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ABSTRACT

NOVEL HONEYCOMB NANOSTRUCTURES FOR
ENERGY STORAGE AND NANOSCALE DEVICE

DESIGN

Veli Ongun Özçelik

Ph.D. in Materials Science and Nanotechnology

Advisor: Prof. Dr. Salim Çıracı

June, 2015

This thesis presents a variety of new two dimensional honeycomb-like struc-

tures and heterostructures; the main objective being to determine their funda-

mental electronic, magnetic, mechanical and optical properties for new device and

material design. Utilization of existing two dimensional materials for nanoscale

device design, understanding the fundamental properties of their composite struc-

tures, explaining the existing data on known two dimensional materials and using

computational simulations to discover new materials are the main concerns of this

thesis.

We begin by assessing the validity of density functional theory on monolayer

composites of graphene and boron nitride. We show that it is possible to grow

vertical graphene / boron nitride heterostructures on top of each other and re-

veal the growth mechanisms at the atomistic level. We then utilize this vertical

heterostructure for a nanoscale capacitor design by applying an external electric

field. We test and show how first principles methods can be used to investi-

gate the properties of materials under electric field. After explaining the reliable

methods, capacitance values are calculated for the model for various thicknesses,

which show quantum mechanical size effects at small separations that recede as

the separations get larger; as the later is confirmed by experimental observations.

The next part of the thesis, investigates the electronic properties of lateral

graphene / boron nitride heterostructures, and show how these composites act

differently depending on the concentrations of graphene and boron nitride in

the composite system. Namely, different behaviors of alloys, δ-doping and line

compounds are revealed. Following this, these lateral heterostructures are utilized

as nanoscale planar capacitors for atomically thin circuitry.

As a final remark on carbon and boron nitride nanocomposites, the next

chapter of this thesis describes the growth mechanisms of one dimensional car-

bon/boron nitride short atomic chains and show their stabilities at elevated
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temperatures. The electronic and magnetic properties of these chains exhibit

even/odd disparity depending on the number of atoms in the chain. These chains

also construct another two dimensional allotrope of graphene, namely graphyne,

when connected to each other on the same plane. The properties of graphyne

and its boron nitride analogue described in the following chapter introduces a

new monolayer allotrope of carbon and boron nitride.

The following chapter turns to silicon and germanium analogue of graphene,

silicene and germanene. Dumbbell type reconstructions of silicene and germanene

are introduced, which lead to layered silicene and germanene. Dumbbell units

introduced here form the fundamental building blocks of experimentally observed

layered silicene and germanene.

The last chapter of the thesis looks at new material design and prediction

studies based on computational simulations. Oxygenated silicene leads to a new

monolayer piezoelectric material called silicatene. Finally, the monolayer struc-

tures of Group V elements nitrogen and antimony are also shown to be stable by

phonon calculations and high temperature molecular dynamics simulations.

Keywords: Honeycomb structure, nanocapacitor, enery storage, material predic-

tion, DFT, graphene, graphyne, silicene, germanene, phosphorene, nitrogrene.



ÖZET

ENERJİ DEPOLAMA VE NANO ÖLÇEKTE CİHAZ
TASARIMI İÇİN YENİ BAL PETEĞİ NANO YAPILAR

Veli Ongun Özçelik

Malzeme Bilimi ve Nanoteknoloji, Doktora

Tez Danışmanı: Prof. Dr. Salim Çıracı

Haziran, 2015

Bu tez çalışması, çeşitli yeni iki boyutlu balpeteği yapıların elektronik, manyetik,

mekanik ve optik özelliklerini ortaya koyarak bu yapıların nano ölçekte yeni cihaz

tasarımı için kullanılabilirliklerinin yoğunluk fonksiyoneli teorisi ile incelenmesini

kapsamaktadır. Ayrıca, kuantum mekaniksel moleküler dinamik simülasyonları

ve fonon analizleri yardımıyla yeni iki boyutlu malzeme öngörüleri ve mevcut iki

boyutlu malzemelerin muhtemel yeni kararlı fazları detaylı olarak incelenmiştir.

İlk olarak, yoğunluk fonksiyoneli teorisiyle geliştirilen hesaplama yöntemleriyle

iki boyutlu grafen ve boron nitrat kompozit malzemeleri incelenerek, dikey ve

yatay grafen / boron nitrat kompozitlerinin büyüme adımları gösterilmiştir. Daha

sonra, bu kompozit malzemelere dışardan elektrik alan uygulanarak, bu sistem-

lerde depolanan enerji ve elektriksel yük değerleri hesaplanmıştır. Dolayısıyla,

grafen / boron nitrat kompozit malzemelerin yüksek performaslı nanokapasitör

olarak kullanılabiliecekleri gösterilmiştir. Bu nanokapasitörler, geniş boyut-

larda klasik kapasitörler gibi davranmalarına karşın, boyutları nano ölçeğe in-

dirilidiğinde kuantum mekaniksel davranışlar sergilemektedirler. Tezin daha

sonraki bölümünde, düzlemsel olarak büyütülen grafen / boron nitrat kom-

pozit malzemelerinin çeşitli özelliklerinin, kompozit içinde bulunan grafen veya

boron nitrat miktarına göre nasıl değiştiği incelenmiştir. Farklı kombinasyonlar

kullanılarak alaşımlar, çizgisel kompozitler ve ince katkılama tarzı malzemeler

elde edilerek bunların atom inceliğinde devrelerde kullanım için özellikleri hesa-

planmıştır.

Ayrıca, karbon / boron nitrat nano kompozitlerinin kısa atomik zinciler

şeklinde büyümeleri incenerek, bu zincirlerin yüksek sıcaklıklarda bozulmadan

kararlı olarak kalabildikleri gösterilmiştir. Zincirlerin elektronik ve manyetik

özelliklerinin zincirdeki atom sayısına göre çift / tek disparitesi gösterdiği

gözlemlenmiştir. Ayrıca, bu zincirlerin düzlemsel olarak birleştirilmesi sonucu

elde edilen ve yeni bir iki boyutlu malzeme olan alfa-grafen yapısının kararlılığı
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fonon analizleriyle ispatlanmıştır.

Tezin son iki bölümünde grafenin silikon, germanyum, azot ve antimon ben-

zerleri incelenmiştir. İki boyutlu silikon ve germanyum yapılarında oluşan kafes

tarzı yeni geometrik yapılar ortaya konularak, bu kafes yapısının tabakalı silikon

ve germanyum elde edilmesinde temel unsur olduğu gösterilmiştir. Tezin son

bölümünde, yeni malzeme tasarımı ve öngörüleri üzerinde durularak, iki boyutlu

silika, iki boyutlu azot ve antimon bal peteği benzeri yapılarının kararlı geometri-

leri ve bu yapıların özellikleri açıklanmıştır.

Anahtar sözcükler : Bal peteği yapı, nanokapasitör, enerj depolama, malzeme

öngörüsü, yoğunluk fonksiyoneli teorisi.
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(b) Variation of excess charge accumulated in graphene nanorib-

bons at both side of BN, Q with the applied electric field Ey. (c)

Snapshot taken from the MD simulation of the nanoribbon at 300K

under external electric field. . . . . . . . . . . . . . . . . . . . . . 51

5.6 (a) Zigzag (8x0)-G(32)/BN(32) nanotube and its calculated energy

band structure. (b) Armchair (6x6)-G(48)/BN(48) nanotube and

its energy band structure. Band gaps are shaded. The zero of

energy is set to the top of the valance band. . . . . . . . . . . . . 54

6.1 (a) PNDC formed by a zigzag BN stripe placed between metallic

graphene stripes, which display 1D translational periodicity along

x-direction. The unit cell is delineated by dashed lines. p and q

are number of atoms in graphene and BN stripes in the unit cell.

(b) Electronic band structure of PNDC under zero bias voltage (or

Ey=0), where spin up and down states are shown with red(dark)

and blue(light) lines, respectively. (c) Total charge density ρ(r)

isosurfaces of PNDC. (d) (xz)- plane averaged electronic potential,

V̄ (y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 (a) Evolution of the energy bands of PNDC[4/4/4] under applied

electric field ~Ey. Shifts of relevant spin bands are indicated by

arrows. For Ey ≥ 0.6 V/Å, PNDC becomes a half-metal (HM).

(b) A perspective view of the array of PNDC[4/4/4] periodically

repeating along y-axis. (c) The isosurface of difference charge den-

sity, ∆(ρ), showing the charge separation, where the right graphene

stripe is depleted from electrons, which are in turn deposited to

left graphene stripe due to the shifts of bands under ~Ey. (d) (xz)-

plane averaged electronic potential V̄ (y, ~Ey) exhibiting a potential

difference of ∆V̄ (y)=3V under Ey=1 V/ Å. . . . . . . . . . . . . 59
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6.3 (a) Variation of excess charge Q (e/cell); (b) stored energy Es

(eV/cell) and (c) the corresponding gravimetric capacitance C

(F/g) for PNDC[4/4/4]. (d) Capacitance C values in (F/g) of

the planar nanoscale dielectric capacitor PNDC[p/q/p] are calcu-

lated for p=4-12 and q=4-12 for specific value of Ey for which C

saturates. For each value of p, lower line connected by dots cor-

responds to capacitance values calculated through the expression,

C = Q2/2mEs, while the upper line connected by crosses is com-

puted from C ′ = Q/m∆V̄ . The calculated variation of C with

tensile strain, ε is shown by inset. . . . . . . . . . . . . . . . . . 63

7.1 Energy variation of single carbon atom adsorbed on various sites

of single layer, 2D hexagonal BN structure (h-BN) calculated in

(4× 4) supercell. (a) Boron nitride honeycomb structure on which

the adsorption energies are calculated. Nitrogen and boron atoms

are represented by blue and green balls, respectively. The most

favorable binding site of C adatom is marked by the red star in

the figure. (b) Complete energy landscape of C adatom on h-BN

structure. Light blue regions show favorable sites and the energy

barrier further increases as the color goes to dark blue and purple.

The potential barrier for the carbon atom is ∼ 0.65eV (c) Energy

variation of C ad-atom is shown along the path indicated by red

arrows in (a). The energy difference between the most favorable

site (indicated by red star) and the bridge(Br), top boron(B), hol-

low(H), top nitrogen(TN) sites are calculated as 0.07eV , 0.95eV ,

1.00eV and 0.03eV , respectively. . . . . . . . . . . . . . . . . . . . 68

7.2 Snapshots of the molecular dynamics simulation showing the for-

mation of a short chain comprising four carbon atoms. The snap-

shots correspond to the initial, 20th, 40th and 120th steps of the

molecular dynamics simulation done at 500K. Note that the forma-
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7.3 Binding energies (Eb), and the heights(h) of odd and even num-

bered CACs from the atomic plane of BN are shown in green, red

and blue lines, respectively. The h values exhibit an even/odd fam-

ily behavior depending on the number of carbon atoms in the chain.

The sudden peak in the binding energy arises from the change of

the magnetic state of CAC(2) from magnetic to nonmagnetic when

it binds to hexagonal BN. . . . . . . . . . . . . . . . . . . . . . . 70

7.4 Side and top views of the most favorable binding configurations of

CAC(n) on hexagonal BN are shown in (a) and (b). N, B, and C

atoms are represented by blue, green and brown balls, respectively.
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to BN near the top of nitrogen atom, whereas CAC(n)’s with odd

number of carbon atoms (odd n) prefer top boron site, with the

exception of single carbon adatom. The geometries are calculated

for a (4 × 4) supercell and their stabilities are tested with MD

simulations at T = 500K for 10ps. In (b), only the carbon atom

that is closest to the BN plane is shown. . . . . . . . . . . . . . . 71

7.5 (a) Electronic energy band structures of CACs grown on h-BN cal-

culated for n= 1, 2, 3 and 4. In the magnetic cases, spin up and

spin down bands are represented by blue and green lines, respec-

tively. The localized impurity states arise from the p bands of the

carbon atoms that are at the edges of chains. (b) Isosurfaces of the

difference charge densities of chains where yellow and green regions

designate charge accumulation and charge depletion, respectively.

The isosurface values are taken as 0.01 electron/Å3 for C, C2, C3

and as 0.005 electron/Å3 for C4. . . . . . . . . . . . . . . . . . . . 74

7.6 Functionalization of BN sheets through adsorption of carbon

chains. For examle, a CAC(2), which is strongly bound to h-

BN, creates chemically active sites for Au, Li and H atoms. H2

molecule approaching to CAC(2) from sides dissociated to form

two C-H bonds, whereas O2 remains totally inactive. Ti atom

takes the carbon atoms with itself and forms TiH2. . . . . . . . . 75

7.7 CAC(2) and CAC(3) grown between two BN flakes. The opti-

mized spacing between the flakes increase from 3.1Å to 4.34Å and
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8.1 α-Graphyne and α-BNyne. (a) Schematic diagram of α-

graphyne(2) and the unit cell used to generate α-graphyne(n).

Two corner atoms of the hexagon have a chain of n atoms be-

tween them, such that the unit cell contains 3n + 2 atoms. (b)

Atomic structure of single layer, 2D α-graphyne(2). The dashed

lines delineate the primitive unit cell. The optimized bond lengths

are g1 = 1.39Å and g2 = 1.23Å. The total charge density is

shown within the unit cell. (c) Atomic structure of single layer,

2D α-BNyne with blue and green balls representing N and B

atoms, respectively. The optimized bond lengths are b1 = 1.42Å,

b2 = 1.25Å and b3 = 1.44Å. In the charge density plots, the

isosurface value is taken as 0.2 electron/Å3. . . . . . . . . . . . . 82

8.2 Calculated phonon bands. (a) Graphene. (b) α-Graphyne with

n = 2 and 4. (c) Hexagonal BN. (d) α-BNyne with n = 2 and 4.

The dispersion curves for n=2 have totally positive phonon modes

which is an indication of their stability. On the other hand, n=4

cases have slightly negative modes, which are marked with the

shaded regions and will be discussed in the text. Phonon bands of

unstable structures, such as n = 1 and n = 3 are not shown. . . . 85

8.3 Snapshots of the MD simulations performed for 5ps at T = 1000K.

(a) α-Graphyne(n). The structures are stable for n = 2 and n = 4,

although buckled in the vertical plane. On the other hand, n =

1 case breaks into carbon atomic strings, and hence are totally

unstable. α-Graphyne(3) undergos a structural transformation,

whereby it acquires stability by changing the number of C atoms

to n = 2 and n = 4 in the adjacent edges of hexagon. (b) α-

BNyne(n). Both n = 2 and n = 4 cases remain stable during MD

simulations. n = 1 and n = 3 cases are missed, since α-BNyne(n)

cannot be formed with odd n. . . . . . . . . . . . . . . . . . . . . 86

8.4 (a)α−Graphyne(2) structure in rectangular unit cell with its lattice

constants ax and ay. εx and εy are the strains in x and y directions,

respectively. (b) 3D plot of the energy values corresponding to

different ax and ay values. . . . . . . . . . . . . . . . . . . . . . . 87
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8.5 Electronic band structures of α-graphyne(n) for n = 1, 2, 3 and

4. All of the band structures contain Dirac points, while they are

shifted above the Fermi level for n = 1 and 3. n = 1 and 3 cases

also have Dirac points away from the high symmetry K−point.

The zero of energy is set to the Fermi level. . . . . . . . . . . . . 88

8.6 Electronic band structures of α-BNyne(n) for n = 2 and 4. Note

that as n increases, the band gap decreases. The maximum energy

of the valence band is set to zero. . . . . . . . . . . . . . . . . . . 88

8.7 Bilayer α-graphyne(2) and its BN analogue bilayer α-BNyne(2)

are shown in columns i and ii, respectively. (a) Top view of the

optimized two layer structures. Both bilayer α-graphyne and α-

BNyne have AB type of stacking geometry, which is more favorable

than the AA stacking. In the ball and stick model B and N atoms

are represented by green and blue balls and the all of the atoms in

the bottom layer are shown in gray. (b) Variation of energy as a

function of the layer-layer distance. (c) Electronic band structures

of α-graphyne(2) and α-BNyne(2). . . . . . . . . . . . . . . . . . 90
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9.1 One Si adatom adsorbed to each (4x4) supercell of silicene, which

corresponds to the uniform coverage of Θ=1/32. (a) Top and side

views of the atomic configuration of the dumbbell (D) structure.

Blue balls represent Si atoms. (b) Magnified view of the D struc-

ture together with the isosurface charge density. D1 and D2 denote

Si atoms at both ends of the dumbbell; and A, E and F are silicene

atoms nearest to D1 and D2. Excess charges on the Si atoms of

the dumbbell structure are shown by numerals. (c) Energy land-

scape for the Si adatom on silicene calculated on a hexagon. The

migration path of the Si adatom with minimum energy barrier EB

is indicated by stars. (d) Contour plot of the total charge den-

sity ρT (r), on the horizontal plane passing through A, E and F

atoms, and on the planes passing through A-D1, A-D2 and D1 -D2

bonds. (e) Energy band structure of the D+silicene structure with

the dash-dotted line indicating the Fermi level. Blue(dark) and

green(light) lines represent spin up and spin down states, respec-

tively. The inset shows that the isosurface charge density of spin

up states making the flat band just below the Fermi level is local-

ized mainly at the D-structure. (f) Spin projected total density of

states TDOS. Up-arrow and down-arrow stand for spin up and spin

down states, respectively. The density of states DOS projected to

D1 is augmented four times and plotted in panel (f). . . . . . . . 95

9.2 (a) Snapshots of conjugate gradient steps in the course of the for-

mation of a dumbbell structure. The external Ge adatom first

approaches to the germanene layer from the top site, and even-

tually constructs the dumbbell structure by pushing the host Ge

atom down. (b) Top and side views of DB formed on (4× 4) ger-

manene. Two Ge atoms of dumbbell are highlighted by red. (c)

The dumbbell zoomed in along with the total charge density iso-

surfaces. (d) Contour plots of the total charge density on planes

passing through D1−A−D2 and B−D2−C atoms. Note that al-

though the DB atoms make bonds with nearest germanene atoms,

there is no bonding between the DB atoms, D1 and D2. . . . . . 98
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9.3 The interaction energy versus the distance between two DBs, d

on the (8 × 8) supercell of germanene. The blue and red curves

represent the variation of interaction energies for DBs formed on

sites with the same and opposite bucklings, respectively. The in-

teraction energy between two DBs situated at the same buckling

is set to zero for large d. Negative energy indicates attractive in-

teraction. One DB is permanently present on the yellow site and

the second DB is placed on various positions shown by the blue

and red marks in the inset. The attractive interaction energy falls

suddenly when the second DB following the red path is situated

at the nearest neighbor distance to the first DB. . . . . . . . . . 100

9.4 Electronic band structures of different phases of germanene. (a)

TDP. (b) HDP. (c) DHP. (d) The triangular structure with DBs

forming hexagonal (4 × 4) supercells, where the total density of

states are also shown. The spin up and spin down bands are

shown in blue and green lines, respectively. The density of states

projected to the DB atoms shown in red and are augmented three

times for a better view. . . . . . . . . . . . . . . . . . . . . . . . . 104
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10.1 Monolayer silica (a) As shown by inset, equilibrium charge density

isosurfaces of oxygen adatom adsorbed to the bridge site of sil-

icene indicates a significant amount of effective charge. Variation

of total energy of oxygen and silicene system as the oxygen adatom

is passing from the top to the bottom side through the minimum

energy path. The energy barrier involved in this excursion is only

0.28 eV. Large-blue and small-red balls stand for Si and O atoms,

respectively. (b) Side and top view of hβ-silica, the precursor of

the single layer silica, has straight Si-O-Si bonds as if one O atom

is inserted at the center of each Si-Si bond of silicene. While Si

atoms are alternatingly buckled to different planes, oxygen atoms

lie in the same plane in between. (c) The structure of stable, single

layer hα-silica, which has 0.7 eV lower energy as described schemat-

ically. Two dimensional hexagonal primitive and rectangular unit

cells are delineated by black (dashed) and gray (continuous) lines.

The corresponding lattice constants are aβ and aα, respectively.

Two types of Si atoms, i.e. those up-buckled and forming the sp3-

bonding with 96o O-Si-O bond angle and those lying in the same

plane of oxygen atoms and forming the planar sp2-bonding with

120o O-Si-O bond angle, are ordered alternatingly at the corners

of a hexagon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.2 (a) Phonon frequencies and their dispersions along the symmetry

directions of the Brillouin zone. Specific modes of phonons involv-

ing the vibration of oxygen atoms indicated by small arrows are

also described. (b) Results of ab-initio molecular dynamics calcu-

lations performed at 1000 K and 2000 K starting from the regular

hβ-silica structure and ending at hα-silica. (c) The atomic struc-

ture of hα-silica with large-blue and small-red ball standing for Si

and O atoms, respectively. Silicon atoms, which are sp3-bonded

(up-buckled) and those sp2-bonded (in the plane of oxygen atoms)

are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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10.3 (a) The electronic band structure of hα-silica with direct band gap

of EG−gga=2.2 eV and EG−hse=3.3 eV, which are calculated by

GGA+vdW and HSE, respectively. The HSE band gap is shaded.

The zero of energy is set to the top of the valance band. (b)

Isosurface charge densities of the lowest conduction CB and highest

valence VB band. (c) Contour plots of the total charge density in

the plane of oxygen atoms passing through the sp2-bonded Si atom

and those in the O-Si-O plane passing through the sp3-bonded Si

atom. The sp2-bonded Si atom has relatively higher charge density.

Isosurfaces of the total charge density with isosurface value of 0.15

electrons/Å3 show significant charge accumulation around oxygen

atoms. d) Variation of the band gap as a function of the strain, ε

applied in the x- and y-directions. The inset shows the rectangular

unit cell and the directions of the uniaxial strains εx and εy. . . . 112

10.4 (a) Zigzag nanoribbon NZ=4 and its electronic structure. The or-

bital characters of two bands crossing the Fermi level are shown by

inset. The axis of the ribbons are indicated by dash-dotted lines

ending with an arrow. (b) Armchair nanoribbon with NA=4 and

its electronic structure. The bands at the edges of valance VB and

conduction CB bands originate from the edge states having sp3-

and sp2- orbitals of Si atoms localized at both edges, respectively.

The nanoribbon is a semiconductor with a gap of 1.9 eV. (c) Vari-

ation of the width of the armchair nanoribbon and ∆φ under an

in-plane electric field ~E perpendicular to the axis. . . . . . . . . . 115

10.5 (a) Atomic structure of bilayer constructed from hα-silica layers

together with variation of the total energy, ∆E with the distance

d. (b) Atomic structure of multilayer constructed through the

ABABA.. stacking of hα-silica layers together with the variation

of the total energy with the interlayer distance d. . . . . . . . . . 116

10.6 Hydrogenated hα-silica, Si2O3H2. The side (a) and (b) the top

views of atomic structure with the blue, red and the pink balls

representing Si, O and H atoms, respectively. (c) The isosurfaces

of the total charge distributions. (d) Electronic band structure

with the band gap is shaded. . . . . . . . . . . . . . . . . . . . . . 117

10.7 Same as Fig. 10.6, but for fluorinated hα-silica. . . . . . . . . . . 118

10.8 Same as Fig. 10.6, but for oxygenated hα-silica. . . . . . . . . . . 118
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10.9 (a) 2D crystalline structure of nitrogene with optimized lattice con-

stants a1 = a2 = 2.27Å, the buckling ∆ = 0.7Å, single bonded N-N

distance d = 1.49Å, bond angles α = 99o and β = 118o. Bonding is

depicted by isosurface of the total charge density. (b) Vibrational

bands. (c) ab-initio MD snapshots of atomic structure at temper-

atures 850K and 1000K. Energy versus time plots calculated using

the Nosé thermostat and constant temperature value are shown

with blue and red lines, respectively. (d) Atomic configuration of

nitrogene on Al(111) substrate. In the top view, only the Al atoms

belonging to the top Al(111) surface are shown for clarity. N and

Al atoms are shown by small blue and large orange balls, respectively.120

10.10Free nitrogene: (a) Electronic band structure, (b) total and s-

and p- orbital projected densities of states, (c) the charge density

isosurfaces of states associated with π∗ and σ bonds. The bands

calculated by HSE and GWo are shown with green dashed and blue

dotted lines. The crossing at the K-point is highlighted. The zero

of energy is set to the top of the valence band. . . . . . . . . . . . 122

10.11Nitrogene nanoribbons: (a) Atomic configuration and the energy

band structure of the armchair nitrogene nanoribbon. Variation

of band gap with n and charge density isosurfaces of specific band

states at the edges of conduction(C) and valence(V) bands are

shown. Energy bands calculated by HSE are shown by dashed

lines. (b) Same for zigzag nanoribbon, where calculations are per-

formed for 2×1 unit cell. . . . . . . . . . . . . . . . . . . . . . . . 125

10.12Bilayer and 3D layered nitrogene: (a) Minimum energy stacking

geometry of bi-layer and the variation of the binding energy of

layers with the distance z between them. The binding energies of

layers Eb are given relative to z → ∞. (b) Same for 3D nitrogenite.

The electronic band structures of bi-layer (c) and nitrogenite (d). 126
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10.133D bulk crystal of Sb. (a) Side and top views of the optimized

atomic configuration and structural parameters. Pseudo layered

character of the crystal is highlighted by atomic layers exhibiting

ABCABC.. stacking. Inlayer and interlayer bonding is depicted

by isosurface and contour plots of the total charge density. (b)

Calculated dispersion relations of bands of vibrational frequencies.

The Brillouin zone is shown by inset. (c) Electronic energy bands

calculated within PBE. The correction by HSE is shown by green-

dashed lines. The zero of energy is set to the Fermi level. (d) Total

and orbital projected densities of states. . . . . . . . . . . . . . . 128

10.142D structures of antimony. (a)The equilibrium 2D crystalline

structure of buckled honeycomb structure, i.e. B-antimonene, with

hexagonal lattice. The primitive unit cell has two Sb atoms. Opti-

mized values of the structural parameters, such as lattice constants,

bond lengths and bond angles are also shown. Bonding between

Sb atoms is depicted by the isosurfaces and contour plots of the

total charge density. ∆ is the buckling, where Sb atoms on the cor-

ners of the hexagon alternatively move up and down. (b) Same for

2D, symmetric washboard structure, i.e. W-antimonene, having

2D rectangular lattice. Rectangular primitive unit cell has four Sb

atoms. In the side view one deduces two atomic planes. (c) Same

for 2D, asymmetric washboard structure, i.e. aW-antimonene,

with rectangular lattice. The primitive unit cell has four Sb atoms;

single-layer structure is composed of four atomic planes. . . . . . 130

10.15Vibrational frequencies of 2D Sb. The Brillouin zones and their

symmetry directions are shown by insets. (a) B-antimonene. (b)

W-antimonene with imaginary frequencies as k →0. (c) aW-

antimonene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.16The electronic band structure together with the total and orbital

projected densities of states of the single-layer antimonene phases.

Zeros of the band energy are set at the maximum of the valance

bands. Bands corrected by HSE are shown by green-dashed lines.

