a convex quadratic function over certain sets (such
as polytopes defined by inequalities) is computationally intractable. Therefore, our
algorithmic framework does not yield a polynomial-time algorithm for an input set of
polytopes. In summary, the discovery of polynomial-time routines for quadratic opti-
mization over other classes of input sets may lead to further efficient generalizations
of our algorithms.

6. Computational results. In this section, we report the results of our compu-
tational experiments. We implemented Algorithms 3.1 and 4.1 in MATLAB. For the
purposes of comparison, we also implemented the first-order algorithm of Bădoiu and
Clarkson [2] (henceforth the BC algorithm). Their simple algorithm starts by setting
any arbitrary point ai ∈ A as the initial center c1. At iteration k, let ajk denote the
furthest point from ck, k = 1, 2, The center is updated according to the following

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1387

Table 1

Computational results on instances with m � n (ε = 10−3).

Time Core set size Iterations
n m A1 A2 BC A1 A2 BC A1 A2 BC
10 500 0.06 0.03 0.12 4.2 3.9 5.2 168.7 44.5 435.5
10 1000 0.15 0.03 0.14 4.6 3.8 5.4 330.7 41.6 344.4
20 5000 1.7 0.36 3.11 5.9 5.2 7 246.8 46 464.2
20 10000 4.46 0.58 4.65 4.9 4.1 5.8 319.2 36.3 334.4
30 30000 27 6.45 24.59 8.6 6.8 9.1 446.4 103.6 409
50 50000 71.62 16.87 68.78 10.5 9.5 11.8 429.8 98.4 415.1
100 100000 287.99 77.74 268.11 15.9 14.5 16.6 451.7 119 422.6

relation:

ck+1 = [1− 1/(k + 1)]ck + [1/(k + 1)]ajk , k = 1, 2,

Bădoiu and Clarkson establish that 1/ε2 such updates suffice in order to obtain a (1+
ε)-approximation to MEB(A). Note that each iteration requires O(mn) operations,
which yields an overall complexity bound of O(mn/ε2).

Similarly to Algorithms 3.1 and 4.1, it is easy to verify that the BC algorithm also
generates a sequence of feasible solutions for the dual formulation of the minimum
enclosing ball problem. Therefore, in order to have a fair and meaningful comparison,
we employed the same termination criterion that we used for Algorithms 3.1 and 4.1
rather than running the BC update for 1/ε2 times.

In contrast with Algorithms 3.1 and 4.1, the objective functions evaluated at the
iterates generated by the BC algorithm are not monotonically increasing in general.
Therefore, the analysis of the BC algorithm uses entirely different tools [2].

The computational experiments were carried out on a Pentium IV processor with
a clock speed of 2.80 GHz and 512 MB RAM running under Linux. We used MATLAB
version 7.3.0.298 (R2006b) in our experiments.

We used three data sets in our experiments. The first data set is restricted to
instances with m� n and was randomly generated as in [1], with sizes (n, m) varying
from (10, 500) to (100, 100000). For each fixed (n, m), ten different data sets were
generated, and the results are reported in terms of the averages over these data sets
in Table 1, which is divided into four sets of columns. The first set of columns reports
the size (n, m). The next three sets of columns present the CPU time, core set size,
and the number of iterations, respectively. Each one of these three sets is further
divided into three columns labeled A1, A2, and BC corresponding to Algorithm 3.1,
Algorithm 4.1, and the BC algorithm, respectively. In all of our experiments, we set
ε = 10−3.

As illustrated by Table 1, each of the three algorithms is capable of quickly com-
puting an approximation to the minimum enclosing ball of the given input set. In
particular, all three algorithms terminated under eight minutes even on the largest
instances. In terms of CPU time, Algorithm 4.1 has significantly better performance
than Algorithm 3.1 and the BC algorithm, both of which have similar running times.
All three algorithms computed very small core sets of similar sizes. Algorithm 4.1
always returned the smallest core sets for each input set. The core sets computed by
Algorithm 3.1 and the BC algorithm have similar sizes with the former being slightly
better than the latter. In terms of the number of iterations, Algorithm 4.1 once again
significantly outperforms the other two algorithms. Unlike Algorithm 3.1, the number

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1388 E. ALPER YILDIRIM

Table 2

Computational results on instances with n � m (ε = 10−3).

Time Core set size Iterations
n m A1 A2 BC A1 A2 BC A1 A2 BC

10000 100 7.56 7.62 29.9 90.6 90.4 90.8 117.4 118.2 476.6
10000 1000 149.39 148.16 321.25 198.4 197 202 241 238.8 524.2
25000 1000 541.47 539.06 957.02 266.6 265.6 272.4 303.2 301.8 541.2

Table 3

Vertices of the unit simplex (m = n = 1000).