Bands calculated by including spin-orbit coupling are shown by

insets. (a) B-antimonene. (b) W-antimonene. (c) aW-antimonene. 134
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10.17(a) Minimum energy AB stacking geometry of the B-antimonene

bilayer and the variation of its total energy with the distance z

between the layers. The total energies are given relative to z →
infinity. (b) Energy band structure of bilayer corresponding to the

equilibrium spacing. Calculations using HSE presented by green

dashed lines. (c) Same for trilayer of B-antimonene in ABC stack-

ing. The first minimum of the total energy occurs at z=3.65 Å.

Upon overcoming an energy barrier the second minimum occurs at

z=2.5 Å. The variation of the optimized total energy of the periodic

3D structure as a function of z, which exhibits a single minimum

at z=2.37 Å corresponding to the pseudo layered 3D bulk crystal.

(d) The energy band structure of the trilayer in the first minimum

at z=3.65 Å. (e) Minimum energy AA stacking geometry of aW-

antimonene bilayer and the variation of its total energy with the

distance z between layers. Top and side views of atomic structures

are shown by insets. (f) Energy band structure of aW-antimonene

bilayer in (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.18(a) The optimized atomic structure and binding interaction of B-

antimonene grown on germanene surface (i.e. graphene like struc-

ture of Ge atoms). The registry of Sb and Ge atoms are shown

by inset. (b) Corresponding electronic energy band structure. (c)

Total and partial densities of states (DOS) projected on Sb and

Ge atoms. The comparison of the total density of states of free

B-Sb single-layer structure with the density of states projected on

the Sb atoms grown on germanene indicates significant substrate

influence. (d)-(f) Same for B-antimonene grown on the Ge(111)

substrate. The zero of energy is set to the Fermi level shown by

dash-dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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10.19(a) The primitive unit cell, optimized atomic configuration and

the energy band structure of the armchair B-antimonene nanorib-

bon. The variation of band gap with n and charge density isosur-

faces of specific band states at the edges of conduction(C) and va-

lence(V) bands are also shown. Energy bands corrected using HSE

are shown by dashed lines. (b) Same for the zigzag B-antimonene

nanoribbon. Structure optimization and band calculations are per-

formed using 2×1 unit cell. The zero of energy is set at the top

of the valence band. Spin up and spin-down bands are shown by

red and blue lines, respectively. Spin-up and spin-down bands cor-

rected using HSE are also shown by dashed red and blue lines,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.20(a) The primitive unitcell having n Sb atoms, optimized atomic

structure and the energy band structure of the armchair aW-

antimonene nanoribbon. The variation of band gap with n and

charge density isosurfaces of specific band states at the edges of

conduction (C) and valence(V) bands are also shown. Energy

bands calculated by HSE are shown by dashed lines. The zero

of the energy is set at the top of the valence band. (b) Same for

the zigzag aW-antimonene nanoribbon, where due to the recon-

structions of edges calculations are performed using 2×1 unit cell.

Spin up and spin-down bands are shown by red and blue lines,

respectively. The zero of energy is set at the Fermi level. . . . . . 142
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7.1 Most favorable binding sites, binding energies(Eb), magnetic

moments(µ), heights(h) of CAC(n) from the BN plane, and

the distances of the lowest carbon atom of the chain from the

nitrogen(dC−N) and the boron(dC−B) atom in the BN plane for

different n’s of carbon chains. The bonding sites and magnetic

properties of CACs on BN exhibit an even/odd disparity. With

the exception of the single carbon ad-atom, even numbered CACs

bind to BN near the top of nitrogen(TN) atom and the odd num-

bered CACs bind near the top of boron(TB) atom. Additionally,

the even and odd numbered chains grown on BN have magnetic

and nonmagnetic(NM) ground states, respectively, with the excep-

tion of CAC(1) and CAC(2) cases. . . . . . . . . . . . . . . . . . 72

9.1 Calculated values for the various phases of germanene+DB, where

DBs form periodically repeating supercells on germanene with 2D

hexagonal or rectangular lattice. 2D Lattice: H hexagonal or R

rectangular; Mesh: (m× n) cell in terms of the primitive hexago-

nal or rectangular unit cell of germanene; N : Number of Ge atoms

(including DB) in each supercell; d: shortest distance between two

DBs; A: the area of the supercell; µ: magnetic moment per super-

cell; ES: Electronic structure specified as metal M, or semicon-

ductor with the band gap between valance and conduction bands

calculated by GGA and HSE (for the spin polarized cases the gap

between spin up - spin up and spin up - spin down bands are

shown); Eb: Binding energy per Ge adatom relative to germanene

or average binding energy if there is two DB in each cell; EC : Co-

hesive energy (per atom) of Ge atom in Germanene+DB phase;

Es
C : Cohesive energy per area; ∆EC : difference between the co-

hesive energies of a Ge atom in Germanene+DB and in pristine

germanene, where positive values indicates that germanene+DB

phase is favorable. For bare germanene EC =3.39 eV/atom. TDP,

HDP, RDP and DHP are described in the text. . . . . . . . . . . 101



LIST OF TABLES xxxi

10.1 Calculated lattice parameters of hα-silica and its relevant physical

properties. aα: hexagonal lattice constant in Å; d1: Si-O bond
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Chapter 1

Introduction

Investigating the fundamental physical effects at nanoscale underlying various

electronic, magnetic, mechanical and optical observable macroscopic properties

has always been one of the main goals of condensed matter physics. This has

attracted interest of physicists not only because of the thought provoking behav-

ior of physical laws at nanoscale which most of the time challenge one’s common

sense and expectations, but also for the possibility of making new technological

discoveries based on these fundamental principles. With this regard, the purpose

of theoretical and computational studies in materials science can be grouped into

three main categories: (i) Describing the physics behind existing experimental

data using first-principle laws, (ii) proposing ways of utilizing the existing mate-

rials data for new technologies and device designs, and (iii) using first-principles

quantum mechanical computations to predict the existence of new materials that

can be synthesized experimentally under specific conditions, but which do not

exist in nature since they correspond to a local energy minimum on the Born-

Oppenheimer surface. This thesis focuses on two dimensional honeycomb mate-

rials and their heterostructures for presenting novel results in all of these three

categories. For this purpose, graphene / boron nitride heterostructures, the con-

tenders of graphene like the mono-layers of Group-IV (silicene and germanium)

and Group-V (nitrogen and antimony) atoms, their alloys, compounds and re-

constructed structures have been the subject of this thesis.
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Discovery of the two-dimensional allotrope of carbon, graphene, was a mile-

stone in materials science. Graphene with its one-atom-thick stable structure

in the honeycomb lattice, provides a plethora of exciting properties. It was a

milestone not only because of its one-atom-thick structure, but also because it

provided a medium where quantum effects at nanoscale can be tested and ob-

served directly. Graphene is the thinnest, strongest and the most durable material

with high electron hole mobility and high thermal conductivity. Its mechanical

strength, chemical stability, unique electronic and magnetic properties have made

graphene a material of interest in diverse fields ranging from biotechnology to

electronics. Dirac cones provided by the linearly crossing π and π∗ bands under-

lie various exceptional properties where electrons act as massless Dirac fermions

on graphene like relativistic particles do in quantum electrodynamics. Under

high magnetic fields and relatively low temperatures it is possible to observe

quantum hall effect on graphene. Therefore, all of these rich and superior prop-

erties of graphene attract the attention of scientists from diverse fields and makes

graphene the wonder material in an interdisciplinary platform [1, 2, 3].

Most of the superior electronic and mechanical properties of graphene origi-

nate from its honeycomb structure. The hexagonal honeycomb pattern seen in

graphene often appears in nature in various places from the shells of turtles, to

the capillary network of alveoli in human lung and of course in the wax cells built

by bees. This is related to the fact that hexagonal honeycomb structure has the

smallest perimeter to area ratio among all other two dimensional geometries that

can completely fill the two dimensional surface without a gap, making it the most

compact and stable two dimensional pattern. Thus the choice made by nature

is the strongest and the most economical way of arranging atoms in two dimen-

sional surface, as also stated by Darwin as “the comb of the bee, as far as we

can see, is absolutely perfect in economizing labor and wax.”[4] In addition, the

honeycomb network made by planar sp2 hybrid orbitals of carbon atoms acquire

furher stability. Thus, if any other element is going to have a two-dimensional

allotrope, the most probable geometry it is going to acquire is a honeycomb or

slightly distorted honeycomb-like pattern. For this purpose, possible honeycomb-

like patterns of other elements and their mixtures have been investigated after the

synthesis of graphene. Among these, planar hexagonal boron nitride(BN) was re-

vealed which has an ionic honeycomb structure consisting of alternatively bonded

boron and nitrogen atoms[5, 6]. Despite the structural similarity, hexagonal BN

differs from graphene with its wide band gap and dielectric properties[7]. Various
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boron nitride structures like nanosheets[8], nanotubes[9] and nanowires[10] have

already been synthesized. Also, recent studies show that hexagonal BN can be

used to enhance the properties of graphene transistors by improving the mobility

of electrons in graphene as compared to graphene films on silicon substrates[11].

These properties hold promise for novel technological applications of hexagonal

BN structures.

Although graphene and hexagonal boron nitride has different electronic prop-

erties, they have similar honeycomb structures with only two percent lattice mis-

match. This makes it possible to combine these two materials with minimum

internal stress for obtaining different classes of materials with diverse properties

that emerge when carbon atoms mix with boron nitride. Recently, hexagonal

BN sheets were synthesized experimentally on Cu substrate by chemical vapor

deposition method where ammonia borane (NH3 − BH3) and methane (CH4)

were used as precursors of boron nitride and carbon, respectively[12]. It was also

shown that is possible to pattern boron nitride - carbon films lithographically for

device fabrication, where atomic force microscopy and high resolution transmis-

sion electron microscopy images confirmed the formation of layered boron nitride

- carbon films with high quality. Other groups have also succeeded to synthesize

graphene on top of boron nitride using various experimental methods such as the

mechanical transfer method[11, 13], direct growth using a bottom-up approach

with chemical vapor deposition (CVD)[14] and plasma-enhanced CVD process

with further improved quality. Additionally, direct growth of large are graphene

on multilayered BN films are also reported[15]. Finally, a method for the pro-

duction of lateral in-plane two dimensional heterostructures of graphene - BN

mixtures was also reported by the Ajayan group in 2010 [12], where high resolu-

tion transition electron microscopy images confirmed the synthesized structures.

Having succeeded this, the same group also proposed an experimental recipe for

controlling the composition ratio of boron nitride - graphene heterostructures

topologically, where certain regions of graphene sheets were converted into boron

nitride in a controllable fashion using topological substitution reaction[16].

Thus, most of the experimental tools and methodology for creating various

combinations of graphene - boron nitride allotropes in the desired geometry has

been developed. Following this, in order to utilize these allotropes for new tech-

nologies, it becomes crucial to understand how the physical properties of the

graphene / boron nitride system change depending on various geometries it can
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have. Also, it is important to understand the experimentally observed growth

mechanisms at the atomistic level. For this purpose, in the first part of this the-

sis, we investigate the growth mechanisms of epitaxial graphene on boron nitride

at the atomistic level. This is followed by investigating the properties of various

lateral heterostructures of planar graphene - boron nitride composite materials.

We show how the electronic properties depend on geometry and ratio of carbon

/ boron nitride regions. After providing an understanding of these fundamental

physical properties, we present how these lateral and vertical heterostructures

can be utilized to construct nanoscale capacitors.

We showed that by applying electric field to graphene / BN heterostructures,

it is possible to create a charge separation between the metallic graphene plates.

The calculated stored charge, energy and potential difference between the metallic

layers show that these nanocapacitor models have high gravimetric capacitances

which are in the range of supercapacitors. We also show that as the size of the

nanocapacitor model increases, it starts to act exactly like a classical capacitor.

Thus, by an immediate application of density functional theory on our model,

are able to observe quantum mechanical effects at nanoscale. Our results were

further confirmed by following experimental studies [17] of other research groups.

In chapters 7 and 8 we further investigate different graphene / boron nitride based

nanostructures, namely atomic chains and graphyne constructed from chains,

which is a newly proposed two dimensional contender of graphene.

In the following chapters of this thesis, we also investigate other two-

dimensional materials which has gained increasing attention after the synthesis

of graphene. Local reconstruction of silicene and germanene, which are silicon

and germanium based analogues of graphene; oxygenation of silicene leading to a

novel two dimensional piezoelectric auxetic material which we name as silicatene,

and new phases of two dimensional silicene and germanene resulting from these

reconstructions are investigated in chapters chapters 9 and 10. Silicatene, which

forms upon the bonding of oxygen atoms between the silicon atoms in the honey-

comb silicene structure exhibits interesting properties such as having a negative

Poisson’s ratio and having directional electronic properties. On the other hand,

the dumbbell structure proposed here explains one of the interesting experimen-

tal result that lacked theoretical explanation: the formation of layered silicene

on certain substrates, which is crucial for future silicon technology. The stability

of layered silicene was explained by means of the dumbbell unit of silicon that
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is revealed in this thesis. Furthermore, similar dumbbell structures are also pro-

posed for germanium atoms, which might lead to layered germanene on suitable

substrates.

Finally, we present the electronic, magnetic and mechanical properties newly

proposed monolayers of Group V elements, nitrogen and antimony. Although

not synthesized yet, our predictions prove the salabilities of these monolayers

by means of first principles phonon calculations and molecular dynamics simu-

lations at elevated temperatures. These 2D crystalline structure corresponds to

local minima on the Born-Oppenheimer surface, since they have negative for-

mation energies relative to N2 molecule and bulk antimony. Therefore, we first

carried out an extensive analysis and demonstrated that they are stable in a

deep local minimum and maintain their structures above the room temperature

as free standing, as well as on selected substrates. We characterized these novel

materials and their nanoribbons by calculating their mechanical, electronic and

magnetic properties. We also revealed bilayer and three dimensional (3D) layered

structures.
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Chapter 2

Method: Density Functional

Theory

Along the with the rapid development in computational power, it became possible

to solve fundamental equations of many body physics numerically with the help of

modern architecture computers. However, the present computational power is not

yet enough to solve these equations even for small systems containing only a few

atoms. Therefore, valid approximations that give consistent results with experi-

mental observations are implemented and tested continuously. Density functional

theory (DFT), being the state of the art theory for investigating the atomistic

mechanisms at nanoscale, approximated electrons as a single particle moving in

an effective nonlocal potential. Thus, instead of solving the strongly interacting

electron gas, this approach focuses on the density of electrons. In addition to

this, it treats the nuclei adiabatically meaning that the nuclear and electronic

coordinates are separated in the many-body wave function due to the large mass

difference between the nucleus and the electrons which causes the electrons to

respond to the same forces much faster than the nucleus. This approach, which

is known as the Born-Oppenheimer approximation is the fundamental idea be-

hind density functional theory method. In this chapter, we briefly summarize the

fundamental aspects of density functional theory that are utilized in the following

chapters on various systems.
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2.1 Thomas-Fermi Method

Although it is not accurate enough for the electronic structure calculations of

the current era, the initial density functional theory for quantum systems was

proposed by Thomas and Fermi. In the Thomas-Fermi method, an explicit func-

tional of density that is idealized as non-interacting electrons in a homogeneous

gas with density equal to the local density at any given point is used to approx-

imate the kinetic energy of a system. The exchange and correlations between

electrons that is neglected in the Thomas-Fermi approach was later included by

Dirac which leads to an energy functional for electrons as:

E[n] = C1

∫
d3rn(r)5/3 +

∫
d3rVext(r)n(r) + C2

∫
d3rn(r4/3)

+ 0.5

∫
d3rd3r′

n(r)n(r′)

|r− r′|
(2.1)

where Vext(r) is the external potential. Here, the first integral is the local

approximation for the kinetic energy, the third integral is the local exchange and

the last integral is the electrostatic Hartree energy where C1 and C2 are constants.

After minimizing the energy functional for all possible values of n(r) the ground

state density and energy can be calculated. Here, the possible values of n(r)

should satisfy the condition:

∫
d3rn(r) = N (2.2)

Density functional theory is attractive because it provides remarkably simpler

equation than the many-body Schrodinger equation which involves 3N degrees

of freedom for N electrons. However, the simple Thomas-Fermi approach misses

most of the essential physics since the approximations it uses are too immature.

Although it can be used for system of electrons, it falls short for complete de-

scription of system of atoms.
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2.2 Kohn-Sham Ansastz

A more accurate way to formulate the density functional theory was introduced

by Hohenberg and Kohn using an exact theory of many-body system which can

be applied to any group of interacting particles which are subjected to an external

potential [18]. Hohenberg and Kohn proved two theorems which form the basis

of the density functional theory. The first theorem states that for any system of

interacting particles in an external potential, the potential is determined by the

ground state particle density, except for a factor of constant. The second theorem

follows this by stating that a universal functional for the energy in terms of density

can be defined which is valid for any external potential. These theorems suggest

that, all properties of the system can be completely derived from the ground state

density and the energy functional itself is sufficient to determine the ground state

density.

The idea of making clever approximations was further developed by the Kohn-

Sham approach, which mainly replaces the difficult many-body Hamiltonian with

a different system that can be solved numerically. The Kohn-Sham ansastz as-

sumes that the ground state of the interacting system is equal to the density of

the non-interacting system. As a result of this approximation, the system can be

treated as a set of independent particles that can be solved exactly using com-

putational numerical tools. For a set of doubly occupied electronic state, the

Kohn-Sham Hamiltonian can be written as:

E[ψi] = 2
∑
i

∫
h̄2

2m
∇2ψid

3r +

∫
Vion(r)n(r)d

3r

+
e2

2

∫
n(r)n(r′)

|r − r′|
d3rd3r′ + Eex[n(r)] + Eion(R). (2.3)

Here, Eion is the Coloumb energy, Vion is the total electron-ion potential, n(r)

is the electron density, Eex is the exchange correlation functional and ψi is the

wave function corresponding to the ith electronic state such that

n(r) = 2
∑
i

|ψi(r)|2, (2.4)
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and

[
h̄2

2m
∇2 + Vion(r) + VH(r) + Vex(r)]ψi(r) = εiψi(r) (2.5)

where VH(r) and Vex(r) are the Hartree and exchange correlation potentials

respectively. These potentials can be mapped onto to each other using:

VH(r) = e2
∫

n(r′)

|r − r′|
d3r′, (2.6)

Vex(r) =
δEex[n(r)]

δn(r)
. (2.7)

Therefore, these equations must be solved self consistently. The initial guess

of electronic states produces a density from which an electronic potential is cal-

culated.

2.3 Exchange Correlation Energy

One of the methods for describing the exchange correlation energy of such a sys-

tem is using the local density approximation (LDA). With this approximation,

the exchange correlation energy functional depends only on the the value of the

electronic density at each point in the space. Accordingly, the exchange correla-

tion energy at a point in the electron cloud is assumed to be equal to the exchange

correlation energy per electron in a homogeneous electron gas that has the same

density at the same point. The inhomogeneities due to the neighboring interac-

tions are ignored. Alternatively, these inhomogeneities can be taken into account

by considering the gradient of the density at the same point, which results in

the generalized gradient approximation (GGA). The choice of either of there ap-

proximations is valid depending on the purpose and the system of interest. In

general, LDA mostly results in higher binding energies of atoms and activation

energies in chemical reactions. On the other hand, GGA provides more accurate

results for the prediction of molecular geometries and ground state energies. The
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higher binding energies observed in LDA is corrected by GGA, but this correction

sometimes may result in under-binding. GGA calculations give increased lattice

constants and decreased bulk moduli, which is a result of the softening of bonds.

These functionals can be further modified to include van der Waals interactions

to give more accurate results of interlayer distances and long range interactions.

2.4 Choice of parameters

Although calculations are made simpler by means of using the discussed approx-

imations, including all electrons of each atom into the unitcell is still very costly.

Thus, pseudo-potentials that behave same with all electrons after a cut-off radius

are implemented in practical calculations. In this theses, we implement mainly

projected augmented wave (PAW) pseudo-potentials which use superposition of

atomic orbital wave functions in the core regions. PAW potentials give specially

accurate results for compound materials, magnetic states, alkali and alkali earth

elements. In our calculations we mainly use the VASP software[19] for plane

wave calculations where the PAW potentials are chosen accordingly. The PWSCF

package[20] is also used in some cases to check accuracy using density functional

perturbation theory, especially for vibrational analysis and phonon calculations.

However, there are cases where the use of plane wave basis might give inaccurate

results, for example in cases where we apply external electric field or charge the

system externally.

Namely, the electronic potential under the applied electric field makes a dip in

the vacuum spacing between repeating unitcells with a vacuum spacing between

them when treated within the periodic boundary conditions. As the strength

of the electric field increases, this dip is further lowered as if a quantum well

and allows the plane wave basis set to have states confined to the well as the

solution of the Hamiltonian. Once the energies of these confined states are lowered

below the Fermi level they start to be occupied by electrons. As a result, the

electrons are going to spill into the vacuum region under the external applied

electric field. The spilling of the charge to the vacuum is clearly erroneous and

unrealistic. These artifacts of plane wave basis set become even more critical for

wide vacuum spacing. On the other hand narrow vacuum spacing is not desired

since it gives rise to significant coupling between adjacent unitcells treated using
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the supercell geometry. These artifacts can be eliminated by using basis set

consisting of orbitals centered only at the atomic sites, which does not allow

the states confined to the potential dip in the vacuum spacing. Thus, under

such conditions, we carry out first-principles, spin-polarized calculations within

density functional theory, where the eigen-states of Kohn-Sham Hamiltonian are

expressed as linear combination of numerical atomic orbitals. In such cases, we

use the SIESTA package[21] where local atomic orbital basis sets are implemented.

Once the choice of approximation (GGA or LDA), type of basis sets (local or

plane-wave) and pseudo-potentials are made, we decide on the cut-off potential

value and the number of k-points to be used. For both parameters, the conver-

gence of the total energy of the system is tested by increasing the cut-off value

and the number of k-points step by step. Once the number of k-points is de-

termined for the primitive unitcell, it is scaled accordingly for larger unit-cells.

Similarly, the choice of vacuum spacing of the unit-cells, the convergence for en-

ergy value, and the maximum forces acting on each atom for ionic relaxation

are also tested for convergence. The corresponding values for these parameters

depend on the system of choice, and indicated specifically in each of the following

chapters separately. In addition, GW corrections and hybrid functionals are also

implemented when necessary. In the GW approximation, the self-energy of the

many-body system of electrons is calculated by expanding it in terms of single

particle Green’s function (abbreviated with G) and the screened Coulomb inter-

action (abbreviated with W. Here, the self energy is expanded in a Taylor series

in powers of the screened interaction W.

Another crucial approximation that is made in the calculations is related to

the van der Waals (vdW) interaction. Density functionals are unable to describe

the vdW interactions accurately. On the other hand, a semi-empirical method

is developed and shown to be successful at implementing the vdW interactions

into the calculations. By considering the analytic solution of vdW interaction in

solids, the Grimme method[22] implements this to DFT calculations as:

EDFT−D = EDFT + Edisp, (2.8)

where
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Edisp = −s6
N(at)−1∑

i=1

N(at)∑
j=i+1

Cij
6

R6
ij

fdmp(Rij) (2.9)

Here, EDFT is the usual self consistent DFT energy, Edisp is the emprical

correction term, N(at) is the number of atoms in the unitcell, Cij
6 denotes the

dispersion coefficient for atom pair and Cij
6 =

√
CiCj. Ci is the emprical constant

that is different for every atom. s6 is the global scaling factor that depends on the

exchange correlation functional used in the calculation and Rij is the interatomic

distance. A damping function fdmp is used in order to avoid near singularities for

small distances.

Throughout this thesis, stabilty analysis was performed on several structures.

The stability analysis was performed in three steps. The first step is finding the

global energy minimum of a gven structure by simple DFT calculations where

the lattice dimensions, atom positions and angles were changed untill achieving

the lowest energy minimum. However, it is not always true that the lowest

energy minimum leads to a stable configuration of atoms in the unitcell. Thus,

as a second step, phonon calculations were performed. The phonon analysis

were carried out using two different methods to check whether all vibrational

frequincies are real or not. These methods are based on small displacement

method[23] and density functional perturbation theory[24]. In the end of phonon

calculations, if find that all of the vibrational frequincies are positive, it is a

strong evidence for the stability of the material. However, this stabilty might

me prone to disturbance at elavated temperatures. Therefore, as a third step,

we perform ab-initio molecular dynamics simulations at elevated temperatures.

We run these simulations for 5 to 10ps depending on the structure. Although

this might look short, it is a long enough time scale for ab-initio calculations

peformed at high temperatures like 1000K. The stability of the structures were

tested at high temperatures by ab-initio, molecular dynamics calculations using

two different approaches. In the first one, Nosé thermostat used and Newton’s

equations were integrated through Verlet algorithm with time step of 2 fs. In the

second one, we scaled the velocities at each time step to keep the temperature

constant.
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Chapter 3

Epitaxial Growth of Graphene

3.1 Overview

The objective of this chapter is explaining the atomistic mechanisms taking place

during the nucleation and epitaxial growth of graphene using ab-initio finite tem-

perature molecular dynamics method. For this purpose, the growth of graphene

is simulated with and without substrate. Various hypothetical growth scenarios

are simulated and the effects of substrates on these scenarios are tested. Nu-

cleation sites of growth are determined and their effects on the perfectness of

graphene is investigated. For growth from the edge of a seed, external carbon

monomers and dimers are sent to the seed and molecular dynamics simulations

are performed at elevated temperatures. The defect concentration forming dur-

ing growth, the healing patterns of these defects and energy barrier to heal these

defects are explored on different substrates.

Synthesis of pristine epitaxial graphene has been the motivation of recent ex-

perimental and theoretical studies. The recent studies on graphene production

processes can be grouped in two classes: one class includes the mechanically

exfoliated graphene sheets where the graphene flakes are peeled from a bulk

graphite substrate[1, 3, 25]. However, that method has the disadvantage of not

being able to easily control the size and quality of the fabricated layer. The

other class includes the direct growth of graphene flakes on substrates[26, 27]. It
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was shown that epitaxial graphene is a suitable material for nanoscale electronic

applications by growing ultra-thin graphite layer on silicon carbide by thermal

decomposition[28].

3.2 Molecular Dynamics Simulation of Growth

We have performed atomic structure optimizations and ab-initio finite temper-

ature molecular dynamics (MD) calculations within density functional theory

(DFT) using VASP software.[19] The relaxed geometries of all structures were

calculated by spin-polarized plane-wave calculations using projector augmented-

wave (PAW) potentials[29] within generalized gradient approximation (GGA)[30]

including van der Waals corrections.[22] The Brilliouin zone of the primitive unit-

cell of graphene was sampled by (17×17×1) k-points in Monkhorst-Pack scheme

which was scaled according to the size of other unitcells.[31] The energy conver-

gence value between two consecutive steps was chosen to be 10−5 eV. In ab-initio

MD calculations the time step was taken 2.5 fs and the atomic velocities were

renormalized to the temperature set at T=1300 K at every 40 time steps. The

temperature of MD calculations is in compliance with the temperature used in

chemical vapor deposition.

3.2.1 Growth without Template

In order to understand the effects of a template surface on graphene growth, we

first consider a hypothetical situation and investigated the growth mechanism

of graphene without any template (substrate). To bypass the initial nucleation

process, a graphene flake was fixed in space and additional carbon atoms were

sent to it in different scenarios, which mimic the growth. Simulations were done

by letting the carbon atoms to move freely in a certain plane, while not allowing

the out of plane motions. As shown in Fig. 3.1(a), we start with nanoribbons

having armchair and zigzag edges. Initially, zigzag nanoribbon is composed of

24 atoms forming three zigzag chains in the periodic direction, two of which are

kept fixed. Armchair nanoribbon starts with 20 atoms, 12 of which are kept fixed.

Fixed atoms are delineated in Fig. 3.1(a). After running 1 ps of MD simulation
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Growth direction

Fixed atoms

Zigzag
Armchair

Armchair

Zigzag

(a)

(b)

Figure 3.1: Snapshots from ab-initio MD simulations of planar graphene growth
at T=1300 K without a template substrate. An initial flake was placed and in
each 1 ps MD calculation two carbon atoms were sent from the left hand side
to monitor the growth in the indicated direction. Each snapshot includes two
periodic supercells. (a) Change of the armchair edge to zigzag edge and vice
versa is shown. (b) Structures obtained when simulation of growth presented
in (a) is proceeded. Formation of big rings and chains were observed, and the
resulting structures were far away from being a perfect graphene layer. Note that
defects formed in part (a) are still present in part (b).
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Figure 3.2: Snapshots from ab-initio MD simulation of epitaxial growth of
graphene on a BN substrate. In the ball and stick model B, N and C atoms
are represented by green, blue and brown balls while only bonds between car-
bon atoms having distance less than 2 Å are shown. Each snapshot includes two
periodic supercells in the horizontal direction. (a) General trends are presented
by including final configurations of MD calculations involving 30, 35, 40 and 42
carbon atoms. Some of the critical configurations in the evolution of ring collapse
and defect healing mechanisms are highlighted by solid and dashed lines respec-
tively. (b) Snapshots from the MD simulation of the structure having 42 carbon
atoms taken after 1, 7, 14 and 20 MD steps. Carbon atom migration causing the
growth of rings and defect healing can be traced in dotted and dashed circles,
respectively. (c) Snapshots from the same MD simulation taken after 40, 83, 222
and 290 MD steps. Three subsequent hexagon formations are indicated by solid,
dashed and dotted circles.
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two more carbon atoms are introduced in both systems. These atoms are first

positioned in the same plane to the left of the nanoribbons, where the edges are

free to move in 2D. Then they are moved towards these edges until the distance

between the newcoming atom and one of the edge atoms decreases to 1.3 Å. Then

the new MD simulation is started and the process is repeated consecutively.

As seen in Fig. 3.1(a), during the growth simulation the orientation of the

honeycomb parts are changed from zigzag to armchair (left panel) and vice versa

(right panel). Interestingly, in both cases the transition is mediated by similar

structures composed of two heptagons with one pentagon in the middle. One can

attribute the defected growth to the absence of a substrate which would act as

a stencil if the template had a structure similar to graphene. Carrying on the

growth simulation of structures presented in Fig. 3.1(a) results in the massively

defected network of carbon atoms as shown in Fig. 3.1(b). One can identify the

big holes surrounded by carbon chains and patterns composed of pentagons and

heptagons. It was observed that the defects that emerged at the beginning of the

simulation are still present after about 40 ps of simulation. This implies that the

process of growth induces defects mainly composed of pentagons and heptagons,

which persist due to the absence of a healing mechanism. Several scenarios of

growth simulation without a substrate were tested but none of them resulted in a

reasonably ordered honeycomb structures. Especially, those simulations in which

carbon atoms were allowed to move in all directions resulted in bulk-like structures

and atomic chains. Although the observed chain structures are interesting, growth

of regular honeycomb structure was not observed and we deduced the necessity

of a template during the growth process to define a plane where the graphene like

structure sits and where the newcoming carbon atoms are landed.

3.2.2 Graphene Growth on BN Substrate

3.2.2.1 Monomers

Hexagonal boron-nitride consists of single layers of BN in honeycomb structure,

which is almost commensurate to graphene. Because of this reason we have cho-

sen BN as a template on which we investigate the growth of graphene. Again,
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to skip the initial nucleation process, a graphene flake was placed on BN sub-

strate. Single carbon atoms were released from random positions on top of the

graphene flake edges and molecular dynamics simulation were performed for 400

time steps before the next atom was sent. By sending the atoms one by one,

events happening during the growth process were monitored at atomistic scale.

The snapshots taken from this calculation are shown in Fig. 3.2. The bottom part

of these structures normally comprises fixed graphene and BN substrate, which

are not shown while growth proceeds upwards.

In Fig. 3.2(a) we present the general trends observed during growth. Each

of the four snapshots in this row corresponds to the final structures obtained

after the MD simulations of 30, 35, 40 and 42 carbon atoms on BN respectively.

As seen in the first column of Fig. 3.2(a) first a single carbon atom indicated

by a small arrow makes bonds with armchair edges and a pentagon structure is

formed. This stretches the edges and prepares a medium for the formation of

a neighboring heptagon. Then ring-like structures start to grow at the edges as

seen in column two of Fig. 3.2(a). When the ring structure reaches a certain

size, it collapses forming hexagonal structures at the graphene edges as shown in

columns three and four.

The formation and healing of pentagon-heptagon defects, which is the second

major mechanism affecting the growth process is presented in Fig. 3.2(b). The

snapshots correspond to the 1st, 7th, 14th and 20th MD steps of the simulation with

42 carbon atoms. The healing of the PH defect is highlighted by dashed circles.

As simulation proceeds to the 20th step, the PH defect is totally relaxed into two

hexagons. Note that, the healing of a PH defect at the edge is similar to the

healing of a Stone-Wales (SW) defect, which involves rotation of the middle bond

(which is common to two adjacent heptagons) by 90◦. Here there is, however,

a crucial difference in the path of healing as compared to that of SW healing,

because one of the carbon atoms in the pentagon of the PH defect is bonded with

two adjacent carbon atoms, whereas in the SW defect all carbons are bonded

to three others. The absence of one of these bonds (or the presence of sp2-type

dangling bond) decreases the barrier of PH healing as compared to the SW case.

This issue is revisited in forthcoming detailed discussions. We note the growing

edge of grains is reminiscent of the grain boundary. The contact of an adjacent

grain to the growing edge of graphene is expected to delay the healing of defects.
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In Fig. 3.2(b), the dotted circle in the first column marks the inclusion of the

newly added carbon atom which is added from a random position on top of the

graphene layer. This newly added carbon atom is initially positioned on top of

another carbon atom of the graphene structure. It then migrates to the bridge

site and by replacing the bridge bond it increases the size of the carbon ring

(column 2 to 4). As the ring expands with the inclusion of this new carbon atom,

it reaches the critical size after which it collapses.

The process of ring collapse is shown in Fig. 3.2(c). The snapshots presented

here correspond to the 40th, 83rd, 222th and 290th MD steps of the simulation

with 42 atoms. Here the ring is composed of 14 carbon atoms before the col-

lapse. This is just enough to form three hexagons highlighted by solid line in the

fourth column of Fig. 3.2(a). As seen in Fig. 3.2(c), these three hexagons are

consecutively formed during the collapse of the ring.

Calculations within GGA including van der Waals corrections and using PAW

potentials predict the bridge site as the energetically most favorable site of adsorp-

tion with a binding energy of 1.7 eV. While the energy barrier for the migration of

single, isolated carbon atom is only 0.37 eV, it is lowered and eventually collapsed

when another carbon atom is located at close proximity. Both first-principles to-

tal energy and finite temperature MD calculations have shown that initially C2

and eventually Cn carbon chains can form perpendicularly attached to graphene

surface through inclusion of single carbon adatom one at a time. The gain of

energy in the implementation of a single carbon adatom is ∼ 5 eV. However,

the situation is dramatically different for a graphene sheet having armchair or

zigzag edge: Single carbon atoms have shown to be attached favorably to the

edge atoms with much larger binding energy (7.08 eV for armchair edge and 8.19

eV for zigzag edge). Further implementation of carbon adatoms to the edges

gives rise to PH-like defect structures.

3.2.2.2 Dimers

Although single carbon adatoms are the smallest building blocks of graphene,

the role of carbon dimers in graphene growth was also considered. The impor-

tance of carbon dimers is especially more apparent during the initial nucleation

of graphene seeds due to their high mobility on certain transition metals. In our
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model since we already have an initial graphene flake to which the adatoms can

bind, we actually bypass the nucleation stage and directly study growth. Hav-

ing studied the growth mechanisms triggered by carbon monomers, we next use

carbon dimers as the building blocks. This time, we release carbon dimers from

random positions on top of the graphene flake and perform molecular dynamics

simulations as explained before. The snapshots taken from these simulations are

presented in Fig. 3.3. In Fig. 3.3(a) we show the final structures obtained after

400 steps of MD simulation of 26, 30, 32 and 34 carbon atoms on BN respectively.

It is seen that we have a less defected graphene growth in this case as compared

to the defected structures presented in Fig. 3.2(a). However, as seen in columns

(iii) and (iv) of Fig. 3.3(a), defects may still occur at the growing edge although

less frequent as compared to growth with monomers. Just like the monomer case,

we still have carbon rings forming and collapsing into PH defects as presented in

Fig. 3.3(a).

Fig. 3.3(b) presents the migration of a carbon dimer on the graphene flake.

Each of the four snapshots in this row corresponds to the 40th, 180th, 320th and

400th steps of the MD simulation with 34 carbon atoms. The dimer initially is

bound to one of the carbon atoms on the defected graphene structure and forms

a short segment of chain consisting of 3 carbon atoms. It then migrates towards

the edge by bonding to another carbon atom of graphene each time and finally

taking its horizontal position.

3.3 Healing Defects During Growth

Having noticed the role of PH defect healing in graphene growth, we move on

by investigating the energetics and dynamics of SW and PH defect healing in

free standing graphene, as well as graphene grown on BN and Ni(111) surfaces.

Previous experimental studies have not shown any experimental evidence for the

existence of SW defects in graphene. Although such defects can be observed by

using tunneling electron microscopy(TEM), it was noted in previous studies that

experimentally observed images of SW defects in graphene are results of electron

beams which suggests that those defects are artifacts of the measurements.[32]

In this section we calculate the energy barrier that needs to be overcame for the

formation and healing of SW and PH defects. This barrier is significantly lower
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Figure 3.3: Snapshots from ab-initio MD simulation of epitaxial growth of
graphene on BN when carbon dimers are used as building blocks. B, N and
C atoms are represented by green, blue and brown balls. (a) The final configu-
rations of MD simulations involving 26, 30, 32 and 34 carbon atoms. Graphene
growth is less defected as compared to growth with monomers, but ring forma-
tion and PH defects still occur as seen in columns iii and iv. (b) Migration of
a carbon dimer on graphene surface. The side view snapshots are from an MD
simulation having 34 carbon atoms. The dimer moves to its final position each
time by binding and detaching from a different carbon atom of graphene.
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Figure 3.4: (a) Energetics of the healing path of SW and PH defects in graphene
for three cases; namely without template, graphene on BN and graphene on
Ni(111) substrates. The solid red, green and blue lines show the healing path
of SW defect and associated energy barriers for graphene without template,
graphene on BN and graphene on Ni(111) surfaces, respectively. (b) Top and
side views of SW defect healing on Ni substrate. The Ni atoms forming the top,
middle and bottom atomic layers of the substrate are indicated by numerals 1, 2,
and 3, respectively. The lateral positions of atoms in these layers are indicated
by sites 1, 2, and 3. The interaction between graphene and Ni(111) is manifested
in the side view of the fifth NEB image, where carbon atoms forming the C-C
bond between two heptagon are pulled down when they are passing over site-2
and site-3 of the Ni substrate.
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at the growth edges where there are vacancies nearby. Therefore, the formation

and healing of these defects take place on growing edges rather than at regions

where graphene has already grown to its normal structure. Hence, this explains

the defect free structure of graphene once it grows successfully.

Here, we calculate the energy barrier confronted during the healing process us-

ing the climbing image NEB method.[33] Structures involved in this calculations

are composed of armchair graphene nanoribbons with fixed edges and defects in

the middle. The height between graphene nanoribbon edges and substrate under-

neath is set to the optimized value found in the case of infinite graphene sheet on

infinite substrate. Also the relative position is derived in similar way. The opti-

mum configuration of graphene on BN substrate is achieved when carbon atoms

of one graphene sublattice are placed on top of boron atoms of the underlying

BN layer. In case of the Ni(111) substrate, graphene structure is oriented in such

a way that nickel atoms at the top layer of the substrate are under the center of

the bridge bonds of graphene. We first calculate the ground state configuration

of completely defected and healed states. As an initial guess of a healing path, we

choose a straight line connecting these defected and healed states via linear inter-

polation. We choose 11 NEB images where first (defected) and eleventh (healed)

are not changed while other nine images are varied until the optimum healing

path is found. The fifth image was chosen as the climbing image which converges

to the saddle point. Results of these calculations are outlined in Fig. 3.4.

In Fig. 3.4(a), the calculated healing paths of SW defect in graphene and asso-

ciated barriers are shown for three cases; namely for graphene without substrate,

graphene on BN and on Ni(111) surfaces. Here the energy barriers along the

healing paths of SW defects are found to be 3.74 eV, 3.57 eV and 2.96 eV for

free-standing, BN and Ni substrate cases, respectively. The energy barrier is sig-

nificantly lowered by the substrates. The effects of substrates are proportional

to their interaction energy with graphene structure. In this respect, the binding

energies of graphene on BN and Ni substrates are found to be 0.13 eV and 0.41 eV

per two C atoms, respectively. How the substrate can lower the barrier energy

is explained by the top and side views of atomic configuration of SW defected

graphene on Ni(111) substrate in Fig. 3.4(b). Three layers of Ni(111) forming

an A,B, and C stacking of the fcc structure are indicated by numerals 1, 2 and

3 starting from the top layer in the side view in Fig. 3.4 (b). Lateral positions

of the atoms of these layers are indicated by sites 1, 2, and 3 in top view in
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the same figure. Site-2 and site-3 are energetically favorable sites for graphene

atoms above Ni(111), since the binding energies of a single carbon atom on site-2

and site-3 is more favorable compared to that of site-1 by 2.48 eV and 2.46 eV,

respectively. Here during the healing process of SW defect the energy barrier

is lowered because of two reasons. The first reason is that, the C atoms which

form the defect are pulled by site-2 and site-3 of the Ni substrate as shown in

side view in Fig. 3.4(b). This pulling is in the same direction with healing path.

The second reason is that, by pulling the carbon atoms out of plane, Ni substrate

increases the distance between these atoms and thereby decreases stress in the

carbon-carbon bonds during the healing.

The healing paths and energy barriers of PH defect in graphene are also shown

by the dotted curves in Fig. 3.4(a). The inset shows the atomic configuration of

PH defected graphene on layered BN substrate. Unlike SW defect, here PH defect

has one carbon atom with a sp2-type dangling bond. The energy to be gained from

the saturation of this dangling bond by forming a bond with a nearest C atom

of the heptagon ring becomes the driving force for the healing. As a result, the

energy barrier to heal the PH defect is lowered dramatically by ∼ 2 eV as shown

in Fig. 3.4(a). Our argument is justified by the fact that the barrier lowering

occurs also for the healing of PH defect in free standing graphene. However,

contrary to the effect of substrate in the healing of SW defect above, the barrier

lowering effect of Ni(111) substrate is weaker than that of BN substrate. This is

due to the interaction between the substrate and sp2-type dangling bond; namely

the stronger the interaction with substrate, the lower is the gain of energy upon

saturation of the sp2-type dangling bond of a two-fold coordinated carbon atom.

As a result, highest barrier lowering takes place in the healing of PH defect in

free standing graphene.

3.4 Summary

Here we showed that there are two main events happening during epitaxial

graphene formation. The first one is the formation of large carbon rings at the

edges of the growing structure. With the inclusion of new carbon atoms, these

large rings further expand and eventually collapse into smaller structures when
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some critical ring size is reached. The smaller structures formed after the col-

lapse are composed of hexagonal and defected regions of graphene. The defected

regions, which can form both before and after the collapse of rings, generally

consist of pentagons and heptagons. The second major mechanism of the growth

process is the healing of these defected regions formed at the edges of the growing

structure. In this respect, we investigated the healing process of defects composed

of neighboring pentagons and heptagons which are named as pentagon-heptagon

defects. PH defect is similar to the well-known SW defect, but here some carbon

atoms are two-fold coordinated with unsaturated sp2-type bonds. The energy

barrier for the healing of a PH defect is lower as compared to that of SW defect

due to this deficiency. We also presented the analysis for the energetics of healing

of SW and PH defects in free standing graphene, as well as graphene grown on

BN and Ni(111) substrates using the climbing image nudged elastic band (NEB)

method.[33] We found that the healing of PH defects is further facilitated when

the lattice of graphene grown on Ni(111) substrate is expanded.
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Chapter 4

Graphene / Boron Nitride

Nanocapacitors

The vertical stacking of graphene / boron nitride layers examined in the previ-

ous chapter and the experimental evidences of such layered materials discussed

in the introduction chapter suggests the modelling of a material where an in-

sulator is stacked between two metallic plates. In this chapter, we consider a

nanoscale capacitor model envisaged from these vertically stacked composite ma-

terials and study its capacitive behavior using ab initio calculations within the

density functional theory with external potentials. We compare the capacitance

values obtained from the present first-principles total energy calculations with

those estimated within the classical Helmholtz model and reveal crucial quantum

size effects at nanoscale. The nanoscale capacitor model that is composed of

hexagonal h-BN layers, which are stacked between two metallic graphene sheets

as described in Fig. 4.1 (a) and attains high gravimetric capacitance values which

is characteristic of a supercapacitor. Series, parallel, mixed and 3D combinations

of these structures can also be fabricated by repeated stacking of varying numbers

of graphene and h-BN layers. Thus, by varying the separation distance in our

capacitor model, we observe interesting quantum size effects at small separations

which recede as the distance between the graphene plates increases.
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4.1 Overview of Nanocapacitors

Developments in nanoscale physics have widened our perception of energy stor-

age mechanisms in materials. In this respect, recyclable and efficient energy

storage through light weight nanoscale capacitors have attracted interest. Re-

cently, supercapacitors[34] have developed as one of the most promising energy

storage mediums, whereby several orders of magnitude higher energy densities

than those of the conventional dielectric capacitors have been realized[35]. En-

ergy storage in supercapacitors occurs through charge separated between metal

surfaces and the electric field generated thereof. So far several different materi-

als such as mixed metal oxides,[36] polymers,[37] and carbon nanotubes[38, 39]

have been used to fabricate supercapacitors. Recently, graphene with its 2D

one-atom thick honeycomb structure showing a perfect electron-hole symmetry

and its high chemical stability[3] has also been proposed as an ideal material for

supercapacitors[40, 41, 42]. In previous studies, capacitance per unit area values

of 80 µF/cm2 and 394 µF/cm2 have been achieved for ultrathin supercapacitors

with electrodes comprised of pristine graphene and multilayer reduced graphene

oxide[43]. Also, a maximum capacitance value of 205 F/gram was obtained using

graphene materials prepared from graphene oxide sheets[44]. Ultra thin transpar-

ent graphene films prepared using a vacuum filtration method were also used in

supercapacitor experiments[45] and a capacitance of 135 F/gram was obtained for

a film of 25 nm thickness. In these experimental studies the supercapacitor mod-

els are derived from the concepts of classical capacitors, whereby the capacitance

values are measured depending on the applied voltage.

Recently, nanoscale dielectric capacitors (NDC) have rapidly developed and

achieved properties, which are superior to other systems of energy storage. An

ideal NDC should be composed of metallic layers that can store and release charge

and a dielectric material in between these layers for increasing the capacitance

value without increasing the dimensions of the structure. Recent theoretical and

experimental studies on graphene, carbon nanotubes and metallic nanowires have

focused on understanding the dielectric properties of these structures and forming

thin layers that can serve as ideal charge holding metallic plates[46, 47, 48, 49]. A

theoretical method has been developed for calculating the dielectric response of

periodic metal-insulator heterostructures and hence the microscopic properties of
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thin-film capacitors modeled by Ag/MgO/Ag films[46]. In a recent study, nanos-

tructured electrodes were used to fabricate transparent capacitors with polymer

dielectrics and carbon nanotube electrodes[47] which are important in a range

of applications from sensors to transparent circuits. Similarly structural, optical

and electrical properties of transparent carbon nanotube based capacitors on glass

substrates were also examined and shown to be highly efficient in photovoltaic

and solar energy storage devices[48]. It was also experimentally demonstrated

that Ag nanowires deposited on glass substrates can be used as electrodes[49]

which can possibly be used in nanocapacitor fabrication.

Improving the permittivity of the dielectrics used have been also important

for higher capacitance values of NDCs. With this regard, recent progress was

made in increasing the permittivity and breakdown strength of nanocomposite

materials by using fillers[50, 51] and high aspect ratio nanowires[52]. It was

demonstrated that polyvinylidene fluoride and Ba-Ti-O nanowires can both in-

crease the breakdown strength of nanocomposite dielectrics and increase their

energy densities.[50] The dependence of the energy density on the volume frac-

tion was also investigated and maximum energy density values were achieved at

50% nanoparticle volume fraction[51]. Furthermore, the existence of dielectric

dead layer at nanoscales were investigated on SrRuO3/SrT iO3 dielectric capaci-

tors and the reason behind the reduction in the capacitance values in experiments

as compared to theoretical predictions were explained[46].

4.2 Calculation of Nanocapacitance with DFT

Since the principle objective of using a capacitor is to store energy by storing

equal magnitude of electric charges of opposite sign in two disconnected con-

ducting plates, a charged capacitor is in a static and non-equilibrium state. The

energy stored this way is released when the plates are connected to a circuit,

so that the discharged capacitor turns into an equilibrium state. At nanoscales,

since the separation thickness of the devices can be as small as a nanometer, the

stored energy has to be calculated from the first-principles. However, the avail-

able first-principles methods allow us to treat the distribution of only one kind of

excess charge (positive or negative) in the same system at a time[53, 54, 55, 56].

Therefore, the main obstacle in studying nanocapacitors using DFT is separating
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Figure 4.1: (a) A supercapacitor model with n = 2 h-BN layers serving as di-
electrics are capped by two parallel graphene layers serving as metallic plates.
The whole system is subjected to a uniform electric field along the z-axis so that
graphene plates are charged by surface charge densities of −σ and +σ, respec-
tively. (b) Schematic description of the calculated (x, y)-plane averaged electronic
potential, V̄ (z). The difference of the potential energy between graphene layers
A and B is eV̄z. (c) Isosurfaces of the self-consistent difference charge densities
of the negatively charged (A) and positively charged (B) graphene layers are ρA
and ρB, respectively. The isosurface values are taken as 0.01 electrons / Å2. Yel-
low and blue isosurfaces indicate excess and depleted electrons, respectively. The
computations are performed on a 2× 2 supercell with a vacuum spacing of 20 Å.
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positive and negative charges on the plates of a capacitor. In our model, the

charge separation is achieved by applying an external electric field ~E, perpendic-

ular to the graphene layers, as schematically shown in Fig. 4.1 (a). This situation

mimics the operation of a capacitor, whereby the surface charge of opposite sign

initially stored on different metallic plates create a perpendicular electric field.

The shorting of these two plates and hence the discharge of the capacitor are

hindered by placing sufficient amount of vacuum space or dielectric h-BN layers

between graphene plates.

On the other side, charge separation through applied electric field by itself

brings along a serious problem as discussed in the method chapter. This artifact

of PW methods can be circumvented by using a local basis set such as atomic

orbitals (AO), since they fail to represent the states which can be bound to the

quantum well in the middle of the vacuum spacing. In a recent paper[57] the

treatment of charged systems has been extensively analyzed. Thus, we carried

out first-principles spin-polarized and spin-unpolarized calculations within den-

sity functional theory(DFT) using atomic orbitals(AO) as local basis set. The

exchange-correlation potential is approximated by the generalized gradient ap-

proximation (GGA) using Perdew, Burke and Ernzerhof(PBE) functional[58].

The eigenstates of the Kohn-Sham Hamiltonian are expressed as linear combi-

nations of numerical atomic orbitals. A 200 Ryd mesh cut-off is chosen and

the self-consistent field (SCF) calculations are performed with a mixing rate of

0.1. Core electrons are replaced by norm-conserving, nonlocal Troullier-Martins

pseudopotentials[59]. The convergence criterion for the density matrix is taken

as 10−4. Atomic positions, lattice constants are optimized by using the conjugate

gradient method, where the total energy and atomic forces are minimized. In par-

ticular, the minimum energy stacking sequence of the composite material consist-

ing of n BN layers between two graphene is determined for each n. All numerical

calculations are performed using the SIESTA code[21]. Dipole corrections[60] are

applied in order to remove spurious dipole interactions between periodic images

for the neutral calculations. Calculations are carried out on the (2×2) supercells

in order to account possible reconstructions, but the relevant values are given per

primitive cell.

Previous analysis[61] have shown that the interlayer spacing of graphite has

been overestimated by GGA approximation using PW91 functional, but has

improved to the 4% of the experimental value with the van der Waals (vdW)

30



-4

-2

0

2

4

Г                M          K                      Г Г                  M         K                     ГM         K

E
D_

= -0.9 eV

∆
E

Г

M K

BN

BN

bilayer

   BN

(a) (b) (c)

D_

D
+E

D+
= 0.9 eV

E
F

D
+

D_
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correction.[22] To reveal how well the spacing between graphene and single layer

h-BN and the spacing between the graphene layers capping two h-BN layers

in Fig. 4.1 (a), both optimized by PBE are predicted, we compared the same

spacings with those calculated with PBE including vdW correction using VASP

code.[19] While the spacing between graphene and h-BN is overestimated by 5.5%

by PBE relative to that obtained by including vdW correction, the overestima-

tion of the spacing in our capacitor model reduces to 1.5%. As for the lattice

parameter of the hexagonal primitive unit cell predicted by PBE and PBE+vdW,

the former method overestimates only 0.8%. In view of the fact that h-BN layers

serve as dielectrics, the overestimation of the interlayer spacings by approximately

5.5% is acceptable.

Regarding the structure, free h-BN and free graphene have lattice constants

calculated to be a= 2.53 and a=2.48,respectively, which lead to a lattice mismatch

of ∼2%/. When grow on top of graphene, this lattice mismatch is accomodated

by a supercell of 50x50 comprising 10.000 atoms. Therefore, the investigation

of superlattice effects and miniband formation may not be investigated easily

from first-principles calculations. However, the effects of small lattice mismatch

is expected to be minute to affect the properties of dielectric h-BN spacer. Addi-

tionally, when optimized together in the single cell, h-BN having relatively smaller

in-plane stiffness is compressed to the smaller unit cell.