Time Core set size Iterations
ε A1 A2 BC A1 A2 BC A1 A2 BC
1 .24 .25 .19 2 2 2 0 0 1
.1 .83 .83 .82 11 11 11 9 9 10
.01 6.57 6.58 7.27 101 101 101 99 99 100
.001 63.89 64.07 71.36 1000 1000 1000 998 998 999

of iterations of the BC algorithm seems to be independent of the dimensions of the
input set.

A close examination of Table 1 reveals that Algorithm 4.1 resulted in reductions
of 73% to 88% in terms of running time and of 74% to 90% in terms of the number
of iterations in comparison with the other two algorithms. These results seem to
indicate that the linear convergence of Algorithm 4.1 may be responsible for the
improved performance. Furthermore, due to allowing points to be dropped from the
working core set, the sizes of the core sets computed by Algorithm 4.1 are about 10%
to 30% smaller than those returned by the other two algorithms.

The second data set consists of instances with n � m. In particular, we gener-
ated random instances with (n, m) varying from (10000, 100) to (25000, 1000). The
averaged results are presented in Table 2, which is organized similarly to Table 1.
The results indicate that all three algorithms compute core sets of similar sizes. Al-
gorithm 3.1 and Algorithm 4.1 exhibit similar performances in terms of running time
and the number of iterations due to the fact that “away” steps are performed rela-
tively infrequently on such instances. On the other hand, the running time and the
number of iterations of the BC algorithm are considerably larger than either of our
two algorithms. Once again, note that the number of iterations of the BC algorithm
seems to be relatively insensitive to m and n, which suggests a stronger relationship
with 1/ε in comparison with our algorithms.

The final data set we considered is the vertices of the unit simplex. Bădoiu and
Clarkson [3] establish a tight upper bound of �1/ε� on the size of the core set for
such an input set under the assumption that n ≥
1/ε�. In an attempt to assess the
performances of the three algorithms on such a data set, we considered the vertices
of the unit simplex with n = 1000 using ε ∈ {1, .1, .01, .001}. The results of this
experiment are presented in Table 3, which is organized similarly to Table 1.

As illustrated by Table 3, all three algorithms have similar performances on the
vertices of the unit simplex in R

n, with n = 1000. Note that both the size of the
core set and the number of iterations grow proportionally to 1/ε. These results are
in agreement with the tight core set bound of [3]. This example illustrates that the
asymptotic bounds on the core set size and the number of iterations for Algorithms 3.1
and 4.1, in general, cannot be improved. However, all three algorithms computed the
exact minimum enclosing ball for ε = 10−3 (and for any ε ≥ 10−3). Therefore, this

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1389

example illustrates that the upper bound of �1/ε� on the size of the core set is no
longer tight for n ≤
1/ε�.

We do not compare our algorithms with other exact or approximate algorithms,
since such computational studies have been performed in earlier literature. For in-
stance, it is well known that the minimum enclosing ball problem can be formulated as
an instance of second-order cone programming and interior-point methods can achieve
very high accuracy (e.g., 10−8) in small- and medium-scale instances. However, each
iteration requires the computation and factorization of an (n + 1) × (n + 1) matrix,
which can be performed in O(n3) and O(mn2) operations, respectively [24]. There-
fore, such an approach is not computationally feasible for large instances as illustrated
by the results of [42, 44]. Similarly, exact algorithms [16] perform well on small- and
medium-scale instances, but the performance degrades significantly for large-scale in-
stances [24]. Since our focus is on applications with large-scale instances in which
a moderate accuracy suffices, our computational results indicate that our algorithms
are capable of solving such instances in a reasonable amount of time.

7. Concluding remarks. In this paper, we proposed and analyzed two algo-
rithms that compute an approximation to the minimum enclosing ball of a given finite
set of points. Both algorithms exploit the special structure of the dual formulation
of the problem and can geometrically be viewed as generating a sequence of trial
balls until a ball with desired properties is computed. Each of the two algorithms
is especially well-suited for the large-scale instances of the minimum enclosing ball
problem for which a moderate approximation suffices. Both algorithms can compute
a small core set whose size depends only on the approximation parameter. The sec-
ond algorithm asymptotically exhibits linear convergence, which further contributes
to its efficiency. We have discussed how our algorithms can be extended to more
general input sets without sacrificing the iteration complexity and hence the size of
the core set. In particular, we established that several more general classes of input
sets admit small and finite core sets. Our computational experiments reveal that
both of our algorithms are capable of quickly computing a good approximation to the
minimum enclosing ball of a finite set of points. Algorithm 4.1, which is obtained by
incorporating “away” steps into Algorithm 3.1, seems to exhibit a significantly better
performance than other first-order algorithms. The sizes of the core sets computed
by our algorithms are usually fairly small. The example that consists of the vertices
of the unit simplex illustrates that our analysis, in general, cannot be improved.