4.3 Results and discussion

We first consider two isolated graphene layers each one is charged by ±Q =

0.06 electrons per primitive unitcell (or ±σ = 0.18C/m2). The electronic band

structure of each graphene is shown in Fig. 4.2 (a)-(b): The Dirac point D− dip

below the Fermi level, when a single, isolated graphene is negatively charged by

σ = −0.18C/m2. In contrast, the Dirac point D+ rises above the Fermi level

when the single, isolated graphene layer is positively charged or hole doped by

σ = 0.18C/m2. The upward and downward shifts of the corresponding band

structures in Fig. 4.2 (a)-(b) are equal and |ED−| = ED+ ' 0.9 eV.

Next we examine our model of nanocapacitor described in Fig. 4.1 (a), which

is actually one single system of a composite material consisting of two insulating
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h-BN layers placed between two parallel semimetallic graphene layers. Initially,

it has zero net charge in graphene layers. However, when exerted by a positive
~E along z-axis, self-consistent field calculations accommodate excess electrons on

the left graphene while the same amount of electrons are depleted from the right

graphene. Hence, the integral of the volume charge in the cell of the capacitor

is still zero,
∫
cell

QdV = 0. The atomic structure, interlayer spacings, relative

positions of the layers and the cell parameters, are optimized. The plane-averaged

electronic potential, V̄ (z), is shown in Fig. 4.1 (b) under an external electric

field of ~E = 1.0 V/Å. For this case, the potential energy difference between

the two graphene layers is calculated to be e∆V̄z ' 1.8 eV, which leads to the

accumulation of equal amount of surface charge of opposite sign, ±Q = 0.06

electrons per primitive unitcell (or ±σ = 0.18C/m2) on either graphene layers.

The isosurface plots of the difference charge density of the negatively charged

(A) and positively charged (B) graphene layers, namely the difference of charge

densities between the charged and neutral graphene layers, δρA,B = ρA,B − ρ0

illustrate the charge separation.

The band structure of this optimized capacitor is presented in Fig. 4.2 (c)

which, apart from minute changes, is practically combination of bands in Fig. 4.2

(a) and (b) and those of h-BN bilayer shown by dotted lines in Fig. 4.2 (c). We

infer following features from Fig. 4.2, which are essential for the model: (i) The

band gap of the free h-BN bilayer is conserved in the capacitor, except that they

split due to the electric field. Accordingly, the potential barrier for electron to

tunnel from left to right graphene is ∆Φ =3eV as shown in Fig. 4.2 (c). In

reality, the potential barrier can be higher than 3 eV, since DFT underestimates

the band gap. As a matter of fact the band gap of h-BN calculted to be ∼4.6

eV[62], rises up to 6.8 eV after GW self-energy correction.[63]. On the other

hand, the band gap of single layer MoS2 has been overestimated through GW

correction.[64] Experimentally, it is measured to be ∼ 5.5 eV.[7] We note that

the band gap is an excite state property of the model capacitor and wide band

gap hinders the tunnelling of carriers from one plate to other through the h-BN

spacer. Nevertheless, the SCF electronic potential and the potential difference

between plates are ground state propertied, which are properly predicted in our

calculations. (ii) The integrals of the SCF charge on the graphene layers A and

B in Fig. 4.2 (c) are equal to the excess charge values used in the calculation of

Fig. 4.2 (a) and (b), namely
∫ B,A

σ(x, y)dxdy = ±Q = 0.06 electrons per primitive

cell (or ±σ = 0.18 C/m2). (iii) The calculated energies of the Dirac points for
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function of external electric field ~E calculated for different n number of h-BN
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after ~E >0.35 V/Å and reach their steady state values for ~E > 0.6 V/Å.

the left graphene layer, (ED−) in Fig. 4.2 (a) and the right graphene layer, ED+ in

Fig. 4.2 (b) relative to the common Fermi level EF are equal in magnitude because

of the electron-hole symmetry near the Dirac points, i.e. |ED− | = ED+ . In the

electronic band structure of the capacitor in Fig. 4.2 (c), the energy difference

between the Dirac points D+ and D− is ∆E. Interestingly, ∆E is equal the

sum of the energy shifts in Fig. 4.2 (a) and (b), i.e. ∆E = |ED− | + ED+ . (iv)

Even more interesting is that ∆E ' e∆V̄z in Fig. 4.1 (b). These features by

themselves demonstrate that our model of capacitor is, in fact, appropriate and

precise. Even if adjacent layers are coupled, the graphene layers A and B are

isolated and electronically decoupled. It should be noted that the capacitive

behavior attained above by applying perpendicular electric field is equivalent to

the reversed situation, where ±Q charge is stored in different plates can induce

the same ~E.

Having tested our model of capacitor, we next investigate its capacitive be-

havior. To this end we calculate the stored energy as a function of the applied

electric field for different numbers n of parallel h-BN . The energy difference be-

tween the total energies of the structures under external field and under zero field

gives us the energy stored in the capacitor, EC(n, ~E) = ET (n, ~E)−ET (n, ~E = 0).

The total energies, ET , are obtained by SCF energy calculations of optimized

structures. In Fig. 4.3 (a) the variations of capacitor energy with applied ~E are

plotted for n =1-4. The variation of EC is not monotonic with n for the reason

explained in the forthcoming part. In Fig. 4.3 (b), we present the variation of the
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Table 4.1: Number of BN layers between the graphene plates, n; calculated and
optimized values of the distance between graphene layers capping h-BN layers,
d (in Å); total mass of the primitive unitcell, m (in kg × 10−22); calculated
dielectric constants of the layered h-BN sheets, κ; magnitude of the excess charge
on the graphene plates, |Q| (in electrons); energy stored in the primitive unitcell,
EC (in eV); local potential difference between the graphene plates, ∆V̄z (in V );
gravimetric capacitance in Farads per grams calculated using (i) the EC and Q
values obtained from DFT calculations, i.e. C1 = Q2/2mE; (ii) the ∆V̄z and Q
values obtained from DFT calculations, i.e. C2 = Q/m∆V̄z and (iii) using the
classical Helmoltz expression, i.e. C3 = κε0

A
md

, where κ is the dielectric constant
value for bulk BN, ε0 = 8.85 × 10−12 F/m is the permittivity of free space and
A = 5.25 × 10−20 m2 is the area of the graphene plate in the primitive unitcell.
The masses of the capacitor models are calculated by adding the atomic masses
of B, C and N atoms in the primitive unitcell of the optimized composite systems.

n d m κ |Q| EC V̄z C1 C2 C3

1 6.21 1.21 1.59 0.033 0.033 2.2 19.8 18.7 33.9
2 9.52 1.63 2.17 0.060 0.035 1.8 54.4 32.7 16.5
3 12.23 2.04 2.75 0.055 0.070 3.5 16.9 12.3 10.2
4 15.14 2.46 3.19 0.040 0.093 4.6 5.7 5.7 6.9
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magnitude of the excess charge, |Q| stored in either graphene layers as a function

of the applied field for n =1-4. Here |Q| is also obtained from first-principles

calculations by integrating the net charge in either graphene layer. In Fig. 4.3 (c)

we calculate the capacitance per mass C1 from the expression C1 = Q2/(2mEC),

where m is the total mass of B, N and C atoms in the model. We note that

for ~E >0.35 V/Å, the calculated values of capacitance C1 begin to saturate to

different values depending on n and become independent of the applied field as

one expects. Thus, our choice of ~E =1V/Å in Fig. 4.2 was reasonable, since it

is within the saturated region for n =2. This very important result shows that

even if the energy of the nanoscale capacitor is obtained from the first-principles

calculations, the behavior of the calculated capacitance complies with its defi-

nition. The transient behavior of ~E in the range of 0< ~E <0.45 is due to the

uncertainty in the calculation of optimized ET . The gravimetric capacitance of

n =2 is calculated to be C1 = 54.4 F/gr, which is considered to be in the range

of supercapacitors. The capacitance values can also be acquired from the defini-

tion, namely C2 = Q/m∆V̄z using the calculated charge values |Q| in Fig. 4.3 (b)

and ∆V̄z from the plane-averaged potential V̄ (z) as described in Fig. 4.1. The

capacitance values acquired this way are in the range of those calculated from

C1 = Q2/(2mET ) in Fig. 4.3 (c). Nonetheless, in the rest of discussions we used

the capacitance values C1 obtained from the quantum mechanical calculations of

energy and charge, since due to the plane averaging process of electronic poten-

tial, ∆V̄z does not provide the necessary precision compatible with that of the

total energy calculations. In Table I, we list various parameters and calculated

values relevant for the calculations of gravimetric capacitances per unit mass. We

do not consider the graphene bilayer corresponding to n = 0, since the charge

stored in the layers are shorted.

In Fig. 4.4 we compare capacitance values calculated using DFT and classical

Helmholtz model as a function n. The capacitance value acquired from the DFT

results is small for single h-BN layer; but passes through a maximum and then

decreases with increasing numbers of h-BN layers. The latter behavior for large

number of h-BN layers is reminiscent of that of classical capacitance, namely

C ∝ 1/d, since the distance d between the charged capacitor plates also increases

as n increases. However, that the increase in the value of C1 as n increases from

1 to 2 is surprising, since the effect of the insulating medium consisting of h-

BN layers is indigenous to the DFT calculation of C1 deduced from EC . This

situation is attributed to a quantum size effect as revealed from our analysis of
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high frequency dielectric constant, κν=∞, as well as low frequency (static) di-

electric constant κν=0, of h-BN sheets calculated as a function of n. Because of

the layered character, one distinguishes the in-plane (‖) and perpendicular (⊥)

dielectric constants in BN spacer. The calculated κν=0,‖ and κν=0,⊥ of the lay-

ered bulk BN crystal are 5.25 and 3.80, respectively, which are in fair agreement

with experiment.[65] Calculated values of κν=0,‖ (κν=0,⊥) are listed in Table I for

n =1-4. Accordingly, κ increases with increasing n and hence displays a strong

size effect. Rather small values of κ for n =1 and 2 cause that C1 first increases

with increasing h-BN layer for n ≤2, but it decreases with increasing n for n >2

as shown in Fig. 4.4. In other words, although a decrease in the capacitance value

is expected as the layer-layer separation increases, the increase in the dielectric

constant of h-BN layers counters this effect. Hence, as a result of the competition

between the increased layer-layer distance and increasing dielectric constant val-

ues, the capacitance value passes from a maximum at an optimum spacing after

which it starts to decrease again. In the same figure we also plotted the varia-

tion of capacitance obtained from the Helmholtz model C3 = κε0A/md, where

d is the distance between graphene layers corresponding to a given n, and κ is

the dielectric constant of bulk BN. This is a purely classical value. We see that
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quantum effects dominate the capacitance for n <4, while they decay quickly and

the capacitor behaves as a classical capacitor for n ≥4.

4.4 Summary

We investigated a nanoscale dielectric capacitor model consisting of two-

dimensional, hexagonal h-BN layers placed between two commensurate and

metallic graphene layers. The separation of equal amounts of electric charge of

different sign in different graphene layers was achieved by applying electric field

perpendicular to the layers. The stored charge, energy, and the electric potential

difference generated between the metallic layers were calculated for the relaxed

structures. Predicted high-capacitance values exhibit the characteristics of super-

capacitors. The capacitive behavior of the present nanoscale model is compared

with that of the classical Helmholtz model, which reveals crucial quantum size ef-

fects at small separations, which in turn recede as the separation between metallic

planes increases.
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Chapter 5

Laterally Repeating Graphene /

Boron Nitride Composite

Materials

In the previous two chapters, we investigated vertical growth of graphene / boron

nitride layers using first principles and proposed a nanocapacitor model as an im-

mediate application of this stacking. However, graphene / boron nitride compos-

ites are not limited to vertical stackings of these two, but also laterally repeating

composites of these two materials can be realized. In fact, realization of two

dimensional (2D) systems and their composites three decades ago, where elec-

trons are propagating in 2D, but confined in the third dimension (3D) showed

quantization that is different from 3D systems.

In this chapter, we consider one-atom-thick composite materials which are

composed of laterally and periodically repeating, zigzag or armchair nanoribbons

that are merged commensurately as stripes in a single layer honeycomb structure.

The model is described in Fig. Fig. 5.1(a-b). While the model has translational

periodicity of the honeycomb structure along the x-direction, the translational

periodicity along y-direction depends on the widths of adjacent graphene and

h-BN stripes in terms of the number of C and B+N atoms in the unit cell; p and

q, respectively. We name these hybrid structures as graphene/BN composites
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abbreviated as G(p)/BN(q). We distinguish diverse types of features and func-

tionalities in different types of G(p)/BN(q) composites having zigzag or armchair

geometry. As schematically described in Fig. 5.1(c), these are BN δ-doping in

wide graphene stripes; electronically decoupled 1D composites in a 2D framework

consisting of wide graphene and wide h-BN stripes; graphene δ-doping in wide h-

BN stripe; and finally line compounds where each unit cell contains one graphene

and one BN hexagon.

5.1 Overview

The formation of 2D patterned domains of one type of material embedded in an-

other material has been previously proposed.[66, 67] Not only domains but also

periodically repeating defects and adatom islands can be considered to construct

mesh structures. Recent advances have made the mesh configuration a control-

lable parameter for monitoring physical properties of nanostructures.[68, 69, 70]

Specifically, in-plane graphene/h-BN hybrid structures have attracted consider-

able interest because of their potential applications in flexible 2D opto-electronic

devices.[71, 72, 73, 74, 75, 76] The realization of monolayer materials consisting

of hybrid graphene/h-BN domains has motivated further research in the field.[12]

Subsequently, graphene/h-BN in-plane heterostructures with controllable widths

down to 100 nm have been fabricated using lithographic patterning and sequen-

tial CVD growth of graphene[77]. Anomalous insulator-metal transition has been

observed in graphene/h-BN hybrid structures, such as BN nanoribbons or nano

domains embedded in graphene[78]. Theoretically, half-metallicity has been pre-

dicted in hydrogen saturated hybrid graphene/h-BN nanoribbons.[79]

Here, we carried out a systematic analysis of electronic structure showing that

the electronic and functional properties of these one-atom-thick composites can

be tuned by altering the p/q ratio and boundary geometry of the constituents;

they can be metal or semiconductor in the energy range of visible light. We find

that: (i) when their widths are increased, the constituent stripes become elec-

tronically decoupled and in a 2D composite system a transition from 2D to 1D

takes place, whereby electronic states become confined to 1D stripes. Such struc-

tures can form multiple quantum wells. (ii) However, when the widths of both

stripes (p and q) are decreased, they start to couple and hence the composite
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material behaves as a compound composed of lines of different materials and dis-

plays unique characteristics. The electronic structure acquires 2D dispersion; not

only along the stripes, but also in the transversal direction. (iii) The properties of

one constituent alone can be modified by the δ-doping of the other constituent.

(iv) Remarkably, the ribbon of composite material, such as BN(q) capped by

G(p) from both side allows charge separation of opposite polarity and makes en-

ergy storage possible under the external electric field along y-direction.[80] These

ribbons also undergo metal insulator transition under applied electric field and

can function as resonant tunneling double barrier.[81] (v) Stable, single-wall nan-

otubes can be constructed from G(p)/BN(q) zigzag and armchair nanoribbons.

Briefly, a comprehensive analysis of dimensionality of electronic structure of a 2D

monolayer, composite G(p)/BN(q) material is presented and novel features are

revealed. Additionally, this study includes an extensive analysis of the energetics

related with the hybrid graphene/BN structures.

5.2 Method

Our predictions are obtained from the state of the art first-principles pseudopo-

tential calculations based on the spin-polarized Density Functional Theory within

the generalized gradient approximation including van der Waals corrections.[22]

We used projector-augmented wave potentials [29] and the exchange-correlation

potential is approximated with Perdew-Burke-Ernzerhof functional.[58] The Bril-

louin zone was sampled in the Monkhorst-Pack scheme, where the convergence

in energy as a function of the number of k-points was tested. The k-point sam-

pling of (21×21×1) was found to be suitable for the BZ corresponding to the

primitive unit cell of G(4)/BN(4) composite with zigzag edge. For wider stripes

and hence larger unit cells this sampling has been scaled accordingly. The num-

ber of k-points were further increased to (48×48×1) in the projected density of

states calculation. Atomic positions were optimized using the conjugate gradient

method, where the total energy and atomic forces were minimized. The energy

convergence value between two consecutive steps was chosen as 10−5 eV. A maxi-

mum force of 0.01 eV/Å was allowed on each atom. Numerical calculations were

carried out using the VASP software.[19] To achieve charge separation of opposite

polarity on composite nanoribbons under transversal external electric field, the
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structure optimization and self-consistent field charge density calculations are

performed using SIESTA software with numerical local basis set.[21] This way

spurious divergences emerging from the use of plane wave basis set with periodic

boundary conditions are eliminated[57, 82].

Since the band gaps are underestimated by standard DFT, we also carried out

calculations using the HSE06 hybrid functional [83, 84], which is constructed by

mixing 25% of the Fock exchange with 75% of the PBE exchange and 100% of

the PBE correlation energy and range separation parameter is set to 0.2. The

stability of composite structures are tested by ab initio molecular dynamics (MD)

calculations carried out at finite temperatures. A Verlet algorithm is used to

integrate Newton’s equations of motion with time steps of 2 fs. Starting from

200 K we carried out MD calculations for 1 ps at temperatures 200, 400, 600,

800, and 1000 K, continuing and lasting for 5 ps in total for each system. To

maintain the system in the desired constant temperature the velocities of atoms

are rescaled in each time step.

5.3 Results and Discussion

Bare zigzag graphene nanoribbon ZGNR(p) and bare h-BN nanoribbon ZBNR(q)

are metallic. When their edges are saturated by hydrogen atoms, the zigzag h-

BN nanoribbon transforms into an insulator.[62] Also, when the same ZBNR joins

graphene nanoribbons commensurately at both side, it becomes an insulator with

a wide band gap. When carbon atoms at the edges of ZGNR(p) are saturated

by B and N edge atoms of ZBNR(q) at alternating sides, ZGNR(p) changes into

semiconductor, where the band gap diminish as p increases. On the other hand

bare armchair graphene nanoribbon, AGNR(p) is a semiconductor with a band

gap which generally decreases with increasing p. At the same time, the band

gap shows family behavior according to p = 3n + m; namely the band gap is

the largest for m = 0, and smallest for m = 2 and intermediate for m = 1 for a

given integer n.[85] However, this situation is subject to change in G(p)/BN(q)

composite structure with armchair borders.
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5.3.1 Energetics and stiffness

The zigzag border of a G(p)/BN(q) comprises one type of bond only; one side C-B

bond, and the other side C-N bond. In this respect, the energetics of the zigzag

border between graphene and h-BN is crucial for the lateral epitaxial growth.

Here we present an analysis of energetics, which may be critical for the growth

of graphene/BN composite materials.

The substitution of both B and N in 5×5 graphene are endothermic and the

substitution energies are calculated as -2.64 eV and -3.59 eV, respectively. Ac-

cordingly, the substitution of C atom in graphene is easier by B atom than by N

atom. Next, we examine the adsorption of B and N atoms to the zigzag edges of

bare graphene nanoribbons. We first consider the adsorption of isolated, single B

or N to ZGNR(16). The calculated binding energy of the isolated, single B (N)

atom to the carbon atom at the zigzag edge is 6.19 eV (6.86) eV. The binding

energies is positive since the adsorption of B or N is an exothermic process. In

compliance with the substitution energies discussed above, N atom forms rela-

tively stronger bond. We also consider the situation where one edge of ZGNR(16)

is fully covered either by B or by N atoms. Here the binding energies are given

by including and also by excluding the adsorbate-adsorbate (namely B-B or N-N

coupling). The binding energy of full B (N) coverage of one edge is found to be

4.79 eV (6.19 eV), if the adsorbate-adsorbate coupling is included. Conversely,

the binding energy of B (N) is calculated to be 6.4 eV (6.08) eV, if the adsorbate-

adsorbate coupling is excluded. Here the adsorption of N in two cases displays an

opposite trend as compared to that of B atom, since its magnetic state is different

when compared to isolated case.

Another critical energy to be addressed is associated with the commensurately

grown, single ZGNR(p)+ZBNR(q) composite nanoribbon, which is treated within

the supercell method using the prototype ZGNR(12)+ZBNR(12) ribbon. Here

one distinguishes two cases: In the first one, ZBNR(12) is attached to ZGNR(12)

through its B atoms located at one of the edges and thus forms C-B bonds at its

border with graphene. In the second case, ZBNR(12) is attached to ZGNR(12)

through its N atoms to form C-N bonds at the border. Through the difference

of the total energies calculated for these two cases (ET [B − C]=-210.06 eV and

ET [C − N ]=-209.94 eV), we found that the formation of C-B bonds between

two commensurately grown ZGNR(12) and ZBNR(12) nanoribbon is favored by
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0.13 eV per bond relative to C-N bond. This conclusion agrees with the recent

experimental data.[75] Two types of bonds, C-B and C-N coexist at either borders

of armchair geometry.

The in-plane stiffness, which is commonly used to measure of strength for 2D

materials can be expressed as C = 1
Ao

× ∂2Es

∂ε2
where Es is the strain energy, Ao is

the equilibrium area and ε is the axial strain calculated by ∆ax,y/ax,y, a being the

lattice constant in the x or y direction. The calculated in-plane stiffness values of

the composite materials approximately correspond to the average of the in-plane

stiffness of pure constituents (graphene CG=330 N/m2, h-BN CBN=255 N/m2);

namely C̄ = (p×CG+ q×CBN)/(p+ q). We also calculate C̄=290 N/m2 for p=4

q=4, which is rather high. In fact, it is higher than that of silicene (62 N/m2)

and MoS2 (138 N/m2)[63, 86]. The stability of a 2D prototype line compound of

zigzag and armchair composite structure is tested by ab-initio MD calculations up

to T=1000 K. Both composite structures remained stable except atomic planes

became wavy as shown in Fig. 5.1 (d) and (e).

5.3.2 Line compound

In Fig. 5.2(a), line compound G(4)/BN(4) with zigzag border is a semiconductor

with a band gap of 1.2 eV. The effective mass, m∗
x,y = h̄2[d2En(kx,y)/dk

2
x,y]

−1, of

electrons and holes is small for kx, but large for ky resulting in conductivity

along x-direction much higher than that along y-direction; namely σx >> σy. As

shown by the bands in Fig. 5.2(a), and by the density of states projected to

C-B, C-N bonds at the border, and C-C, B-N bonds within the graphene and

h-BN stripes in Fig. 5.2(b), states at the valence band originate mainly from

C-B bond and C-C bonds, while the states at the edge of conduction band are

constructed from C-N bonds. The gap between bands constructed from pure

B-N bonds is ∼ 6 eV. Because of coupling between graphene and h-BN stripes,

G(4)/BN(4) is a compound and is considered to be a unique material, whereby

line like, narrow graphene and h-BN stripes extend along x-axis. As shown in

Fig. 5.2(c) significant amount of charge is transferred from C to N and from B

to C at the alternating borders of h-BN stripes. Similar behavior also occurs in

armchair line compound, which is also a semiconductor with a direct band gap of

Eg = 1.7 eV as shown in Fig. 5.2 (g)-(i). The states at the edges of the valence
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Figure 5.3: δ-doping of a wide graphene stripe by the narrow h-BN stripe with
zigzag or armchair border and vice-versa. (a) Electronic band structure of the
wide graphene stripe, which is δ-doped by the narrow BN stripe with zigzag
border, i.e. G(28)/BN(4). (b) Density of states projected to C-B, C-N bonds
at the borders highlighted by rectangles, and C-C, B-N bonds within graphene
and h-BN stripes. (c) Isosurfaces of the total charge density. (d)-(f) Same for
a wide BN stripe, which is δ-doped by the narrow graphene with zigzag border,
i.e. G(4)/BN(28). (g)-(i) Same for a wide graphene stripe, which is δ-doped by
the narrow BN stripe with armchair border, G(32)/BN(8). (j)-(l) Same for a
wide BN stripe, which is δ-doped by the narrow graphene with armchair border,
G(8)/BN(32).

and conduction band are constructed from C, B and N atomic orbitals. Clearly,

armchair G(8)/BN(8) is a compound of graphene and h-BN with unique features.

5.3.3 Composite structures

In Fig. 5.2(d-f), zigzag G(28)/BN(28) composite displays rather different behav-

ior; we see that graphene and h-BN states are separated in direct space. h-BN

states form an insulator with a band gap of ∼ 6 eV. A small gap occurs along

K − X and also X − Γ direction between bands originating from the C-N and
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C-B bonds. Even if these two bands appear to have very small gap of 0.04 eV

at a specific k-point along Γ-X direction, they are physically separated in the

direct space. However, if a small number of electrons could be accommodated at

the minimum of the conduction band through tunneling or doping, a strictly 1D

band originating from C-N bond states can be conducting along the stripes. This

feature can be used as a switch operating under applied field along y-direction.

A direct band gap of ∼1 eV occurs between the bands in graphene along Γ-K

direction.

The situation with G(32)/BN(32) armchair composite in Fig. 5.2 (j)-(l) is

different; graphene stripes behave as a 1D narrow band gap semiconductor near

Γ-point, while h-BN is an insulator. Upon modulating the doping, namely donors

in h-BN stripe, such a composite structure can be used to construct multichannel

conductor between two electron reservoirs with quantized conductance. Alterna-

tively, one can construct electron channels with hornlike entrances and exits at

the ends of stripes, and can attain adiabatic evolution of channel states. Briefly,

we believe that armchair composite structures can be utilized to realize diverse

geometries yielding some fundamental quantum effects.

5.3.4 δ-doping of graphene and BN

The electronic structure of wide G(p) stripe, which is δ-doped by BN(4) is pre-

sented in Fig. 5.3(a-c) for zigzag border. h-BN bands with large band gap are

separated from graphene states. h-BN stripe is too narrow and hence two bands

corresponding to zigzag edge states originating from the C-N and C-B bonds cross

each other along Γ-X at the Fermi level. This attributes a 1D metallic character

to the graphene stripe, even if narrow BN stripe poses a thin potential barrier

with its wide band gap. This situation is clearly seen by the high state density at

the Fermi level as presented in Fig. 5.3(b). On the other hand, a wide stripe of

h-BN(q) with zigzag border, which is δ-doped by G(4) is a narrow band gap semi-

conductor along y-direction with band gap of ∼0.7 eV as shown in Fig. 5.3(d-f).

The gap occurs between the bands derived from C-N and C-B bonds. Since the

potential barrier set by h-BN is high and wide, electron due to dopants (holes

due to acceptors) confined to narrow quantum wells of the conduction (valence)

bands of graphene stripe can exhibit strictly 1D character.
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In Fig. 5.3(g-i), wide graphene stripe G(p), which is δ-doped by narrow BN(8)

stripe with armchair edge is a narrow band gap semiconductor. The band gap is,

however, large along the K −X direction perpendicular to the stripes. The gap

region is dominated by graphene bands, while bands associated with BN(8) occur

∼ 3.5 eV below and ∼ 3.5 eV above the Fermi level and pose a narrow but high

barrier for tunneling between nearest graphene stripes. Conversely, wide BN(q),

which is δ-doped by narrow G(8) with armchair border has BN bands separated

by a wide band gap of ∼6 eV as shown in Fig. 5.3(j-l). In this band gap, the

bands associated with G(8) have relatively smaller band gap at the center of the

BZ and also have low density of states.

Variation of band gaps of different G(p)/BN(q) composite with zigzag or arm-

chair border are summarized in Fig. Fig. 5.4. As shown in Fig. Fig. 5.4(a),
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a wide graphene stripe, which is δ-doped by BN(4) with zigzag border, namely

G(p)/BN(4) attains metallic behavior for p>24. This conclusion is confirmed also

by HSE calculations. In Fig. Fig. 5.4(b), G(p)/BN(8) with armchair border

remains semiconductor even for large p and has band gap Eg ranging from 1.7

eV to 0.1 eV as p increases. However, the calculated values of band gap trace

always lowest value when p-4 is an integer multiple of 3 (4 being the number of C

atoms at the armchair border). This is well known family behavior of graphene

armchair nanoribbons, but is realized in the reverse order of the free armchair

graphene nanoribbons. The band gap of the wide BN(q) stripe, which is δ-doped

by G(4) stripe with zigzag border is large for small q, but decreases and even-

tually saturates at ∼0.5 eV as q increases in Fig. Fig. 5.4(c). In contrast,

the band gap of BN(q) with armchair border, which is δ-doped by G(8) is not

affected by the width of h-BN stripe and quickly saturates at a value Eg=1.45 eV

as shown in Fig. 5.4 (d). In Fig. 5.4(e), G(p)/BN(q) composites with zigzag

border, where graphene and h-BN states are physically separated and confined to

their own region are always semiconductors with very small band gaps no matter

what the values of p and q are. However, the band gaps of these composites

with armchair border in Fig. 5.4(f) show family behavior in the energy range

from 1.7 eV to 0.3 eV depending on the value of p. The largest gap values occur

when p is an integer multiple of 3 and smallest values occur when p-4 is an in-

teger multiple of 3. As noted earlier, the family behavior of band gaps, which is

indigenous to armchair graphene nanoribbons occurs in reversed order in G/BN

composite structure here. Band gap values of selected compounds calculated by

HSE method are also shown in Fig. 5.4 by empty circles.

5.3.5 Graphene/BN composite nanoribbons

Finally, it should be noted that the properties of 2D composites outlined above

can be multiplied through (hybrid) composite ribbons consisting of finite num-

ber of commensurately grown ZGNR(p) [AGNR(p)] and ZBNR(q) [ABNR(q)]

nanoribbons with bare or hydrogen saturated edges. The edge geometry and or-

dering of nanoribbons, the edge saturation by foreign and host atoms, their size p

and q, offer so many parameters to monitor their electronic and magnetic proper-

ties. These composite nanoribbons or in-plane heterostructures have been fabri-

cated and their potential as field effect transistor and split closed loop resonator
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have been explored.[74, 12, 77] Here we present an interesting features of compos-

ite nanoribbons, which may lead to various technological applications. For exam-

ple, single layer ZGNR(p)+ZBNR(q)+ZGNR(p) composite and commensurate

nanoribbon that is composed of one dielectric nanoribbon of BN placed between

two metallic graphene nanoribbons with zigzag edge can allow charge separation

of opposite polarity under an external electric field, Ey applied along y-direction

and hence can lead to energy storage. The configuration of this device is described

in Fig. 5.5(a). The atomic structure is optimized for a given external electric

field Ey, and the excess charge in the left and right graphene stripes ±Q(Ey) is

calculated from the difference charge density, ∆ρ(r, Ey) = ρ(r, Ey)−ρ(r, Ey = 0).

Here, ρ(r, Ey) is the self-consistent charge density of the device calculated for a

given Ey. In Fig. 5.5(a) we also show the isosurfaces of difference charge density.

The variation of q(Ey) as a function of Ey is given in Fig. 5.5 (b). Once the

charge separation of opposite polarity is attained under the external field Ey, it

can be kept for a long time even if Ey → 0 since the insulating ZBNR(q) hinders

the tunneling of electrons from left to right. Alternatingly, one can also construct

double well resonant tunneling structures, ZGNR(p)+ZBNR(q)+ZGNR(p) with

interesting resonant tunneling effects and multiple quantum well structures, even

Wannier ladders.

Here we address the questions of whether the application of the exter-

nal electric field in the range of 1 V/Å might be unrealistically high

or whether ZGNR(p)+ZBNR(q)+ZGNR(p) composite nanoribbon will break-

down/discociate even if such high fields are realized in an experiment. Previously,

diffusion of H atom on graphene under an external field of 0.01a.u (=0.5V/Å )

was studied and no instability in the graphene layer was reported.[87] Similarly,

dissociative adsorption of hydrogen on nitrogen-doped graphene was studied un-

der the electric field values ranging between 0 and 0.5V/Å .[88] Neither of these

theoretical studies report breaking of the carbon-carbon bonds in graphene under

electric field values in the range of 1 V/Å . Furthermore, in another theoretical

study investigating the tuning of electronic and magnetic properties of H and F

doped graphene even higher electric field values up to approximately equal to

10 V/Å were used on graphene without any instability.[89]. Similarly, in-plane

electric field in the range of 0.15 V/Å was used for the alignment of graphene

nanoribbons.[90] Experimental studies controlling the rippling or work function

of graphene suggest that graphene can withstand electric fields in the order of 1

V/Å .[91, 92]
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To test the stability of the composite ZGNR(p)+ZBNR(q)+ZGNR(p) nanorib-

bon, we performed ab-initio molecular dynamics calculations at 300 K under

Ey=1 V/Åusing the Verlet algorithm. The nanoribbon remained stable after 2

ps as can be seen from the snapshot presented in Fig. 5.5(c) . To increase the de-

grees of freedom for possible reconstruction, we also repeated the same simulation

in a larger (3×1) unit cell at 500 K. The nanoribbon continued to maintain its

stability after 4 ps simulation. Additionally, we carried out ab-initio total energy

calculations to estimate the weakening of bonds under the external electric field.

The energy of the ribbon increased by 1.2 eV per cell (i.e. per 6 C atoms + 3

B + 3 N atoms amounting to 17 bonds) under Ey =1 V/Å . Since the cohesive

energies of pristine graphene and h-BN are calculated to be 16.2 eV/cell (per 2 C

atom) and 14.5 eV/cell (per B+N atoms), respectively, the average bond energy is

5.12 eV. Accordingly, the bonds are weakened by less than 2% under the applied

Ey =1 V/Å . This is rather small and does not give rise to any instability.

5.3.6 Graphene/BN nanotubes

Not only ribbons, but also nanotubes can be realized with stripes of graphene and

h-BN which are parallel (or perpendicular) to the axis of the tube. Prototype

nanotubes are constructed by rolling G(32)/BN(32) zigzag and G(48)/BN(48)

armchair nanoribbons at specific chiral angles as shown in Fig. 5.6(a-b). Follow-

ing the (n,m) labeling notation for single-wall carbon nanotubes (SWNT), these

nanotubes correspond to (8x0) zigzag and (6x6) armchair nanotubes where the

integers n and m denote the number of unit vectors along two directions in the

honeycomb crystal lattice. Upon relaxation both of the nanotubes remain stable.

The strain energy (compared to planar structure) is calculated to be 1.56 eV/cell

and 1.64 eV/cell for (8x0) and (6x6) nanotubes, respectively. When electronic

properties are considered, SWNT can be a metal or semiconductor depending on

(n,m) or chiral angle. Interestingly, unlike SWNT both (8x0) and (6x6) nanotubes

are semiconductor with band gaps of Eg=0.98 eV and Eg=1.49 eV, respectively.

Briefly, single-wall nanotubes of G(p)/BN(q) composite materials bring new op-

tions over the nanotubes of these constituents.
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5.4 Summary

In spite of the fact that h-BN is a wide band gap insulator and graphene is a

semimetal, G(p)/BN(q) composite can display diversity of electronic properties.

Depending on the composition of p and q, as well as the edge geometry between

stripes, they can be 1D metal, semiconductor with the band gap in the visible

range, and semiconductor heterostructures showing periodic band gap modula-

tion in direct space. For specific combination of p and q, phase separation is

attained with interesting transition from 2D to 1D in a 2D system. By making

special combination and sequences of p and q (and their graded sequences), one

can achieve also graded band gap in direct space for novel optical properties.

Specifically, the δ-doping of a wide stripe of graphene (BN) by the narrow BN

(graphene) stripe results in unusual modifications in the electronic structure. Bi-

or multilayers of composites with displaced or in-registry geometry, even with

finite rotation angle between atomic planes give rise to unusual electronic prop-

erties. The novel and fundamental aspects of our results can be summarized

as:

(i)While previous studies dealt with 1D aspects of lateral Graphene/BN het-

erostructures, present study reveals 1D, as well as interesting 2D aspects together

with the transition between 1D to 2D dimensionality, which were unknown before.

(ii) An extensive analysis of electronic structure for laterally repeating (periodic)

graphene/BN heterostructures with varying widths is performed, which is essen-

tial for the understanding of these heterostructures and their applications. (iii)

The concept of δ-doping and their dramatic effects to modify the electronic struc-

tures has been introduced to in-plane heterostructures. (iv) The charge separa-

tion in graphene/BN/graphene nanoribbons under the in-plane, external electric

field leading to interesting applications. Based on ab-initio calculations, it has

been shown that the nanoribbon can remain stable under the application of high

electric fields.

It should be noted that similar in-plane heterostructures can be produced

between lattice matched, single layer transition metal dichalcogenides[86] (such

as MoS2/WS2), III-V compounds[63] (such as GaN(p)/AlN(q)), pseudomorphic

silicene(p)/germanene(q)[93] or silicene(p)/phosphorene(q) yielding a manifold

of electronic and magnetic properties. Consequently, composite structures with
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their planar single and multilayers, composite nanoribbon and tubular forms keep

the promise of developing a way of designing novel electronic and magnetic ma-

terials.
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Chapter 6

Planar Nanoscale Dielectric

Capacitors

6.1 Overview

The concept of planar graphene / boron nitride heterostructures discussed in

the previous chapter and the charge separation achived in their nanoribbons by

means of external electric field can be further extended to model planar nanoca-

pacitors. Thus, in this chapter we show that planar nanoscale dielectric capaci-

tors (PNDCs) can be realized as a one-atom-thick, single layer honeycomb struc-

ture consisting of a BN stripe as dielectric spacer between two metallic graphene

stripes. These laterally stacked stripes are lattice matched. Furthermore, using

these PNDCs, one can achieve high energy storage, as well as high gravimetric

capacitance values, which are comparable to those of supercapacitors. As an

alternative to NDCs consisting of vertically stacked dielectric layers capped by

two metallic graphene discussed in Chapter 3, PNDCs achieve charge separation

between two separated, parallel metallic stripes embedded in the same atomic

plane.

It was shown experimentally [12, 76, 75] that monolayer metallic graphene

and dielectric BN can be grown commensurately with desired periodicity and

with sharp boundaries. Thus one can construct not only single planar capacitors
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but also various series and parallel combinations of the former to achieve higher

potential difference or charge separation. Thus PNDCs predicted in the present

study will make an important forward step towards the fabrication of atomically

thin circuitry based on graphene/BN lateral heterostructures [78, 72] to allow

microwave, as well as heat and pressure sensing applications.

6.2 Method

We carry out first-principles, spin-polarized calculations within density functional

theory, where the eigenstates of Kohn-Sham Hamiltonian are expressed as linear

combination of numerical atomic orbitals. The exchange-correlation potential
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59



was approximated by Perdew, Burke and Ernzerhof functional. [58] A 200 Ryd

mesh cut-off was chosen. Core states were replaced by norm-conserving, non-local

Trouiller-Martins pseudopotentials. [59] Atomic positions and lattice constants

were optimized using the conjugate gradient method by minimizing the total

energy and atomic forces for each configuration. Dipole corrections [60] were

applied in order to remove spurious dipole interactions. All numerical calculations

were performed using the SIESTA code.[21]

6.3 Results and Discussions

6.3.1 Model

Our model of PNDC described in Fig. 6.1(a) is composed of lateral stacking of

two narrow, zigzag graphene nanoribbons (stripes), ZGNR(p) and a zigzag BN

nanoribbon, ZBNR(q) in between. Here p and q indicate the number of C and

B-N atoms in their unit cells, respectively. Bare ZGNR(p) and ZBNR(q) are

metallic. When saturated by hydrogen atoms, ZBNR(q) nanoribbon transforms

into an insulator[62]. Similarly, when joined to graphene nanoribbons commen-

surately at both sides, the same ZBNR(q) can function as a dielectric spacer,

while the graphene nanoribbons continue to be metal. These stripes can be set

to desired widths by changing p and q values. While these three lattice matched

graphene/BN/graphene composite stripes preserve their translational periodicity

along x-axis and acquire 1D character, the translational symmetry is broken along

y-direction. This model is treated by using periodic boundary conditions, where

1D PNDCs are repeated periodically along y- and z-axis keeping 10 Å vacuum

spacing between them. The electronic structure of PNDC[p/q/p] structure under

zero bias ∆V=0 (or ~Ey=0) is shown in Fig. 6.1(b). It has spin polarized ground

state with magnetic moment µ= 2.3 µB. Graphene-like and BN-like bands are

separated in the direct space and Fermi level is pinned at graphene sides while

BN remains as an insulator. As seen in Fig. 6.1(c), owing to the different ion-

icities of C, N, and B; a minute charge is transferred across the zigzag interface

even for ~Ey=0. However, this does not lead to a capacitive behavior. In fact, the

(xz)-plane averaged electronic potential V̄ (y) in Fig. 6.1(d) indicates a vanishing

potential difference, i.e. ∆V̄ (y)=0 between graphene stripes.
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6.3.2 Application of Electric Field

Normally, when connected to a real electric circuit, separation of charges of op-

posite polarity is attained between graphene stripes of PNDC under the applied

external bias voltage ∆V , whereby the chemical potentials at metallic graphene

stripes shift by e∆V . In this non-equilibrium state an electric field is generated

across the BN stripe. Here for the reason explained above, we simulate this nor-

mal operation of PNDC by applying an electric field ~Ey along the y-direction with

magnitude in the range of 0 V/Å to 1 V/Å. Notably, even if Ey=1 V/Å ap-

pears to be high, in earlier studies such high field values were attained [87]. For

each value of applied ~Ey, we first carried out calculations to optimize the atomic

structure and lattice constants of PNDC by minimizing the total energy and

atomic forces. Also, for each value of applied ~Ey we calculated the electronic en-

ergy bands of optimized structures as well as the net charge on the left graphene

stripe, −Q in e/cell. This is obtained from the integral

−Q =

∫
∆ρ(r, ~Ey)dr (6.1)

computed in the part of the PNDC unit cell corresponding to the left graphene

stripe, where the boundary between the left (right) graphene and BN stripe bi-

sects C-B (N-C) bonds. Here the difference charge density corresponding to a

given applied field ~Ey is calculated as

∆ρ(r, ~Ey) = ρ(r, ~Ey)− ρ(r, ~Ey = 0) (6.2)

where the total charge density of the PNDC under ~Ey=0 is subtracted from the

total charge density under the applied ~Ey, and

ρ(r, ~Ey) = −e
occ∑

n,k,σ

Ψ∗
n,k,σ(r, ~Ey)Ψn,k,σ(r, ~Ey). (6.3)

Here, Ψn,k,σ indicates the spin polarized electronic state. The same analysis

was also performed for the right graphene stripe which is charged positively. It

should be noted that the total charge density, ρ(r, ~Ey) integrated over the entire

unit cell has to be zero, which has been verified also for each value of applied ~Ey.
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According to the atomic model presented in Fig. 6.1 and Fig. 6.2, the states

of two graphene stripes have small coupling and hence their bands are split in

momentum space. The evolution of the energy bands with applied electric field
~Ey is presented for 0.2 V/Å≤ Ey ≤ 1.0V/Å in Fig. 6.2(a). Two unoccupied spin

down bands (indicated with small arrows) shift in opposite directions, where the

one associated with the left graphene stripe moves down and starts to become

occupied. Concomitantly, a partially occupied spin up band associated with

the right graphene stripe rises and hence becomes gradually depopulated. This

situation explains how the charge and spin separations are achieved. Interestingly,

for Ey ∼ 0.6 V/Å the PNDC becomes a half-metal with µ=2.0 µB. Similar half-

metallic behavior in charged graphene/BN composites were also reported before.

[79, 94, 95] The shorting of graphene stripes and hence the shorting of PNDC is

hindered by the dielectric BN spacer between graphenes.

In Fig. 6.2(c) we present the difference charge density, ∆ρ(r, ~Ey) of the PNDC

under the field of Ey=1 V/Å. The electron transfer from the right graphene stripe

to the left stripe and the charge separation is clearly seen. In Fig. 6.2(d), we show

(xz)-plane averaged electronic potential V̄ (y). The potential at the left graphene

stripe is lowered relative to the right graphene stripe, which is in compliance with

the normal operation of PNDC. The electronic potential difference between two

graphene stripes is calculated as ∆V̄ = 3 V under Ey=1 V/Å.

In Fig. 6.3(a-b) we present the variation of calculated charge Q and stored

energy Es as a function of ~Ey. The energy stored on PNDC as a function of ~Ey,

is obtained from the expression

Es( ~Ey) = ET ( ~Ey)− ET ( ~Ey = 0), (6.4)

where ET ( ~Ey) is the total energy calculated for a given applied field ~Ey. Using

the values of Q and Es calculated for a given ~Ey, the capacitance per unit mass

C can be obtained from

C = Q2/2mEs, (6.5)

where m is the mass of PNDC per unit cell. The variation of the capacitance as a

function of ~Ey is shown in Fig. 6.3(c), which is high at small ~Ey (or bias voltage

V ) and gradually saturates to a constant value.
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Figure 6.3: (a) Variation of excess charge Q (e/cell); (b) stored energy
Es (eV/cell) and (c) the corresponding gravimetric capacitance C (F/g) for
PNDC[4/4/4]. (d) Capacitance C values in (F/g) of the planar nanoscale dielec-
tric capacitor PNDC[p/q/p] are calculated for p=4-12 and q=4-12 for specific
value of Ey for which C saturates. For each value of p, lower line connected
by dots corresponds to capacitance values calculated through the expression,
C = Q2/2mEs, while the upper line connected by crosses is computed from
C ′ = Q/m∆V̄ . The calculated variation of C with tensile strain, ε is shown by
inset.

63



6.3.3 Size Dependence of Capacitance

To explore the effect of size of PNDC[p/q/p] we repeated our analysis for differ-

ent widths of graphene and BN stripes, namely for different p and q. Moreover,

because of uncertainties involved in the effective widths of metallic and dielectric

stripes (hence in the boundaries of the integral given in equation 6.1), which af-

fect the calculated values of Q and C, here we present two alternative approaches

in calculating C. In the first approach, C is calculated from the expression

C = Q2/2mEs, where Q and Es correspond to ~Ey leading to the saturated values

of C as shown in Fig. 6.3(c). In the second approach, we followed the defi-

nition of the capacitance as C ′ = Q/m∆V̄ . Results obtained from these two

alternative calculations are presented in Fig. 6.3(d), where the capacitances of

PNDCs are plotted for different q values. For both approaches, C decreases as q

increases. Also C decreases as the width of graphene stripe p, increases. How-

ever, the difference between the values of capacitance calculated by using two

alternative approaches, namely C ′ −C increases for small p and q, but decreases

and eventually diminish as p and q get larger.

The capacitance values of PNDCs are found to depend strongly on the external

conditions. For example, as shown by inset in Fig. 6.3(d), C[4/4/4] changes by

∼ 30% under the tensile strain of ε=10%, which can be detected easily and may

offer technological applications. Similarly, when deformed under normal force or

pressure, a PNDC can be deformed, whereby geometric parameters such as the

effective width of BN, w is modified. Also, the energy barrier, Φ for electrons

tunneling from left graphene to right graphene between two graphene stripes can

be modified with local forces. Consequently, the capacitance value of PNDC is

modified by local force or pressure. Capacitance value can also vary with the

ambient temperature, since charge separation and hence Q, can be modified by

the Fermi-Dirac distribution at finite temperature. Consequently, PNDCs can

function as pressure and temperature sensors, when embedded in a soft mate-

rials like peptides or artificial tissues. It is noted that graphene/BN/graphene

junctions of PNDC with small w can work also as tunneling diodes or resonant

tunneling device, where the tunneling current It can be monitored by mechanical

deformation, bias voltage or by temperature. Accordingly, these junctions also

attain critical functionalities. Notably, all these features discussed above can be

realized in diverse geometries, in particular in tubular forms.
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Next we consider a series combination of PNDC[p/q/p] which is composed of

commensurate sequential stripes, graphene(p)/BN(q)/graphene(2p)/BN(q)/graphene(p)

stacked laterally. Accordingly, the middle graphene stripe has the twice width

of the graphene stripes at either side of series PNDC. Under the applied elec-

tric field the excess negative and positive charges were accumulated at the far

left and right edges of the middle graphene(2p). The capacitance of this series

combination was calculated as half of the capacitance of PNDC[p/q/p], namely

Ceq = C[p/q/p] / 2. This demonstrates that to attain the desired Q or Es or ∆V

various combinations PNDC can be achieved on a single honeycomb structure

by arranging metallic interconnects between parallel graphene stripes (which are

graphene nanoribbons by themselves).

6.4 Summary

In this chapter, we proposed and characterized a model for planar nanoscale di-

electric capacitor consisting of a single layer, insulating hexagonal boron nitride

(BN) stripe placed between two metallic graphene stripes, all forming commen-

surately a single atomic plane. Our first-principles density functional calculations

on these nanoscale capacitors for different levels of charging and different widths

of graphene - BN stripes mark high gravimetric capacitance values, which are

comparable to those of supercapacitors made from other carbon based materials.

Present nanocapacitor model allows the fabrication of series, parallel and mixed

combinations which offer potential applications in 2D flexible nanoelectronics,

energy storage and heat-pressure sensing systems.
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Chapter 7

Carbon and Boron Nitride

Chains

So far, we discussed carbon and boron nitride composite nanostructures in their

planar honeycomb geometries. However, the composites of these elements are not

restricted to monolayer structures. Single atomic chains are interesting entities

which can be used to functionalize substrates for diverse electronic and magnetic

applications. With this regard, carbon atomic chains, containing n C atoms, indi-

cated as CAC(n) hereafter has recently drawn attention due to its linear geometry,

high strength, size-dependent quantum ballistic conductance and interesting elec-

tronic properties. These properties of CACs were both theoretically[96, 97, 98]

and experimentally[99, 100, 101] investigated. Concomitantly, carbon atomic

chains are synthesized, which have also been justified by the images obtained

earlier using high resolution TEM.[102]

In this chapter, we describe the adsorption of carbon adatoms on h-BN and

their dynamics and address the question of whether short CACs can be grown

on monolayer boron nitride. We first examine the adsorption of single carbon

atom on boron nitride by calculating its energy landscape and diffusion barrier.

This is followed by the investigation of the nucleation and growth processes of

CACs on h-BN. We perform both conjugate gradient calculations and molecular

dynamics simulations in order to determine the stabilities and bonding properties

of these CACs and show how they can grow on the plane of BN as new carbon
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atoms are introduced by one atom at a time at the close proximity of a CAC.

Next, we investigate the binding sites, binding energies and binding geometries

of these chains. We present the electronic energy band structure for various

lengths of chains to see their variations with the number of chains. In addition,

we investigate CACs creating active bonding sites of h-BN for certain adatoms

and molecules. We finally show that CACs can be formed between two parallel

single layer h-BN flakes as if pillars.

7.1 Adsorption of Carbon Atom on Boron Ni-

tride

Before going into detailed studies of carbon chains, we first investigate the ad-

sorption and migration of single carbon adatom, which is the starting point of

CAC growth on boron nitride substrate. We use a (4 × 4) supercell of h-BN

that consists of 16 boron and 16 nitrogen atoms. Spin polarization tests showed

that there is an energy difference of ∼ 0.2eV between the spin polarized and spin

unpolarized energy values in favor of the spin polarized state, indicating that the

system has a magnetic ground state. Therefore all of the calculations mentioned

hereafter are performed using the spin polarized conditions.

The most favorable binding site of single carbon atom was determined by

placing the adatom initially to various adsorption sites at a height of ∼ 2Å from

the BN plane and running fully self-consistent geometry optimization calculations

by keeping the adatom fixed in x− and y− directions and letting the vertical

z−coordinate of the adatom, which is its height from the plane, free. Meanwhile,

the atoms in the BN supercell are relaxed in all directions except for one corner

atom of the supercell, which is fixed in all directions to prevent BN from sliding.

In Fig. 7.1(a) nitrogen and boron atoms of optimized h-BN structure are sepa-

rated from each other by 1.45Å. The most favorable bonding site of single carbon

ad-atom, which turns out to be near the top site of nitrogen atom, is marked

with a red star. The energy landscape calculated over the whole BN hexagon

also shows that the energy barrier to the diffusion further increases as the carbon
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Figure 7.1: Energy variation of single carbon atom adsorbed on various sites
of single layer, 2D hexagonal BN structure (h-BN) calculated in (4 × 4) super-
cell. (a) Boron nitride honeycomb structure on which the adsorption energies are
calculated. Nitrogen and boron atoms are represented by blue and green balls,
respectively. The most favorable binding site of C adatom is marked by the red
star in the figure. (b) Complete energy landscape of C adatom on h-BN structure.
Light blue regions show favorable sites and the energy barrier further increases as
the color goes to dark blue and purple. The potential barrier for the carbon atom
is ∼ 0.65eV (c) Energy variation of C ad-atom is shown along the path indicated
by red arrows in (a). The energy difference between the most favorable site (indi-
cated by red star) and the bridge(Br), top boron(B), hollow(H), top nitrogen(TN)
sites are calculated as 0.07eV , 0.95eV , 1.00eV and 0.03eV , respectively.
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(i) (ii)

(iii) (iv)

Figure 7.2: Snapshots of the molecular dynamics simulation showing the forma-
tion of a short chain comprising four carbon atoms. The snapshots correspond to
the initial, 20th, 40th and 120th steps of the molecular dynamics simulation done
at 500K. Note that the formation of CAC(4) takes place as the CAC(3)leaves its
initial bonding position and attaches to a single carbon ad-atom. Similar growth
mechanism is also seen during the formation of CACs of length n ≤ 8.

atom moves away from the nitrogen atom as shown in Fig. 7.1(b). Energy vari-

ation diagram, calculated along the 2D path shown in Fig. 7.1(a) is presented in

Fig. 7.1(c). As indicated in the figure, the most favorable site for the carbon atom

is near the top nitrogen site, although not exactly on top of nitrogen. The energy

barrier between the most favorable site and the top bridge(BR), top boron(TB),

hollow(H) and top nitrogen(TN) sites were calculated as 0.07eV , 0.95eV , 1.00eV

and 0.03eV respectively.