While the discovery of efficient algorithms such as interior-point methods rev-
olutionized convex optimization, the computational cost of each iteration of such
algorithms quickly becomes prohibitive as the size of the problems increases. There-
fore, it seems desirable to design specialized algorithms for large-scale problems that
exploit the underlying special structure of the problem. We have developed two such
algorithms for the minimum enclosing ball problem in this paper. We intend to con-
tinue our work on developing specialized algorithms for other classes of large-scale
structured optimization problems in the near future.

Acknowledgments. I gratefully acknowledge the insightful comments and sug-
gestions by the Associate Editor and two anonymous referees, which contributed sig-
nificantly to the improvement of the manuscript. In particular, section 4.2 was added
based on the comments of an anonymous referee, and the alternative perspective on
the extension of the algorithms to more general input sets in section 5 was suggested
by another anonymous referee.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1390 E. ALPER YILDIRIM

REFERENCES

[1] D. Ahipaşaoğlu, P. Sun, and M. J. Todd, Linear convergence of a modified Frank-Wolfe
algorithm for computing minimum-volume enclosing ellipsoids, Optim. Methods Softw.,
23 (2008), pp. 5–19.

[2] M. Bădoiu and K. L. Clarkson, Smaller core-sets for balls, in Proceedings of the 14th Annual
Symposium on Discrete Algorithms, 2003, pp. 801–802.

[3] M. Bădoiu and K. L. Clarkson, Optimal core-sets for balls, Comput. Geom. Theory Appl.,
40 (2008), pp. 14–22.

[4] M. Bădoiu, S. Har-Peled, and P. Indyk, Approximate clustering via core-sets, in Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 250–257.

[5] L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions, and universal machines, Bull. Amer.
Math. Society (N.S.), 21 (1989), pp. 1–46.

[6] L. M. Blumenthal and G. E. Wahlin, On the spherical surface of smallest radius enclosing
a bounded subset of n-dimensional Euclidean space, Bull. Amer. Math. Soc. (N.S.), 47
(1941), pp. 771–777.

[7] R. K. Chakraborty and P. K. Chaudhuri, Note on geometrical solutions for some minimax
location problems, Transportation Sci., 15 (1981), pp. 164–166.

[8] J. A. Chatelon, D. W. Hearn, and T. J. Lowe, A subgradient algorithm for certain minimax
and minisum location problems, Math. Program., 15 (1978), pp. 130–145.

[9] G. Chrystal, On the problem to construct the minimum circle enclosing n given points in the
plane, in Proc. Edinb. Math. Soc., 3 (1885), pp. 30–33.

[10] K. L. Clarkson, Coresets, sparse greedy approximation and the Frank-Wolfe algorithm, in
Proceedings of the 19th Annual Symposium on Discrete Algorithms, 2008, pp. 922–931.

[11] D. J. Elzinga and D. W. Hearn, The minimum covering sphere problem, Management Sci.,
19 (1972), pp. 96–104.

[12] K. Fischer and B. Gärtner, The smallest enclosing ball of balls: Combinatorial structure
and algorithms, Internat. J. Comput. Geom. Appl., 14 (2004), pp. 341–378.

[13] K. Fischer, B. Gärtner, and M. Kutz, Fast smallest-enclosing-ball computation in high
dimensions, in Algorithms–ESA, Lect. Notes in Comput. Sci. 2832, G. Di Battista and U.
Zwick. eds., Springer, Berlin/Heidelberg, 2003, pp. 630–641.

[14] R. L. Francis, Some aspects of a minimax location problem, Oper. Res., 15 (1967), pp. 1163–
1169.

[15] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist., 3
(1956), pp. 95–110.

[16] B. Gärtner, Fast and robust smallest enclosing balls, in Proceedings of the 7th Annual Euro-
pean Symposium on Algorithms (ESA), Lect. Notes in Comput. Sci. 1643, J. Nesetril, ed.,
Springer, New York, 1999, pp. 325–338.

[17] B. Gärtner and S. Schönherr, An efficient, exact, and generic quadratic programming solver
for geometric optimization, in Proceedings of the 16th Annual Symposium on Computa-
tional Geometry, 2000, pp. 110–118.