In addition to the diffusion path analysis of a single carbon ad-atom, we next

study the interaction between two carbon atoms on BN surface. When the dis-

tance between the two ad-atoms becomes less than a threshold distance of ∼ 2Å,

these two carbon atoms attract each other and form a CAC(2) of two atoms,

which is indeed the nucleation of longer CACs. The energy barrier for the dif-

fusion of single C ad-atom on BN is calculated as 0.68eV . The most favorable

binding site CAC(2), is again near the top site of nitrogen. A complete site anal-

ysis was also performed to confirm this result, by placing a CAC(2) on various

adsorption sites and comparing the total energy values.
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Figure 7.3: Binding energies (Eb), and the heights(h) of odd and even numbered
CACs from the atomic plane of BN are shown in green, red and blue lines, re-
spectively. The h values exhibit an even/odd family behavior depending on the
number of carbon atoms in the chain. The sudden peak in the binding energy
arises from the change of the magnetic state of CAC(2) from magnetic to non-
magnetic when it binds to hexagonal BN.

7.2 Carbon Chains

7.2.1 Chain growth and even/odd disparity

Growth of the CAC further continues when a third carbon adatom is introduced

at the close proximity of CAC(2). However, this time a complete site analysis

of CAC(3) shows that the most favorable bonding site is near the top boron site

instead of the nitrogen site. The formation of CAC(3) happens as follow: CAC(2)

leaves its initial bonding position, moves higher from the BN plane and in the

mean time it gets closer to the single adatom until they are bound to each other

near the new energetic site, which is the top boron site. Similar chain growth

behavior is also seen during formation of CACs at different lengths. This process

is further investigated with molecular dynamics simulations at 500K and the

snapshots taken from the growth of CAC(4) is presented in Fig. 7.2. We initiate

the MD simulation by placing a carbon adatom and a CAC(3) to their bonding

sites as shown in Fig. 7.2(i). The simulation was run for 2000 time steps and

snapshots taken from the initial, 20th, 40th, and 120th time steps are shown. As
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(a)

(b)

Figure 7.4: Side and top views of the most favorable binding configurations of
CAC(n) on hexagonal BN are shown in (a) and (b). N, B, and C atoms are
represented by blue, green and brown balls, respectively. CAC(n)’s having an
even number of carbon atoms (even n) bind to BN near the top of nitrogen atom,
whereas CAC(n)’s with odd number of carbon atoms (odd n) prefer top boron
site, with the exception of single carbon adatom. The geometries are calculated
for a (4 × 4) supercell and their stabilities are tested with MD simulations at
T = 500K for 10ps. In (b), only the carbon atom that is closest to the BN plane
is shown.

the simulation proceeds to the 2000th step, the chain stays in its position shown

Fig. 7.2(iv), which is an indication of its stability at that bonding site.

We further continue our analysis with fourth, fifth, sixth and seventh carbon

adatoms. With the inclusion of each new carbon atom, we observe that each

time a new adatom is introduced to the system, the previous CAC(n-1) chain

leaves its binding site and is bound to the new carbon adatom in their new most

favorable binding site. Namely, this binding site keeps changing between the near

top nitrogen site and the near top boron site. With the exception of the single

carbon adatom, we observe an even/odd disparity of the binding site depending

on the number of atoms in the CAC, that is even numbered CACs bind to h-BN

substrate near the top nitrogen site, and the odd numbered CACs bind near the

top boron site. A complete list of the binding energies and binding geometries of

these CACs are presented in Table I.

It is also seen that, with the exceptional case of CAC(2) which is further

discussed in the following section, the binding energies of the CACs tend to

decrease as the length of the chains increase. Similarly, due to the decrease in the

binding energy the height(h), namely the distance between the BN plane and the

first carbon atom of the CAC, also increases. However, the h values also show an

even/odd disparity. In other words, there is an increasing trend in the h values
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Table 7.1: Most favorable binding sites, binding energies(Eb), magnetic
moments(µ), heights(h) of CAC(n) from the BN plane, and the distances of the
lowest carbon atom of the chain from the nitrogen(dC−N) and the boron(dC−B)
atom in the BN plane for different n’s of carbon chains. The bonding sites and
magnetic properties of CACs on BN exhibit an even/odd disparity. With the
exception of the single carbon ad-atom, even numbered CACs bind to BN near
the top of nitrogen(TN) atom and the odd numbered CACs bind near the top
of boron(TB) atom. Additionally, the even and odd numbered chains grown on
BN have magnetic and nonmagnetic(NM) ground states, respectively, with the
exception of CAC(1) and CAC(2) cases.

Structure Site Eb(eV ) µ(µB) h(Å) dC−N(Å) dC−B(Å)
BN+C ∼TN 1.36 2.00 1.50 1.59 1.73

BN+CAC(2) ∼TN 2.19 NM 1.32 1.46 1.83
BN+CAC(3) ∼TB 0.28 NM 1.59 2.16 1.62
BN+CAC(4) ∼TN 0.24 2.00 1.37 1.50 1.63
BN+CAC(5) ∼TB 0.20 NM 1.60 2.28 1.62
BN+CAC(6) ∼TN 0.18 1.97 1.41 1.52 1.58
BN+CAC(7) ∼TB 0.14 NM 1.67 2.41 1.64
BN+CAC(8) ∼TN 0.08 1.96 1.48 1.56 1.59
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when the CACs are grouped as even and odd numbered chains, but the height of

CAC(2n) is always less than CAC(2n-1), as shown in Fig. 7.3. This situation can

be explained by the fact thats the C-N bond length is shorter than the C-B bond

length, and CAC(2n) is a more stable structure since it has a more symmetrical

charge distribution as compared to CAC(2n-1). These decrease h distances of the

even numbered CACs that are bound to the nitrogen atom.
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Figure 7.5: (a) Electronic energy band structures of CACs grown on h-BN cal-
culated for n= 1, 2, 3 and 4. In the magnetic cases, spin up and spin down
bands are represented by blue and green lines, respectively. The localized impu-
rity states arise from the p bands of the carbon atoms that are at the edges of
chains. (b) Isosurfaces of the difference charge densities of chains where yellow
and green regions designate charge accumulation and charge depletion, respec-
tively. The isosurface values are taken as 0.01 electron/Å3 for C, C2, C3 and as
0.005 electron/Å3 for C4.
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Figure 7.6: Functionalization of BN sheets through adsorption of carbon chains.
For examle, a CAC(2), which is strongly bound to h-BN, creates chemically active
sites for Au, Li and H atoms. H2 molecule approaching to CAC(2) from sides
dissociated to form two C-H bonds, whereas O2 remains totally inactive. Ti atom
takes the carbon atoms with itself and forms TiH2.

We finally test the stability of these BN+CAC structures at various tempera-

tures with molecular dynamics simulations. The ab-initio MD calculations were

carried out for 10ps at T = 500K. The final stable bonding configurations of

various CACs are shown in Fig. 7.4. These CACs on BN are stable and they

don’t detach from the BN plane, but they slightly pull the bonding B and N

atoms upwards from the plane, as seen from the side views given in Fig. 7.4(a).

Also, the chains are not perfectly perpendicular to the BN plane, but are slightly

tilted at different angles. Fig. 7.4(b) shows the top views of the CACs, where

only the carbon atoms closest to the BN planes are shown. As noted above, the

even/odd disparity in the bonding sites of the chains with the exception of single

carbon atom can be seen.

7.2.2 Electronic and magnetic properties

Having found the geometrical properties of CACs on BN, we next focus on the

variation of magnetic and electronic properties of BN with various lengths of

CACs attached. First, we perform both spin polarized and spin unpolarized en-

ergy minimization calculations for CACs of various lengths without attaching

them to h-BN and compare the minimum energies of magnetic and non-magnetic

cases. In a similar manner with the optimized structures of CACs attached to

h-BN, it turns out the magnetization of bare(pure) CACs also depends on the

number n of carbon atoms. Namely that a bare chain has magnetic ground state

if it has even number of carbon atoms, and a non-magnetic ground state if it

has odd number of carbon atoms with the exception of single carbon atom in
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vacuum. Hence, when these chains are adsorbed to h-BN sheet, the overall mag-

netic moments of the BN+CAC(n) structures don’t change with the exception

of CAC(2). While all other CACs preserve their magnetic ground states when

bonded to BN, CAC(2) flips from the magnetic ground state to the non-magnetic

ground state. This change in the magnetic moment of CAC(2) increases its bond

strength with h-BN and causes a higher binding energy. This is the reason for

the sudden jump in Fig. 7.3.

An individual CAC(n) attached to h-BN can modify the electronic band struc-

ture of h-BN. If an adsorbed CAC(n) is sufficiently far from others, it gives rise

to localized states in the band gaps and resonance states in the band continua of

h-BN. In this study we consider a single CAC(n) adsorbed to h-BN using a model

where one CAC(n) is attached to each repeating (4×4) supercell with the condi-

tion that interactions between adjacent CACs are negligible. This model recovers

approximately the (4× 4) folded bands of bare h-BN, except that the energy dif-

ference between the top of the valance bands and the bottom of the conduction

bands gradually increases from 4.5eV to 4.8eV . Additionally, flat bands due to

CAC(n) occurs in the band gap. These flat bands actually corresponds to the

impurity states due to CAC(n). In Fig. 7.5(a) we present the electronic energy

structure of CAC(n)+h-BN calculated for n=1,2,3 and 4 using supercell geome-

try explained above. The energy positions of the filled and empty flat bands in

the gap are closely related with the energy levels of the corresponding CAC(n).

For magnetic n=1 case, spin-up states (i.e. flat bands) originating mainly from

C-pxy orbitals occur above the top of valence band. Empty spin-down states of

the same orbital character occur near mid gap. In the non-magnetic case of n=2

spin-degenerate C-pxy and C-pz states are filled and occur near the top of the

valence band. While a filled C-pxyz state touches the top of valence band both

for non-magnetic n=3 case and magnetic n=4 case, the positions of empty C-pxy

states in the band gap strongly depend on n. For all n’s the resonance states

occur in the valence band gap within the energy of 2 eV from the top.

In Fig. 7.5(b) the isosurfaces of difference charge density indicate that impor-

tant changes from the corresponding bare CAC is found where CAC is bound

to h-BN. The difference charge density is calculated by subtracting the charge

densities of bare h-BN and bare CAC(n) from that CAC(n)+h-BN system by

keeping the atomic configuration of adsorbed and bare CAC unaltered.
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Figure 7.7: CAC(2) and CAC(3) grown between two BN flakes. The optimized
spacing between the flakes increase from 3.1Å to 4.34Å and 5.82Å upon the
formation of chains.

7.2.3 Functionalization of BN through CAC(2)

BN is in general not a chemically active material, however with the inclusion

of certain adatoms its chemical activity can be improved. In the previous sec-

tions, we showed that CAC(2) binds to h-BN with a very high binding energy

as compared to other CACs. Besides binding strongly to h-BN, it also creates

a chemically active site for the absorbtion of other adatoms. Here we test the

adsorbtion of Au, Li, Ti, H2 and O2 on CAC(2) and show that the chemical

activity of BN can be enhanced through CAC(2) attached to it. Adatoms were

placed in the vicinity of CAC(2) on h-BN and fully self consistent calculations

were performed. Before introducing the adatoms, the CAC(2) was placed freely

in its most favorable position calculated in the previous section. It was seen that

Au and Li atoms move towards the chain and bind to the chemically active site

of CAC(2) with binding energies of 1.77 and 1.53eV , respectively. These are

significantly higher than the binding energies of Au and Li on BN, which are

calculated as 0.01 and 0.12eV , respectively. A hydrogen molecule approaching

to CAC(2) from the sides moves high and dissociates to form two C-H bonds.

The binding energy for H atoms is calculated as 3.62eV . However, when O2 is

introduced to the system instead of H2, it stays completely inactive and stay

away from CAC(2). Finally, we test Ti adatom. Ti binds to bare h-BN with an

energy of 0.80eV . However, when h-BN is functionalized with CAC(2), although

Ti adatom initially binds to the carbon atoms, it doesn’t stay there but takes

away these CAC(s) from the BN layer and forms a TiC2 structure which moves

away from BN. This final configuration is energetically more favorable than Ti

binding to h-BN by 5.9eV . The final relaxed geometries of all these structures are

presented in Fig. 7.6. These enhancement of the chemical activity of BN sheets
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may be especially useful for the connection of electrodes to h-BN.

CACs can also be grown between two BN flakes as shown in Fig. 7.7. We have

demonstrated this situation by calculating optimized bonding configurations and

the spacing between two BN flakes when CAC(2) and CAC(3) is grown between

them. CAC(2) binds to the nitrogen atom from one side and to the boron atom

on the other side as shown in Fig. 7.4. On the other hand, CAC(3) binds to both

of the flakes from the top boron sites. Once CAC(2) and CAC(3) are grown, the

spacing between the flakes increases from 3.1Å to 4.34Å and 5.82Å, respectively.

The formation energies, calculated by subtracting the energy of two BN planes

and the energy of CAC from the energy of the final structure, are found as 2.0

and 0.32eV for CAC(2) and CAC(3), respectively.

7.3 Summary

Here we presented the nucleation and growth mechanisms of short chains of car-

bon atoms on single-layer, hexagonal boron nitride (h-BN), and short BN chains

on graphene. Our analysis starting with the adsorption of a single carbon ad-

atom and examined its migrations. Once a C2 nucleated on h-BN, the insertion

of each additional carbon at its close proximity caused a short segment of carbon

atomic chain to grow by one atom at at a time in a quaint way: The existing

chain leaved its initial position and subsequently is attached from its bottom

end to the top of the carbon ad-atom. We showed that the electronic, magnetic

and structural properties of these chains vertically adsorbed to h-BN depends on

the number of carbon atoms in the chain, such that they exhibit an even-odd

disparity. An individual carbon chain was also shown to modify the electronic

structure with localized states in the wide band gap of h-BN. As a reverse sit-

uation we examined the growth of short BN atomic chains on graphene, which

attribute diverse properties depending on whether B or N is the atom bound to

the substrate. These results together with ab-initio molecular dynamics simula-

tions of the growth process reveal the interesting self-assembly behavior of the

grown chains. Furthermore, we find that these atomic chains enhance the chemi-

cal activity of h-BN and graphene sheets by creating active sites for the bonding

of various ad-atoms and can act as pillars between two and multiple sheets of

these honeycomb structures leaving wider spacing between them to achieve high
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capacity storage of specific molecules.
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Chapter 8

Constructing Graphyne from

Carbon Chains and BN Analogue

The perpendicular atomic chains of carbon and boron nitride atoms discussed in

the previous chapter are precursors for a new class of nanomaterials, called gra-

phyne. Graphynes are two dimensional structures similar to graphene with the

inclusion of double and triple bonded carbon atoms between the corner atoms of

the honeycomb structure. In a sense, they can be seen as combinations of short

atomic carbon chains on the same atomic plane. Much earlier than the synthesis

of single layer graphene, Baughman et al.[103] predicted various molecules of car-

bon atoms in the graphyne family as layered phases containing sp2 and sp bonds

using semi-empirical and empirical atom-atom potential calculations. Based on

first-principles plane wave calculation, Tongay et al.[98] predicted various stable

1D, 2D and 3D periodic structures containing carbon atomic chains. Among

these structures, graphene-like electronic structure of 2D periodic α-graphynes

is revealed. Very recently, band structures of the graphyne/graphdyne family

with similar behaviors to that of single layer graphene were also calculated,[104]

showing that neither the existence of hexagonal symmetry nor all atoms being

chemically equivalent are prerequisites for the existence of Dirac point in the

electronic structures.

Different types of the graphyne family are seen as new type of 2D materi-

als in the future era of carbon allotropes.[105] Finite building blocks of these
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graphyne structures have been synthesized which is an initial step towards ex-

tended materials.[106, 107, 108, 109] Although periodic 2D structures of gra-

phyne have not yet been synthesized, the synthesized finite blocks hold promise

for future applications. Additionally, theoretical studies and simulations have

revealed that different members of the graphyne family are promising materials

in electronic applications, can be used to construct graphyne-based nanotubes,

and it is possible to obtain semiconducting boron nitride(BN) analogues of cer-

tain types of graphyne, which are called as BNyne throughout this manuscript.

[104, 110, 111, 112, 113]

In this chapter, we investigate stability of 2D periodic α-graphyne structure

and its boron nitride(BN) analogue by using first principle calculations within

density functional theory. An α-graphyne structure of size n can be obtained by

placing n number of carbon atoms between the corner atoms of the hexagonal

graphene structure. We investigate the electronic and mechanical properties, and

stabilities of different sized α-graphynes, calculate phonon modes and perform

molecular dynamics(MD) simulations to test the stabilities of these structures.

We find that the stability and the existence of Dirac points on the Fermi level de-

pend on the size of the graphyne, such that n=even cases lead to stable structures

with graphene like electronic structures, whereas n=odd cases lead to instabili-

ties. In addition, the mechanical strengths of α-graphynes of various sizes were

explored and compared with that of other structures. We also do similar analysis

for the BN analogues of graphynes. We finally investigate the binding energies

and electronic properties of bilayer structures of these materials.

8.1 α-Graphyne and α-BNyne

8.1.1 Structure

We begin our analysis by investigating the structural and geometrical properties

of α-graphynes at different sizes. An α-graphyne(n) structure is obtained by

placing n carbon atoms between every adjacent carbon atom of the hexagonal

graphene structure. As shown in Fig. 8.1(a) this structure has a similar unitcell

with graphene, but consists of 3n+ 2 carbon atoms instead of 2. In other words,
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Figure 8.1: α-Graphyne and α-BNyne. (a) Schematic diagram of α-graphyne(2)
and the unit cell used to generate α-graphyne(n). Two corner atoms of the
hexagon have a chain of n atoms between them, such that the unit cell contains
3n + 2 atoms. (b) Atomic structure of single layer, 2D α-graphyne(2). The
dashed lines delineate the primitive unit cell. The optimized bond lengths are
g1 = 1.39Å and g2 = 1.23Å. The total charge density is shown within the
unit cell. (c) Atomic structure of single layer, 2D α-BNyne with blue and green
balls representing N and B atoms, respectively. The optimized bond lengths
are b1 = 1.42Å, b2 = 1.25Å and b3 = 1.44Å. In the charge density plots, the
isosurface value is taken as 0.2 electron/Å3.

we have the normal graphene structure with carbon atomic chains of length n

between the corner atoms of the hexagon on each side. Contrary to graphene, all

of the C-C bonds are not equivalent to each other in these structures, but there

exists bonds with different lengths and charge densities as shown in Fig. 8.1(b).

Therefore, the carbon atoms are no longer chemically equivalent to each other as

they were in the case of graphene.

The BN analogue of this structure, namely α-BNyne, can be easily obtained by

replacing the carbon atoms with B and N consecutively. The charge is transferred

from B to adjacent N in the ionic bonds of α-BNyne. Here, there are three

different types of bonds; two at the corners of the hexagon, one at the center of

edges. For B-N bonds at the corners, one is the case when N is a part of the

hexagon and B in the edge as denoted by b1 in Fig. 8.1(c), and the other is the

opposite of this and denoted by b3. Note that, if we want to preserve the 2D-BN

hexagonal structure such that the corner atoms of the hexagons are consecutively

B and N, we must have even number of atoms between the corner atoms. That

is, we can only have n = even scenarios for the α-BNyne(n) cases. Odd n

values would either lead to same type of atoms on the corners of the hexagons
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or two identical atoms(B-B or N-N) next to each other. For this reason, we

restrict ourselves with even n values for BN analogue of α-graphyne(n). The

periodic geometry of these structures, and the unit cells used to generate them

are shown in Fig. 8.1(b) and Fig. 8.1(c) for α-graphyne(2) and α-BNyne(2) cases,

respectively.

8.1.2 Stability

Although graphyne allotropes have been widely studied in previous works, their

stabilities have been an open question. Up to now, finite graphyne building blocks

have been synthesized which is an indication of their stabilities. Here, the main

issue is whether 2D single layer, periodic structures of the graphyne family are

stable or not. Having found the optimized atomic structures, in this section we

present a state-of the art analysis of phonon frequencies and MD simulations of

α-graphynes and α-BNynes corresponding to any k-point in the BZ. When the

calculated frequencies of all the modes are positive, the structure is identified to be

stable. In Fig. 8.2 all calculated frequencies of α-graphyne(2) and α-BNyne(2)are

positive. Moreover, due to the atomic C and B-N chains in α-graphyne(2) and

α-BNyne(2) both structures have phonon modes with frequencies higher than

those of single layer graphene and hexagonal BN. The situation is different for α-

graphyne(4) and α-BNyne(4), since some of lowest acoustic modes have imaginary

frequencies. These modes shaded out in Fig. 8.2(b) and (d) correspond to imag-

inary frequencies and may indicate instabilities. The imaginary frequencies may

arise also as an artifact of numerical calculations; to obtain real frequencies one

needs to perform calculations with very high numerical accuracies. In some cases,

specific planar structures can be unstable and those structures undergo structural

transformations to attain stability. In fact, ab-initio MD simulations presented

below indicate the possibility of buckling of α-graphyne(4) and α-BNyne(4) in

vertical planes in order to remain stable.

Hence, in order to further investigate the issue of stability, we performed MD

simulations at T = 1000K for 5ps. The atomic structures obtained after the

MD calculations are presented in Fig. 8.3. It turns out that α-graphyne(n) and

α-BNyne(n), n=2 and n=4 remained stable after 5ps of MD simulation at high

temperature. Even though 5ps is a short time interval, it is long enough for
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ab-initio calculations at high temperature to provide evidence for stability. The

analysis of atomic structures also suggest that α-graphyne(4) and α-BNyne(4)

prefer to buckle in the vertical direction in order to gain stability. α-Graphyne(1)

is totally unstable and is dissociated into carbon atomic strings. α-Graphyne(3)

undergoes a structural transformation and acquires stability by changing the

number of C atoms to n = 2 and n = 4 in the adjacent edges of hexagon.

This transformation is derived to maintain the proper bond order of finite size

carbon atoms constituting the edges of hexagon.[114] While the carbon atoms at

the corners are always forming single bonds with the adjacent carbon atoms, the

second atom from the corner by itself has to make a triple bond with the adjacent

carbon atom, which is at the other side in the edge of the hexagon. At the end,

the correct bond order of carbon atoms are preserved. However, this structural

transformation modifies the geometric structure and symmetry.

8.1.3 Mechanical properties

Having found the stable α-graphyne and α-BNyne structures, we next calculate

their mechanical strengths. A common way of expressing the mechanical proper-

ties of two dimensional materials is to calculate their in-plane stiffness, Poisson’s

ratio and Young’s modulus values. For this purpose, we used a rectangular unit

cell in the xy plane and applied tension in both x and y directions, as shown in

Fig. 8.4(a). We varied the lattice constants, ax and ay, between ±0.03% of the

optimized values and calculated the energy value for each grid point obtained. In

the end, we have obtained energy values for 225 grid points, which are plotted

in Fig. 8.4(b). The strain energy Es, at each point is calculated by subtracting

the total energy at that point from the equilibrium total energy. It has been

shown that this method of calculating the strain energy gives accurate results

for graphene, and 6-6-12 graphyne.[115, 116, 117] The in-plane stiffness, which is

commonly used measure of strength for 2D materials can be expressed as

C =
1

Ao

× ∂2Es

∂ε2
(8.1)

where Es is the strain energy, Ao is the equilibrium area and ε is the axial strain

calculated by ∆ax,y/ax,y, a being the lattice constant in the x or y direction.
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Figure 8.2: Calculated phonon bands. (a) Graphene. (b) α-Graphyne with n = 2
and 4. (c) Hexagonal BN. (d) α-BNyne with n = 2 and 4. The dispersion
curves for n=2 have totally positive phonon modes which is an indication of their
stability. On the other hand, n=4 cases have slightly negative modes, which are
marked with the shaded regions and will be discussed in the text. Phonon bands
of unstable structures, such as n = 1 and n = 3 are not shown.
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n=1 n=2 n=3 n=4

(a)

(b)

α-Graphyne(n)

α-BNyne(n)

Figure 8.3: Snapshots of the MD simulations performed for 5ps at T = 1000K.
(a) α-Graphyne(n). The structures are stable for n = 2 and n = 4, although
buckled in the vertical plane. On the other hand, n = 1 case breaks into carbon
atomic strings, and hence are totally unstable. α-Graphyne(3) undergos a struc-
tural transformation, whereby it acquires stability by changing the number of C
atoms to n = 2 and n = 4 in the adjacent edges of hexagon. (b) α-BNyne(n).
Both n = 2 and n = 4 cases remain stable during MD simulations. n = 1 and
n = 3 cases are missed, since α-BNyne(n) cannot be formed with odd n.

The in-plane stiffness values of α-graphyne(2) and α-BNyne(2) were calcu-

lated as 21N/m and 19N/m, respectively. These values are much lower than

the in-plane stiffness of graphene, which is ∼ 340N/m.[115, 49] As seen from

these results, the implementation of new atoms between atoms at the corners

of hexagons decreases the mechanical strength of graphene dramatically. The

Poisson’s ratio, which is defined as the ratio of the transverse strain to the axial

strain, ν = −εtrans/εaxial, was calculated as 0.88 and 0.89 for α-graphyne(2) and

α-BNyne(2). By assuming an equivalent thickness with graphene, the Young’s

modulus values were calculated as 61GPa and 52GPa for these structures.

8.2 Electronic Structure

Earlier, Tongay et al.[98] showed that the electronic structure of α-graphyne(2)

with two bands crossing the Fermi level at K-points of the BZ is similar to that

of graphene. The presence of Dirac cones in the band structure α-graphynes, as

well as β−graphyne and 6-6-12 graphyne have also been recently reported.[104]

This showed that the existence of Dirac points and cones is not a unique property
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Figure 8.4: (a)α−Graphyne(2) structure in rectangular unit cell with its lattice
constants ax and ay. εx and εy are the strains in x and y directions, respectively.
(b) 3D plot of the energy values corresponding to different ax and ay values.

of graphene. Earlier, the crossing of bands at the Fermi level and the formation

of Dirac cones were also investigated for other structures.[118] It was pointed out

that bare structures, large defects and adatoms on graphene can have Dirac cones

if their periodic patterns comply with a specific symmetry. Here, we present

the electronic energy band structure of α−grapyhe(n) for n = 1, 2, 3 and 4 in

Fig. 8.5. The existence of Dirac points is also seen here for all of these graphynes.

Note that, the Dirac point lies on the Fermi level for the stable n = 2 and

n = 4 structures, whereas it is shifted above from the Fermi level for the unstable

n = 1 and n = 3. We note that high electron density at the Fermi level of

α−grapyhe(n) for n=1 and 3 can be attributed to their instability. On the other

hand, reminiscent of the electronic structure of 2D single layer hexagonal BN, the

band structures of α-BNyne(2) and α-BNyne(4) have wide band gaps as shown

in Fig. 8.6. It can be seen that the band gap decreases with increasing values of

n.
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88



8.3 Bilayer Structures

Here we address the question of whether α-graphyne and α-BNyne can form lay-

ered structures similar to graphite and hexagonal BN, or not. We place their

bilayers as shown in figure Fig. 8.7 and explore equilibrium geometries, binding

energies and electronic structures. We begin the analysis by placing two sin-

gle layers of α-graphyne(2) sheets on top of each other at AA (i.e. hexagons

in both layers face each other) and AB (i.e. first layer is shifted laterally to

the centers of hexagons in the second layer) stacking geometries. We alter the

interlayer distances until we achieve the energy minima. The calculated mini-

mum energy geometries indicate that AB type of stacking is more favorable than

AA type by 46meV . This is a behavior similar to bilayer graphene structure or

graphite. The optimized interlayer distance is calculated as 3.12Å, which is less

than the interlayer distance of graphite, 3.35Å. This is mainly related to the

less dense arrangement of carbon atoms on the graphyne surface as compared to

the graphene, which results in lower surface energy and hence closer equilibrium

distance. Similar results were also found in a previous interlayer distance studies

made on different graphyne allotropes.[116]

A convenient procedure for calculating the interlayer binding energy for layered

structures is subtracting the minimum energy of the layered structure from the

sum of energies of separated layers.[119] Applying this method, we calculate the

binding energy of bilayer α-graphyne(2) as 220meV . We repeat the same analysis

for bilayer α-BNyne(2), which also has an AB type double layer geometry as

shown in the second column of Fig. 8.7(a). For this case, the energy difference

between AB stacking and the AA stacking is in favor of AB by 70meV , the

interlayer distance is 2.9Å and the binding energy is 128meV . The variations of

total energies around the minimum energy values as a function of the interlayer

distances are shown in Fig. 8.7(b).

We finally calculate the electronic structures of these double layered struc-

tures. The band structure of bilayer α-graphyne(2) is shown in Fig. 8.7(c). Note

that, the bands are split due to the couplings between layers and the numbers

of energy bands are doubled as compared to the single α-graphyne(2) sheet. No-

tably, the bands are no longer linear around the K−point, but parabolic. This

kind of structure is reminiscent of the electronic structure of bilayer graphene or
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Figure 8.7: Bilayer α-graphyne(2) and its BN analogue bilayer α-BNyne(2) are
shown in columns i and ii, respectively. (a) Top view of the optimized two layer
structures. Both bilayer α-graphyne and α-BNyne have AB type of stacking
geometry, which is more favorable than the AA stacking. In the ball and stick
model B and N atoms are represented by green and blue balls and the all of the
atoms in the bottom layer are shown in gray. (b) Variation of energy as a function
of the layer-layer distance. (c) Electronic band structures of α-graphyne(2) and
α-BNyne(2).
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graphite.[120] As opposed to single layer, the bands no longer touch at the K

point but there is a small band gap of 10meV . The electronic structure for the

bilayer α-BNyne(2) is also presented in Fig. 8.7(c). Similar to the single layer,

the double layered structure also has a wide band gap.

8.4 Summary

In this chapter we introduce a new two dimensional allotrope of carbon atoms

which forms when short carbon atomic chains are joined on the same plane. Here

we show stabilities of α-graphynes and their boron nitride analogues(α-BNyne),

which are considered as competitors of graphene and two-dimensional hexagonal

BN. Based on first-principles plane wave method, we investigated the stability

and structural transformations of these materials at different sizes using phonon

dispersion calculations and ab-initio finite temperature, molecular dynamics sim-

ulations. Depending on the number of additional atoms in the edges between

the corner atoms of the hexagons, n, both α-graphyne(n) and α-BNyne(n) are

stable for even n, but unstable for odd n. α-graphyne(3) undergoes a struc-

tural transformation, where the symmetry of hexagons is broken. We present the

structure optimized cohesive energies, electronic, magnetic and mechanical prop-

erties of stable structures. Our calculations reveal the existence of Dirac cones

in the electronic structures of α-graphynes of all sizes. We expect that these

layered materials can function as frameworks in various chemical and electronic

applications.
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Chapter 9

Dumbbell Reconstruction in

Silicene and Germanene

Although graphene and boron nitride based monolayer structures were the ini-

tial two dimensional materials, efforts were later devoted to finding new forms

of monolayer structures similar to graphene. In this chapter, we focus on the

modifications of new monolayer structures based on Group IV elements, their

properties, and new phases emerging from their reconstructions from first princi-

ple studies.

Silicene and germanene are the two monolayer structures based on Group IV

elements silicon and germanium, respectively. Free standing silicene and ger-

manene, have been recently shown to be stable and presently they have been an

active field of research with several challenges[93, 121, 122, 123, 124, 125, 126, 127,

128, 129, 130] They share several of the exceptional properties of graphene, such

as the linearly crossing of π- and π∗-bands at the Fermi level,[131] the ambipolar

effect and the family behavior observed in nanoribbons. Although the strong

π − π coupling ensures planar geometry of graphene, this coupling weakens in

silicene. However, the endangered stability is regained by the rehybridization of

3s and 3p valence orbitals to four-fold sp3-like bonds through the dehybridiza-

tion of three-fold planar sp2 bonds. This leads to the buckling of the planar

honeycomb structure. Accordingly, single atomic plane of graphene is replaced

by two atomic planes, which are split by a buckling and the alternating atoms
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at the corners of the hexagons are located in different atomic planes. Advances

in growth techniques have enabled the synthesis of some of these predicted sin-

gle layer structures, in particular the growth of single and multilayer silicene on

Ag(111) substrates[128, 129, 130] and the growth of germanene on Pt and Au

substrates[132] were recently succeeded.

9.1 Silicene Dumbbell

A Si adatom, which is initially bonded to the T site, pushes down the Si atom

underneath to form a dumbbell D structure.[133] This configuration occurs with-

out any barrier and has the binding energy of Eb=3.96 eV for a single Si adatom

forming a D-structure in each 4 × 4 supercell. Therefore, a single D structure

is not a predetermined configuration; it can occur while Si adatom migrates on

silicene. In Fig. 9.1 the atomic configuration of D structure is presented. Two Si

atoms positioned at two ends of the dumbbell are specified as D1 and D2. The

distance between the dumbbell atoms D1 or D2 and nearest silicene atoms (A,

E and F), which are located in a horizontal plane is 2.41 Å. This is larger than

the nearest Si-Si distance 2.28 Å in pristine silicene. The distance between D1

and D2 is relatively large and is 2.69 Å. We note that in our earlier work, it was

found that carbon atom migrating on graphene can form also similar dumbbell

structure, even if it is slightly less energetic relative to its B-site binding.[134]

The Mulliken analysis indicates that the depletion of electronic charge from

each of D1 and D2 atoms is +0.22 electrons, which is transferred to nearest three Si

atoms of silicene. This situation suggests that strong bonds with mixed covalent-

ionic character[135] form between nearest silicene atoms (A, E and F) and each of

the dumbbell atoms, D1 or D2. On the other hand the D1 - D2 bond is relatively

weak. These arguments can be depicted from isosurfaces of the total charge

density and the charge density contour plots presented in Fig. 9.1. Accordingly,

each of A, E and F atoms are four-fold coordinated, and hence they mimic the

bulk Si crystal by making four bonds with their nearest neighbors. Whereas D1

and D2 atoms are 3+1 coordinated, each of them makes three strong bonds with

A, E and F, but are weakly bonded to each other. We note that having positively

charged two Si atoms located above and below the Si planes of buckled silicene

may attribute interesting functionalities, which may be monitored by the electric
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field applied perpendicular to silicene. For example, positively charged surface of

D+silicene is attracted by negatively charged surfaces or vice versa for positively

charged surfaces. Additionally, the work function (or photoelectric threshold) of

silicene increases upon its decoration with D.

It should be noted that the formation energies of both the pristine silicene and

D+silicene are negative with respect to bulk Si in diamond structure. In spite of

that, one free Si adatom at the close proximity of a D structure does not form any

bond with D1 or D2 to nucleate a cluster or an atomic chain as carbon adatom

does on graphene or boron nitride[136, 137] It rather moves to the third nearest

neighbor and form another D structure. It appears that the D structure display a

self-organizing character. The D structure occurs at the T sites of silicene; H-sites

are unfavorable since Si adatom cannot form sixfold long bonds with Si atoms at

the corners of the hexagon. The calculated energy landscape of the Si adatom is

shown in Fig. 9.1. The minimum energy barrier for the migration of Si adatom is

estimated to be 0.92 eV. Although this barrier is significant to hinder diffusion at

room temperature, at high temperatures the D structure may display interesting

dynamics in the course of the growth of silicene.

The fact that the binding energy of the D structure (Eb=3.96 eV) is slightly

higher than the cohesive energy of a Si atom forming a pristine silicene (EC=3.94

eV) brings about the question whether the D+silicene with diverse decoration

of D can be energetically more favorable than bare silicene and may constitute

its complex derivatives. To this end, we compare the cohesive energies of Si

atoms in the D+silicene structures with diverse coverage values with that in

the pristine silicene. The cohesive energy per Si atom in an n × n supercell

comprising one single D structure is obtained from the energy difference between

the energy of free Si atom ET [Si] and the total energy of the structure of one D per

supercell divided by 2n2+1, namely EC [D] = ET [Si]−ET [D+silicene]/(2n2+1).

Similarly, the cohesive energy of Si atom in a n × n silicene supercell is Eo
C =

ET [Si] − ET [silicene]/2n
2. Then, the positive values of the energy difference,

∆EC = EC − Eo
C indicates that D+silicene structure is more favorable. For

the sake of comparison, the cohesive energy of single Si atom in bulk silicon is

calculated with the same parameters to be 4.71 eV. The cohesive energy and

relevant properties of D+silicene are calculated as a function of coverage and

presented in Table 10.1.
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Figure 9.1: One Si adatom adsorbed to each (4x4) supercell of silicene, which
corresponds to the uniform coverage of Θ=1/32. (a) Top and side views of the
atomic configuration of the dumbbell (D) structure. Blue balls represent Si atoms.
(b) Magnified view of the D structure together with the isosurface charge density.
D1 and D2 denote Si atoms at both ends of the dumbbell; and A, E and F
are silicene atoms nearest to D1 and D2. Excess charges on the Si atoms of
the dumbbell structure are shown by numerals. (c) Energy landscape for the
Si adatom on silicene calculated on a hexagon. The migration path of the Si
adatom with minimum energy barrier EB is indicated by stars. (d) Contour plot
of the total charge density ρT (r), on the horizontal plane passing through A, E
and F atoms, and on the planes passing through A-D1, A-D2 and D1 -D2 bonds.
(e) Energy band structure of the D+silicene structure with the dash-dotted line
indicating the Fermi level. Blue(dark) and green(light) lines represent spin up and
spin down states, respectively. The inset shows that the isosurface charge density
of spin up states making the flat band just below the Fermi level is localized
mainly at the D-structure. (f) Spin projected total density of states TDOS. Up-
arrow and down-arrow stand for spin up and spin down states, respectively. The
density of states DOS projected to D1 is augmented four times and plotted in
panel (f).
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9.2 Coverage of Dumbbells on Silicene

The cohesive energy EC of the D+silicene structure decreases with decreasing

coverage. It is larger than the cohesive energy of Si atom in silicene and hence

is slightly more favorable energetically than pristine silicene. For n=1 (Θ=1/2),

the D+silicene structure has nonmagnetic ground state; it is metal and has high

cohesive energy. Similarly, for a single D adsorbed to
√
3 ×

√
3 supercell, which

is predicted to be a nonmagnetic metal, ∆EC=65 meV per Si atom is significant.

Present results confirm the recent study,[138] which found that
√
3 ×

√
3 cover-

age stable and has cohesive energy 48 meV per atom higher than that of pristine

silicene. We believe that the difference between the calculated cohesive energies

occurs from the van der Waals correction taken into account in the present study.

For n=2 and n=3, ∆EC decreases and continues to be nonmagnetic metal. How-

ever, for n=4, 5 and 7, D+silicene attains spin polarized ground state and achieve

∼2 µB magnetic moment per supercell. Hence, three of them are spin polarized

semiconductor with a band gap E↑↓
g ∼ 80 meV. For the case of n=4, the flat

bands at the edges of valence and conduction bands in Fig. 9.1 (e) are derived

from orbital states, which are localized at the D structure with also minor con-

tributions from other Si atoms. Similar flat bands due to D structure also occur

at -2 eV in the valence band as shown in the spin polarized DOS projected to D

atoms presented in Fig. 9.1 (f).

For Θ ≤ 1/32 the spins are polarized and metallic states change into semicon-

ductors. Also, ∆EC is reduced and becomes smaller than the accuracy limits of

present calculations. Apparently, various structures of D+silicene can be consid-

ered as the allotropes of the pristine silicene and display variations in the phys-

ical properties as a function of the coverage. The D structures forming uniform

(1x1), (
√
3x

√
3), (2x2), (4x4), (5x5) and (7x7) supercells form centered hexagons

of different sizes on silicene. On the other hand, two D structures contained in

the (
√
3x

√
3) and (nxn) supercells with n=3,6,9,.. can form regular honeycomb

structure and yield linearly crossing bands.

Finally, the question of whether the dumbbell Si atoms are active sites of sil-

icene or not is investigated through the adsorption of Ti and H2O to the dumbbell

Si atoms. We found that similar to bare silicene H2O did not form bonds with

D1 adatom. The increase of the binding energy relative to that on bare silicene
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was only 130 meV. The binding energy of Ti atom to D1 was almost half of the

binding energy of Ti atom to bare silicene. We therefore arrive at the conclu-

sion that the D structure of Si adatom gives rise to interesting electronic and

magnetic properties, but it does not involve in active chemical reactions that are

significantly different from bare silicene.

9.3 Germanene Dumbbell

A single Ge adatom adsorbed to germanene also constructs a dumbbell structure.

Even more remarkable is that new phases can be constructed by the periodic

coverage of germanene with DBs. Depending on the coverage of dumbbells, these

stable phases can be metal or narrow band gap semiconductor in magnetic or

nonmagnetic states and hence they attribute diverse functionalities to germanene.

In 9.2(a), we present various stages of conjugate gradient calculations taking

place in the course of the adsorption of single Ge adatom. In the presence of an

external and free Ge adatom, the formation of dumbbell structure on germanene is

spontaneous. The external Ge adatom eventually moves closer to the germanene

surface and makes a bridge bond with two underlying Ge atoms of germanene. It

then starts to push the Ge atom underneath further down until the final dumbbell

forms as shown in 9.2 (a). As a concerted process, two Ge atoms above and below

the germanene surface, named as D1 and D2, donate significant electronic charge

to the three nearest Ge atoms of germanene and hence each forms three strong

Ge-Ge bonds with a length of 2.58 Å. With these additional bonds with DB,

these three Ge atoms of germanene become fourfold coordinated. D1 and D2 by

themselves engage in a 3+1 coordination, since each has three nearest neighbor

Ge atoms at a distance of 2.58 Å. Whereas the D1 - D2 distance of 2.80 Å is

slightly larger. At the end, the resulting DB corresponds to a local minimum

on the Born-Oppenheimer surface and remains stable. As for the DB decorated

germanene, it is a structure between the fourfold coordinated cdGe and the three

fold coordinated single layer, buckled germanene. Since moving a dumbbell from

one place to another by breaking three Ge-Ge bonds involves an energy barrier,

any pattern of DBs on germanene is expected to remain stable.

Since the construction of a single dumbbell is an exothermic process and hence
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Figure 9.2: (a) Snapshots of conjugate gradient steps in the course of the forma-
tion of a dumbbell structure. The external Ge adatom first approaches to the
germanene layer from the top site, and eventually constructs the dumbbell struc-
ture by pushing the host Ge atom down. (b) Top and side views of DB formed on
(4 × 4) germanene. Two Ge atoms of dumbbell are highlighted by red. (c) The
dumbbell zoomed in along with the total charge density isosurfaces. (d) Contour
plots of the total charge density on planes passing through D1 − A − D2 and
B −D2 − C atoms. Note that although the DB atoms make bonds with nearest
germanene atoms, there is no bonding between the DB atoms, D1 and D2.
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does not involve any energy barrier, the formation of DB structure is unavoid-

able as long as a free Ge adatom is present at the close proximity of the surface.

We define the associated binding energy as Eb = ET [germanene] + ET [Ge] −
ET [germanene + DB]; in terms of the total energies of germanene+DB, pris-

tine germanene and free Ge adatom. The binding energies are calculated for a

single dumbbell in the (n × n) hexagonal supercells with varying values of n.

Accordingly, Eb is the energy gained from the construction of a single dumbbell

through the adsorption of a single Ge adatom to germanene and Eb >0 indicates

an exothermic process. For an isolated dumbbell calculated in a large supercell

with n=8, Eb ∼ 3.4 eV; but it increases with decreasing n or decreasing DB-DB

distance due to the attractive interaction among DBs as discussed in the next

paragraph. In 9.2 (b) and (c), the atomic configurations of a single dumbbell

and its relevant structural parameters together with isosurfaces of charge density

of Ge-Ge bonds around dumbbell are shown. The charge density counter plots

calculated on various planes are presented in 9.2(d). The bonding of the dumb-

bell atoms (D1 and D2) with the nearest Ge atoms of germanene are clearly seen.

Notably, there is no bonding between D1 and D2.

The D-B interaction on the surface of germanene is crucial for the growth

of germanene phases. While an attractive interaction between two Ds can lead

to the domain structure, a repulsive interaction at small D-D distance d is ex-

pected to favor phases with uniform coverage of dumbbell. Therefore, we next

investigate what happens if a Ge adatom is introduced in addition to an existing

dumbbell. Our calculations show that rather than bonding to D1 or D2 dumbbell

atoms and forming a short Ge-Ge chain on top of them, Ge adatom migrates on

germanene substrate and forms another D. Hence, each Ge adatom introduced

to the surface of germanene favors the construction of a new dumbbell, as long

as a proper position is available. The D-D coupling is calculated by placing two

dumbbells in an (8×8) supercell; one at a fixed corner, and the second one placed

at different sites on the supercell as described in 9.3. For each lateral position of

the second dumbbell, the coordinates of rest of the atoms including the height of

the second dumbbell are fully optimized. Apparently, an attractive interaction

is set even for the large D-D distance. The dumbbells tend to be close to each

other and hence to form domains. However, as long as germanene continues to

be fed by Ge adatoms, domains join to form full coverage. Here one distinguishes

two classes of sites for the second dumbbell: One class of sites is the high buckled

sites of germanene, the other class is the low buckled sites. It should be noted
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Figure 9.3: The interaction energy versus the distance between two DBs, d on
the (8× 8) supercell of germanene. The blue and red curves represent the varia-
tion of interaction energies for DBs formed on sites with the same and opposite
bucklings, respectively. The interaction energy between two DBs situated at the
same buckling is set to zero for large d. Negative energy indicates attractive in-
teraction. One DB is permanently present on the yellow site and the second DB
is placed on various positions shown by the blue and red marks in the inset. The
attractive interaction energy falls suddenly when the second DB following the red
path is situated at the nearest neighbor distance to the first DB.

that low and high buckled sites are equivalent if there is only one dumbbell due

to the upside and downside symmetry. The site-specific variation of the total

energy is shown in 9.3, where the interaction energy versus d curve follow dif-

ferent paths. Accordingly, the formation of two dumbbells on sites with opposite

bucklings appears to be more favorable energetically, by ∼0.2-0.3 eV, since the

gain of energy through the buckling of bare germanene is preserved. However,

this difference of energy diminish as d→ ∞. Notably, it is not possible to create

two DBs on the nearest neighbor sites of the lattice. This situation results in the

constrained structure optimization in 9.3 (shown by the dashed line) as a sudden

fall of the attractive interaction energy when the Ge adatom is placed at the first

nearest neighbor of the existing dumbbells. The second dumbbell tends to move

to the second nearest neighbor position when the constraints are lifted. If the

second dumbbell is situated at the second nearest neighbor distance from the first

dumbbell (where both dumbbells are situated on the sites of same buckling), Ge

atoms of germanene at the first nearest neighbor distance to these two dumbbells

become five fold coordinated.
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Table 9.1: Calculated values for the various phases of germanene+DB, where
DBs form periodically repeating supercells on germanene with 2D hexagonal or
rectangular lattice. 2D Lattice: H hexagonal or R rectangular; Mesh: (m × n)
cell in terms of the primitive hexagonal or rectangular unit cell of germanene;
N : Number of Ge atoms (including DB) in each supercell; d: shortest distance
between two DBs; A: the area of the supercell; µ: magnetic moment per supercell;
ES: Electronic structure specified as metal M, or semiconductor with the band
gap between valance and conduction bands calculated by GGA and HSE (for the
spin polarized cases the gap between spin up - spin up and spin up - spin down
bands are shown); Eb: Binding energy per Ge adatom relative to germanene or
average binding energy if there is two DB in each cell; EC : Cohesive energy (per
atom) of Ge atom in Germanene+DB phase; Es

C : Cohesive energy per area; ∆EC :
difference between the cohesive energies of a Ge atom in Germanene+DB and in
pristine germanene, where positive values indicates that germanene+DB phase is
favorable. For bare germanene EC =3.39 eV/atom. TDP, HDP, RDP and DHP
are described in the text.

Lattice Mesh N d(Å) A(Å2) µ(µB) ESGGA (eV) ESHSE (eV) Eb (eV) EC (eV) Es
C ∆EC (eV)

H/FDP 1× 1 3 3.77 12.34 0 M M 4.00 3.60 0.873 0.204
R/RDP 1× 1 5 3.39 24.21 0 M M 3.73 3.46 0.715 0.069

H/TDP
√
3×

√
3 7 6.84 40.57 0 M M 3.75 3.44 0.595 0.052

H/HDP
√
3×

√
3 8 3.85 38.60 0 0.53 0.73 4.03 3.55 0.736 0.160

H 2× 2 9 7.79 52.54 0 0.16 0.32 3.72 3.43 0.585 0.037
H/DHP 2× 2 10 4.50 52.54 0 M 0.46 4.39 3.59 0.680 0.198

H 3× 3 19 11.68 118.22 0 0.29 0.63 3.54 3.40 0.551 0.008
H 4× 4 33 16.06 223.36 2 0.42 / 0.06 0.77/0.44 3.44 3.39 0.495 0.002
R 2× 1 9 6.95 48.43 0 M M 3.85 3.48 0.189 0.189
H 5× 5 51 19.87 342.05 2 0.33 / 0.03 0.61/0.36 3.40 3.39 0.510 0.000
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9.4 New Phases of Germanene

In the case of uniform and periodic coverage, DBs form a mesh or periodically re-

peating supercells on germanene. The properties of the resulting germanene+DB

phases depend on the size and geometry of supercells constructed from (n × n)

hexagonal primitive unit cells or (m × n) rectangular unit cells of germanene,

as well as the number of DBs in each supercell or the DB-DB distance, d. In

10.1, the energetics and the relevant data of the selected phases having 2D

hexagonal or rectangular lattice structures are presented. The cohesive energy

(EC = ET [Ge] − ET [germanene + D]/N , which is the difference between the

energy of one free Ge atom and the energy of germanene+DB phase per atom or

simply the energy gained per atom by constructing a particular germanene+DB

phase), and cohesive energy per unit area (i.e. Es
C = NEC/A) are relevant mea-

sures for energetics of the phases. In particular, Es
C is a prime criterion which

decides the phase that will grow on bare germanene. Here N is the total number

of Ge atoms in the supercell of a given phase and A is the area of the supercell.

Since each DB constructed on germanene lowers the energy, FDP (Full Dumbbell

Phase) which corresponds to full coverage, attains the highest EC , E
s
C and ∆EC

among other phases listed in Table 9.1. However, one Ge atom in each cell of

FDP is forced to be six fold coordinated, and hence FDP is prone to structural

instability. In fact, our ab-initio phonon calculations of this phase have branches

with imaginary frequencies. Another structure, RDP (Rectangular Dumbbell

Phase) in 10.1 is also found to be unstable based on ab-initio phonon calcula-

tions. DHP (Double Hexagonal Phase), where the hexagons of germanene are

nested by large DB hexagons has the highest Eb and EC among the other stable

phases listed in 10.1. Additionally, two other phases, TDP (Trigonal Dumbbell

Phase) and HDP (Hexagonal Dumbbell Phase) which have (
√
3 ×

√
3) unitcells

are of particular interest, since silicene grown on Ag(111) substrate also showed

a (
√
3×

√
3) pattern.[129] HDP has two DBs per cell, such that DBs are situated

at the corners of hexagons to form a honeycomb pattern. It appears that HDP

having the maximum cohesive energy per area, Es
C = 0.735 eV/Å2 among the

other stable phases listed in 10.1 is energetically the most favorable structure to

grow on bare germanene.

The germanene+DB phases acquire permanent magnetic moments when d >∼
15 Å, where the DB-DB coupling recedes and the DB behaves as a local defect
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on the germanene substrate with a total magnetic moment of 2µB per cell. We

performed additional tests to understand the magnetic order of the system. To

this extend, four DB structures were created on an (8 × 8) supercell and the

ferromagnetic, antiferromagnetic and paramagnetic states were investigated. For

the ferromagnetic case, all DB atoms were given an initial spin in the same

direction; for the anti-ferromagnetic case opposite spins were assigned to the

adjacent dumbbells. Our results showed that the ferromagnetic ordering has the

lowest total energy indicating that it is the most favorable configuration.

The energy difference between the ferromagnetic state and the antiferromag-

netic state is 0.63 eV per supercell. Notably, upon the relaxation of magnetic

states, the final magnetic state of the structure is found to be always ferromag-

netic no matter what the initial direction of spins were. The energetics of various

germanene+DB phases display interesting trends: In general, the cohesive energy

increases with increasing DB coverage, which confirms the situation in 9.3. The

binding energies, Eb, also show the same trend except for DHP. The energy values

presented in 10.1 imply that the higher the DB coverage of a phase is, the higher

its total energy gets.

Dumbbells also modify the physical properties of germanene. In particular, the

electronic and magnetic properties of pristine germanene show dramatic changes

depending on the coverage (see also 10.1). Firstly, the spin-orbit coupling gives

rise to significant splitting in the bands of germanene-DB phases. For example,

the degenerate bands at the top of the valance band of (4 × 4) mesh split by

12 meV. Normally, germamene+DB phases maintain their metallic state at high

coverage, but they transform into semiconductor as the size of their cell(n) or the

DB-DB distance(d) increases; with the exception of HDP. In 9.4 we present the

energy band structures of four different germanene+DB phases having hexagonal

lattice. These are (i) TDP; (ii) HDP; (iii) DHP and (iv) triangular structure,

where DBs form (4 × 4) mesh on germanene. It should be noted that the band

gaps of the semiconductor phases are almost doubled after the HSE corrections.

The dramatic effects of DB coverage is clearly seen in these band structures.