[18] A. Goel, P. Indyk, and K. R. Varadarajan, Reductions among high-dimensional proximity
problems, in Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, 2001,
pp. 769–778.

[19] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Algorithms Combin. 2, Springer, New York, 1988.

[20] J. Guélat and P. Marcotte, Some comments on Wolfe’s away steps, Math. Program., 35
(1986), pp. 110–119.

[21] C. H. Guo, M. Y. Lu, J. T. Sun, and Y. C. Lu, A new algorithm for computing the minimal
enclosing sphere in feature space, in Fuzzy Systems and Knowledge Discovery, Lect. Notes
in Comput. Sci. 3614, L. Wang and Y. Jin, eds., Springer, Berlin/Heidelberg, 2005, pp. 196–
204.

[22] D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem,
Oper. Res., 30 (1981), pp. 777–795.

[23] S. K. Jacobsen, An algorithm for the minimax Weber problem, European J. Oper. Res., 6
(1981), pp. 144–148.

[24] P. Kumar, J. S. B. Mitchell, and E. A. Yıldırım, Approximate minimum enclosing balls in
high dimensions using core-sets, ACM J. Exp. Algorithmics, 8 (2003), article no. 1.1.

[25] C. L. Lawson, The smallest covering cone or sphere, SIAM Rev., 7 (1965), pp. 415–416.
[26] J. Matous̆ek and B. Gärtner, Understanding and Using Linear Programming, Universitext,

Springer, New York, 2006.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TWO ALGORITHMS FOR MINIMUM ENCLOSING BALLS 1391

[27] N. Megiddo, Linear time algorithms for linear programming in R
3 and related problems, SIAM

J. Comput., 12 (1983), pp. 759–776.
[28] K. P. K. Nair and R. Chandrasekaran, Optimal location of a single service center of certain

types, Naval Res. Logist., 18 (1971), pp. 503–510.
[29] F. Nielsen and R. Nock, Approximating smallest enclosing balls, in Computational Science

and Its Applications, Lect. Notes in Comput. Sci. 3045, A. Laganá, M. Gavrilov, V. Kumar,
Y. Mun, C. Tan, and O. Gervasi, eds., Springer, Berlin/Heidelberg, 2004, pp. 147–157.

[30] F. Nielsen and R. Nock, A fast deterministic smallest enclosing disk approximation algo-
rithm, Inform. Process. Lett., 93 (2005), pp. 263–268.

[31] B. J. Oommen, An efficient geometric solution to the minimum spanning circle problem, Oper.
Res., 35 (1987), pp. 80–86.

[32] S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high
dimensions, Appl. Math. Comput., 172 (2006), pp. 49–61.

[33] R. Panigrahy, Minimum Enclosing Polytope in High Dimensions, manuscript, 2006.
[34] S. M. Robinson, Generalized equations and their solutions, part ii: Applications to nonlinear

programming, Math. Program. Study, 19 (1982), pp. 200–221.
[35] M. I. Shamos, Computational Geometry, Ph.D. thesis, Yale University, New Haven, CT, 1978.
[36] J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions, Math. Oper.

Res., 28 (2003), pp. 246–267.
[37] J. J. Sylvester, A question in the geometry of situation, Q. J. Pure Appl. Math., 1 (1857).
[38] J. J. Sylvester, On Poncelet’s approximate linear valuation of Surd forms, Philos. Mag., 20

(1860), pp. 203–222. Fourth Series.
[39] M. J. Todd and E. A. Yıldırım, On Khachiyan’s algorithm for the computation of minimum

volume enclosing ellipsoids, Discrete Appl. Math., 155 (2007), pp. 1731–1744.
[40] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in

Computer Science, Lect. Notes in Comput. Sci. 555, H. Maurer, ed., Springer-Verlag, 1991,
pp. 359–370.

[41] P. Wolfe, Convergence theory in nonlinear programming, in Integer and Nonlinear Program-
ming, J. Abadie, ed., North-Holland, Amsterdam, 1970, pp. 1–36.

[42] S. Xu, R. M. Freund, and J. Sun, Solution methodologies for the smallest enclosing circle
problem, Comput. Optim. Appl., 25 (2003), pp. 283–292.

[43] E. A. Yıldırım, On the minimum volume covering ellipsoid of ellipsoids, SIAM J. Optim., 17
(2006), pp. 621–641.

[44] G. Zhou, K. C. Toh, and B. Sun, Efficient algorithms for the smallest enclosing ball problem,
Comput. Optim. Appl., 30 (2005), pp. 147–160.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