While TDP is a nonmagnetic metal, HDP is a nonmagnetic semiconductor with

an indirect band gap of 0.53 eV. DHP, which is a metal according to GGA,

becomes a narrow band gap semiconductor after HSE06 correction. The (4× 4)

mesh of DBs is a magnetic, narrow band gap semiconductor. DB gives rise to

localized states at ∼ -2 eV and -7 eV below the Fermi level.
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Figure 9.4: Electronic band structures of different phases of germanene. (a) TDP.
(b) HDP. (c) DHP. (d) The triangular structure with DBs forming hexagonal
(4× 4) supercells, where the total density of states are also shown. The spin up
and spin down bands are shown in blue and green lines, respectively. The density
of states projected to the DB atoms shown in red and are augmented three times
for a better view.
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Incidentally, further to Ge DB on germanene, Si adatoms on germanene can

also construct asymmetric DB structures, as such that D1 = Si, but D2 = Ge. The

formation of this asymmetric DB is also exothermic and occurs spontaneously as

long as a Si adatom on germanene is available. These asymmetric DB, as well

as their periodic structures on germanene exhibit properties different from host

DBs and multiply the functionality of DB based new phases of germanene. For

example, the Si-Ge asymmetric dumbbell structure having hexagonal lattice over

the (4× 4) supercell of germanene is a nonmagnetic metal with a binding energy,

Eb=3.86 eV per DB. In contrast, the symmetric germanene-DB having the same

lattice is a magnetic semiconductor, and Eb=3.44 eV as shown in 10.1. We note

that like the Si-Ge asymmetric dimer on germanene, also Ge-Si asymmetric dimer

can be constructed on silicene spontaneously.
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Chapter 10

New Material Predictions:

Silicatene, Nitrogene and

Antimonene

Trends in materials science have aimed at the discovery of single layer structures

and their multilayer composites by using advanced fabrication techniques and/or

quantum mechanical calculation. In this endeavor, single layer honeycomb like

structures with novel functionalities have been predicted using Group-IV elements

as discussed in the previous chapter. In this chapter, we discuss the formation

of another two dimensional material which is based on the oxygenation of sil-

icene. The new structure, which we name as silicatene, has a honeycomb-like

two dimensional structure but its bonds and angles reorient to gain stability as

discussed in the following sections.

In addition to Group IV elements, recently the fabrication of field effect tran-

sistor using micrometer sized flakes consisting of two-three layers of black phos-

phorus [139] and theoretical analysis [140, 141] revealing the stability of its single

layer allotropes also brought Group V elements into the focus. Thus the idea

of whether Group V elements can form single layer structures became a critical

question to be answered. In the final two sections of this chapter we present the

results of our analysis for two dimensional allotropes of nitrogen and antimony.

The conclusion of our analysis has been positive and revealed that nitrogen and
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antimony can also form 2D crystalline structures like silicene or phosphorene.

10.1 Silicatene

Silicene surface is rather reactive; oxygen molecule can be dissociated on silicene

surface, whereby constituent oxygen atoms are bonded to the bridge sites with a

strong binding energy of 6.17 eV. Incidentally, this bridge bonded O adatom can

forcibly switch between two bistable equilibrium position at either sides as shown

in Fig. 10.1 (a), if an energy barrier of 0.28 eV is overcame. At the transition

state, the Si-Si bond is stretched to accommodate one O atom near its center

and hence to form a Si-O-Si bond. Then, one may contemplate whether an

exothermic process can take place, in which one O atom is inserted to each Si-Si

bond concomitantly to grow a single layer honeycomb like network in 2D with

the formula unit of Si2O3. Actually, similar process is realized in 3D through

the oxidation of silicon surfaces to generate amorphous SiO2. In various fourfold

coordinated allotropes of SiO2, such as cristobalite, quartz, tridymite etc, which

are commonly named as silica, each Si atom has four nearest neighbor oxygen

atoms, while each O atom being bonded to two Si atoms at both end is twofold

coordinated. It is characteristics of several allotropes that Si-O-Si bond is bent

around O atom. Notably, β-cristobalite, well-known insulating, high temperature

phase of silica has straight bonds and it can be viewed as if an expanded diamond

crystal of silicon, where tetrahedrally bonded Si-Si bonds have changed to straight

Si-O-Si bonds by inserting O atoms at their centers. However, none of those

allotropes of silica has a graphite like structure.

If a single layer honeycomb like network of silica were formed in 2D, there

remain three important questions to be addressed for this ideational situation:

(i) Is the single layer silica structure stable in 2D? (ii) What are the physical and

chemical properties of this structure? (iii) Can honeycomb like silica structure be

synthesized? Here rigorous answers are provided for the first two questions based

on predictions obtained from first-principles calculations. Our results will possibly

guide future efforts for the synthesis of single layer silica. Notably, theoretical

predictions obtained from first-principles calculations have offered valuable input

for the design of modern materials.
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Figure 10.1: Monolayer silica (a) As shown by inset, equilibrium charge density
isosurfaces of oxygen adatom adsorbed to the bridge site of silicene indicates a
significant amount of effective charge. Variation of total energy of oxygen and
silicene system as the oxygen adatom is passing from the top to the bottom
side through the minimum energy path. The energy barrier involved in this
excursion is only 0.28 eV. Large-blue and small-red balls stand for Si and O
atoms, respectively. (b) Side and top view of hβ-silica, the precursor of the single
layer silica, has straight Si-O-Si bonds as if one O atom is inserted at the center of
each Si-Si bond of silicene. While Si atoms are alternatingly buckled to different
planes, oxygen atoms lie in the same plane in between. (c) The structure of stable,
single layer hα-silica, which has 0.7 eV lower energy as described schematically.
Two dimensional hexagonal primitive and rectangular unit cells are delineated by
black (dashed) and gray (continuous) lines. The corresponding lattice constants
are aβ and aα, respectively. Two types of Si atoms, i.e. those up-buckled and
forming the sp3-bonding with 96o O-Si-O bond angle and those lying in the same
plane of oxygen atoms and forming the planar sp2-bonding with 120o O-Si-O
bond angle, are ordered alternatingly at the corners of a hexagon.
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A hexagonal unitcell including two Si and three O atoms forms a regular honey-

comb network, as shown in Fig. 10.1 (b). This structure, which is named as hβ-

silica (h denoting the single layer hexagonal lattice) in analogy to β-cristobalite in

3D, corresponds to a shallow local minimum. When perturbed from perfect sym-

metry and subsequently relaxed by conjugate gradient method using stringent

convergence criteria, the structure eventually transforms to the new structure,

hα-silica, as described in Fig. 10.1 (c). At the end, the energy is lowered by 0.7

eV and the regular hexagons are distorted keeping the honeycomb like network

in the top view, where Si atoms are placed at the corners of hexagons, but they

are buckled like silicene. These rearrangements starting from regular hβ-silica are

reminiscent of the transition from ideal β-cristobalite to α-quartz in 3D. In the

present 2D case, the O-Si-O angles are alternatingly 120o and 96o, whereby three

alternating Si atoms of a hexagon engage in planar sp2-like and the remaining

three rise upwards and form tetrahedral sp3-like hybrid bonds. Consequently, the

rotary reflection symmetry is broken. Incidentally, the lattice constant is reduced

from 5.39 Å to 5.18 Å and the straight Si-O-Si bonds are bent such that all oxy-

gen atoms remain in the same plane together with sp2-bonded Si atoms. However,

from the symmetry point of view it is equally probable that sp3-bonded Si can be

either at the top side or the bottom side of the plane of oxygen and sp2-bonded

Si atoms, which implies frustration and leads to domain structures. The Si-O-Si

angles between sp2-bonded and sp3-bonded Si atoms, which are denoted by φ for

oxygen protruding outwards and by φ′ for oxygen atoms protruding inwards in

the same hexagon like cell, are 140o and 220o, respectively. Details of this com-

plex atomic structure and other physical properties of the optimized hα-silica are

summarized in Table 10.1. Its high cohesive energy, Ec=28.6 eV per unit cell

originates from mixed (covalent and ionic) bonds between Si and O atoms; high

formation energy prevents it from clustering.

10.1.1 Stability

To ascertain that the optimized structure of hα-silica is stable rigorous tests are

performed. First, similar structure optimizations are repeated also using a (4x4)

supercell to circumvent the constraints, which may be imposed by using primitive

unit cell. In these tests, no periodic reconstructions involving multiple primitive
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Table 10.1: Calculated lattice parameters of hα-silica and its relevant physical
properties. aα: hexagonal lattice constant in Å; d1: Si-O bond distance of sp3-
bonded Si in Å; d2: same for sp2-bonded Si; Ec: the cohesive energy per unit
cell in eV; Ef : the formation energy per unit cell in eV; EG−gga: the band gap
calculated by GGA with van der Waals correction in eV; EG−hse: the band gap
calculated by HSE; C: the in-plane stiffness in N/m; ν: Poisson ratio ; Q∗

O,
Q∗

Si−sp3 , Q
∗
Si−sp2 : Mulliken charges in electrons for different atoms.

aα d1 d2 Ec Ef EG−gga EG−hse C ν QO QSi−sp3 QSi−sp2

5.18 1.76 1.58 28.6 9.2 2.2 3.3 22.6 -0.21 −0.31 0.53 0.39
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Figure 10.2: (a) Phonon frequencies and their dispersions along the symmetry
directions of the Brillouin zone. Specific modes of phonons involving the vibration
of oxygen atoms indicated by small arrows are also described. (b) Results of ab-
initio molecular dynamics calculations performed at 1000 K and 2000 K starting
from the regular hβ-silica structure and ending at hα-silica. (c) The atomic
structure of hα-silica with large-blue and small-red ball standing for Si and O
atoms, respectively. Silicon atoms, which are sp3-bonded (up-buckled) and those
sp2-bonded (in the plane of oxygen atoms) are highlighted.
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cells were observed. Also, specific atoms are displaced forcibly from their opti-

mized equilibrium positions corresponding to a minimum in Born-Oppenheimer

surface. The optimized structure was resistant to these large scale deformations

and hence restored itself quickly demonstrating that the structure of hα-silica

is robust. Furthermore, the frequencies of phonon modes are calculated in the

first Brillouin zone with extreme accuracy and all are found to be positive. The

dispersion relations of calculated phonon frequencies, Ω(k), with a minute gap

between optical and acoustical modes as shown in Fig 10.2, demonstrate that

in fact hα-silica remains stable as its size increases (D → ∞). Otherwise, the

specific eigenfrequencies of the dynamical matrix would be imaginary, if any in-

stability due to the long wavelength transversal acoustical phonons were imposed

to hα-silica. The stability of hα-silica is further investigated by performing ab-

initio, molecular dynamics (MD) calculations at very high temperature. Starting

from regular hβ-silica, we first excite the structure to 1000 K; the structure has

transformed to hα-silica and did not change in the course of MD simulations

lasting 12 ps as shown in Fig. 10.2 (b). Subsequently, we repeated the same

simulations for 6 ps by raising the temperature of hβ-silica suddenly from 0 K

to 2000K. No instability leading to structural transformation or dissociation of

hα-silica was observed even if the specific phonon modes were softened at such a

high temperature.

Our conclusions on the mechanical stability and strength of hα-silica is corrob-

orated further by calculating its in-plane stiffness, C = A−1
o ∂2ET/∂ε

2 (in terms

of the area Ao of the cell and the variation of total energy, ET with strain, ε).

Owing to ambiguities in defining the Young’s modulus, the in-plane stiffness C is

used to characterize the strength of single layer structures. Here calculations can

conveniently be performed in rectangular cell by applying uniaxial strain along

x- and y-directions to deduce that Cx ' Cy =22.6 J/m2. The calculated in-plane

stiffness is smaller than that of graphene.

The Poisson’s ratio ν = −εy/εx, i.e. the ratio of the transverse strain to

the strain induced by the uniaxial tensile stress is calculated as -0.21. This is

remarkable in the sense that as hα-silica is stretched along x-direction it also

expands in the y-direction. Hence, hα-silica is a negative Poisson’s ratio material

owing to its squeezed structure consisting of twisted and bent Si-O-Si bonds;

three oxygen atoms in each hexagon protrude inward the hexagon with φ
′
=220o

resulting in re-entrant structure.
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10.1.2 Electronic Properties

Electronic and electromechanical properties of hα-silica are summarized in

Fig. 10.3: It is a nonmagnetic, wide band gap semiconductor with a HSE cor-

rected [83] direct band gap of EG−hse=3.3 eV. As expected, the band gap pre-

dicted using GGA calculations,[58] EG−gga=2.2 eV, is relatively smaller. While

conduction and valance band edges are mainly derived from the dangling orbitals

of sp2-bonded and sp3-bonded Si, respectively, the bands of oxygen-p orbitals

occur below ∼-4 eV. It is a rather rare circumstance that the calculated band

gap of hα-silica increases with increasing uniaxial strain, εx; but it decrease with

increasing εy. Hence, the response of the electronic structure is different for uni-

axial strains ε in different directions, since the displacement of oxygen atoms are

direction dependent.

According to Mulliken charge analysis[21] Si-O bonds have a strong ionic char-

acter. Due to the special bond configuration, each oxygen atoms receives ∼0.31

excess electrons, while 0.53 electrons and 0.39 electrons are donated by sp3- and

sp2-bonded Si atoms, respectively. The details of charge transfer are depicted by

charge density isosurfaces and contour plots. Also, because of significant charge

transfer between Si and O atoms, the dipole moments along x- and y-directions

of the perpendicular unit cell are high and are Px=13.1 eÅ and Py=3.5 eÅ,

respectively.

10.1.3 Nanoribbons

While an infinite structure subjected to the periodic boundary conditions is a

theoretical abstraction, its finite size is used for various applications. In Fig. 10.4

we consider zigzag and armchair nanoribbon specified by the number of hexagons

across their widths w, NZ=4 and NA=4 , respectively. Apart from the minute

reconstruction at their edges, these nanoribbons are stable. The zigzag NZ=4

nanoribbons is a metal, where the flat band at the Fermi level is derived from

the orbitals of sp2-bonded atoms located at one edge. Another band crossing the

Fermi level has small dispersion and originates from the orbitals of sp3-bonded Si

atoms at the other edge. In contrast, the armchair nanoribbon is a semiconductor

with a direct band gap of 1.9 eV calculated within GGA.[58] The bands at the

113



conduction and valance band edges are derived from the sp2-bonded and sp3-

bonded Si atoms at both edges, respectively. Due to small coupling between edges

the bands are slightly split. These nanoribbons with or without foreign adatoms

attached to the edges and their networks consisting of the combination of zigzag

and armchair nanoribbons with different NZ and NA, can display diversity of

electronic properties, which is beyond the scope of the present study. Here we

point out a property of hα-silica, which may be of potential importance. Due

to the significant charge transfer between Si and O atoms and also its re-entrant

structure a finite size flake of hα-silica is expected to be influenced by the applied

electric field. Because of the induced divergences, the effect of the in-plane electric

field, ~E, is investigated on the armchair nanoribbons. As illustrated in Fig. 10.4

(b), applied in-plane electric field induces significant changes in the width ∆w

and Si-O-Si bond angle φ of armchair nanoribbons. The piezoelectric coefficient

is estimated from ∆w as 5.7x10−12 m/V, which is more than twice the value

measured for quartz.[142] This is an important property, which is crucial for

piezo devices.

It should be noted that hα-silica and its ribbons discussed so far are rather

reactive due to dangling bonds or π-orbitals oozing from Si atoms. Thus, they

can acquire new functionalities by adsorption of adatoms to Si, such as H, O, F,

Cl etc. When oxidized through the saturation of these dangling and π-orbitals

alternatingly from the top and bottom sides, the structure attains further stability

and increased inertness. Upon oxidation the filled band at the top of the valance

band derived from Si-sp3 dangling bonds and empty band at the bottom of the

conduction band derived from Si-π orbital in Fig. 10.3 are removed and the band

gap increases from 2.2 eV to ∼6 eV attributing a high insulating character like

3D silica. This way, Si atoms acquire the fourfold coordination of oxygen atoms

as in 3D silica. While the hexagon like geometry in Fig. 10.1 is maintained, sp2-

bonded Si atoms change to sp3-bonded Si atoms and hence restore the rotary

reflection symmetry.

10.1.4 Bilayers and Functionalization

Two parallel, single layer hα-silica can form bilayer by lowering the total energy.

By examining various, possible relative positions of two layers we determined
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the optimized stacking of bilayer structure as presented Fig. 10.5 (a). From the

calculation of the variation of the total energy with the layer distance, we infer

that the energy of two hα-silica is lowered by 0.8 eV per unit cell upon the

formation of bilayer. In equilibrium, the Si-Si bond between two silica layers is

2.53 Å. We note that in the bilayer three Si atoms forming planar sp2 bonding

are buckled for sp3-type hybridization.

In Fig. 10.5 (b) the formation of multilayer silica through the ABABA.. stack-

ing of single layer silica is presented. Upon the multilayer formation all Si atoms

become identical by forming sp3-type bonding.

The buckled honeycomb-like structure of silica resembles that of monolayer

silicene and graphene. Of these, after the synthesis of graphene efforts were

mainly devoted to modify its properties through chemical and physical treat-

ments. Previously, absorbtion of foreign adatoms and creating a full coverage on
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the monolayer structure with suitable elements has been effectively achieved for

graphene. In this way, the hybridization of carbon atom in graphene transforms

from sp2 to sp3, which eventually modifies the electronic properties of graphene.

Such efforts had resulted in hydrogrenated graphene (graphane), fluorographene

and grapheneoxide, which modify the gap and electronic structure and provide

protective layers for the bare structure.

Having predicted the new silica structure whose details were fully investigated

in the main text, we also followed a similar route with previous graphene studies

to fully cover the bare silica with O, H, F and O adatoms, which result in Si2O3H2,

Si2O3F3 and Si2O5, respectively. All of these coverages increase the band gap

of the silica increases significantly upon coverage with H, F and O. In Fig. 10.6,

Fig. 10.7 and Fig. 10.8 the atomic configurations, charge distributions and the

electronic properties of these structures are presented.
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The additional atoms attach to the Si atoms which were previously bonded to

three O atoms only. Hence, after the saturation of dangling Si orbitals, the coor-

dination number of each Si raises to four, three of which are previous O atoms.

In the bare silica, there exists two kinds of Si atoms in the unit cell: one in the

same plane with the O atoms, which makes sp2 bonds and the other one in a

buckled position which makes sp3-type bonds with the O atoms. Hence, sp2 and

sp3-type bonds coexist in the bare monolayer structure. However, with the addi-

tional adatoms, both Si atoms arrange themselves so that they are geometrically

identical to each other. Since the dangling Si orbitals are saturated, the band gap

increases by ∼ 4 eV. The newly formed structures, Si2O3H2, Si2O3F3 are stable

under MD simulations performed for 5ps at 1000K. The MD simulations which

were performed in enlarged 4 × 4 unitcell have further continued for 2ps at 2000K

where Si2O5 undergoes a structural transformation at elevated temperature and

forms silicatene as explained in the main text.

10.2 Nitrogene

We performed further theoretical analysis to exploit the idea of whether Group

V elements can form single layer structures. The conclusion of our analysis has

been positive and revealed that nitrogen can also form 2D crystalline structures

like silicene or phosphorene. In particular, nitrogen has liquid phase at 77K;

molecular/non-molecular solid phases[143, 144, 145, 146, 147, 148] and 3D cu-

bic gauche(cg-N) crystalline phase[149, 150] but normally it is gaseous at room

temperature. Here we show that nitrogene can also form crystalline phase with

2D hexagonal lattice in single-layer, buckled honeycomb structure, named as ni-

trogene. Notably, while N2 molecule is triple bonded, nitrogene is constructed

from threefold coordinated and single bonded N atoms similar to the 3D cg-N

crystalline phase. We showed that nitrogene can remain stable above the room

temperature and can form stable nanoribbons, bilayer and 3D graphitic structure

named nitrogenite. However, unlike semi-metallic graphene or silicene having per-

fect electron-hole symmetry, nitrogene is a wide band gap insulator.
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10.2.1 Structures

Among different possible geometries, the washboard structure of black phospho-

rene [140], which we adapted to nitrogene underwent an instability in the course

of structure optimization and dissociated into N2 molecules. Planar honeycomb

structure constructed from 2D hexagonal lattice with two nitrogen atoms in the

primitive cell is buckled in the course of structure optimizations; while nitrogen

atoms at three alternating corners of planar hexagon are displaced downwards,

the other three raised upwards with a buckling distance of ∆=0.7 Å. Fully op-

timized nitrogene structure is described in Fig. 10.9. To avoid possible artifacts

of single cell calculations, where reconstructions extending to few primitive cells

can be hindered and thus the structure may fictitiously appear stable, we also op-

timized the structure using (4×4) supercell providing higher degrees of freedom;

this ended with the same structure obtained from (1×1) single cell optimization.

Nitrogene structure has a nonmagnetic ground state. In the buckled honeycomb

structure, three spnα orbitals of nitrogene atoms having bond angle α = 99o

form covalent σ-bonds with three nearest N atoms and provide the strength of

nitrogene. Remaining two electrons on each nitrogen form spnβ orbitals with

relatively high p contribution, which ooze perpendicularly. They involve in π-

and π∗-like bonds with nearest atoms and ensure the layer geometry constructed
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from two parallel planes of nitrogen atoms. The single bonding of nitrogene is

illustrated by the isosurfaces of the total charge density in Fig. 10.9(a). Since the

optimized structure of nitrogene has a cohesive energy of EC=3.67eV/atom, its

formation energy relative to strong N2 molecule is -1.33eV. Accordingly, nitrogene

corresponds to a local minimum in the Born-Oppenheimer surface. Even if the

structure optimizations using CG favors stability of free standing nitrogene, we

perform further tests to assure that nitrogene is stable and can sustain application

above the room temperature.

10.2.2 Stability

In order to verify the stability of nitrogene against small frequency acoustic vibra-

tions and small transversal/longitudinal displacements in different directions, we

calculate frequencies of vibrational modes using a fine graded k-point sampling.

All calculated frequencies are positive ensuring the stability of nitrogene. The vi-

bration bands along the symmetry directions of BZ are presented in Fig. 10.9(b).

The optic branches are separated from acoustic branches, except at the K-point

where one optical branch touches the acoustic one. Even if all acoustic and ZA

branches with positive frequencies ensure stability, the optimized structure by

itself may correspond to a local shallow minimum and hence it may turn to be

unstable at a finite temperature. We clarified this critical situation by perform-

ing ab-initio MD calculations at 850K and 1000K. The stability is maintained

at 850K for 6ps, but at 1000K the crystalline structure was dissociated into N2

molecules as shown in Fig. 10.9(c). These MD calculations confirm at least the

stability above the room temperature. Furthermore, we calculated in-plane stiff-

ness to be C= 270 N/m2, which indicates the strong covalency of N-N bonds in

the buckled honeycomb structure. The calculated in-plane stiffness of nitrogene

can be compared with those of graphene (330 N/m2), h-BN (240 N/m2), silicene

(65 N/m2) and MoS2 (138 N/m2), all having single layer honeycomb structure.

Apparently, nitrogene marks an in-plane stiffness value, which is second highest

among these nanostructures.

Finally we address the question whether the stability is endangered by vacancy

defect, or by adsorption of single adatoms like H and O. We consider a single

vacancy periodically repeating in a 5×5 supercell of nitrogene, where the coupling
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Figure 10.10: Free nitrogene: (a) Electronic band structure, (b) total and s- and
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highlighted. The zero of energy is set to the top of the valence band.

with nearest defects is minute. Upon the optimization of atomic structure no

re-bonding took place between the two-folded nitrogen atoms surrounding the

vacancy and hence the structure remained symmetric. The atoms surrounding

the vacancy underwent a small relaxation, but a reconstruction observed in defect

graphene [151, 152, 133] did not occur in nitrogene. The N-N bond lengths of

the two-folded atoms reduce to 1.34 Å from their equilibrium value of 1.49

Å in pristine structure. The vacancy formation is endothermic with formation

energy EV=5.59eV. At the end, the defect structure remained stable by gaining

3 µB permanent magnetic moment per vacancy. The magnetic ground state of

the defect structure complies with Lieb’s theorem [153]. In addition, the buckled

honeycomb structure of pristine nitrogene is preserved with a minute deformation

at the close proximity of adsorbates such as H and O atoms that are adsorbed

with binding energies of 2.06eV and 3.20eV, respectively.

Even if the above analysis predicts stability, it does not mean that free standing

nitrogene can form by itself. Neither it can be exfoliated, since nitrogen does not
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have a layered allotrope like graphite. Nonetheless, nitrogene can be grown on

suitable substrates. Our stability analysis regarding the free standing nitrogene

so far supports the fact that the nitrogene layers grown on substrates can remain

stable. Although there are substrate surfaces which have lattice constants close to

that of nitrogene, we consider Al(111) surface to examine the interaction between

a reactive metal substrate and nitrogene. To compensate 7% lattice mismatch,

we compress Al(111) uniformly. The binding energy of nitrogene to the Al(111)

substrate is 190 meV/atom and consequently its spacing from the substrate is

large as illustrated in Fig. 10.9(d). Notably, the equilibrium binding energy of

fully relaxed nitrogene on graphene substrate is even weaker and 39 meV/atom.

A weak interaction with these substrates does not alter the properties calculated

for free nitrogene in the rest of the chapter. For example, the electronic structure

of nitrogene on Al(111) is not modified.

10.2.3 Electronic Properties

Nitrogene is a nonmagnetic insulator with a band gap of Eg=3.96eV. Because

of honeycomb structure, the bands originating from π- and π∗-like bonds cross

each other and form cones around the K-point. However, in contrast to graphene

and silicene, these π- and π∗-bands at the top of the valence band are filled,

since the corresponding bonds are saturated. Calculations carried out by HSE

show that the DFT band gap is underestimated by ∼ 2eV. Whereas the many

body corrections through GWo method overestimates the HSE band gap by 1.3

eV as seen in Fig. 10.10(a). The bands at the edges of conduction and valence

bands are composed of mainly 2p-valence orbitals of nitrogen. The bands at

the bottom of the valence band are dominated by 2s-orbitals. The charge density

isosurfaces of π- and π∗-bands at the edge of the valence band clarify the role of the

corresponding bonds in layer geometry. Since these bands are filled and separated

from the empty bands by a large gap, free standing nitrogene is chemically inert.

For example, H2 and O2 molecules can be bound by a weak vdW attraction of

89meV and 64meV, respectively. Single vacancy formation in nitrogene gives rise

to three filled spin-down states and three empty spin-up states. These states are

localized in the band gap and have a gap ∼ 0.4eV between them. The energy

position of these localized gap states and the resulting high magnetic moments

can be monitored by the decoration of vacancy in diverse patterns.
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Since finite size ribbons are used in various applications, their stability and

electronic properties become critical for the characterization of nitrogene. Here we

consider armchair and zigzag edge geometries, which are specified by the number

of nitrogen atoms n in their primitive unitcell. In Fig. 10.11(a) we show the

primitive unitcell of the armchair nanoribbon with n=22 and the corresponding

band structure with Eg=2.16eV direct band gap. The variation of Eg with the

width of the ribbon or n shows a family behavior, especially for small n. The

band gap Eg is small for low values of n, but it gradually increases with decreasing

coupling between edges for large n, and eventually saturates at Eg ∼ 2.2eV for

n >22. Two bands at the edge of valence and conduction bands (V and C) are

derived from the edge states as demonstrated by the band decomposed charge

density isosurfaces.

The edge atoms of the zigzag nanoribbon undergo a reconstruction. The

structure optimization using primitive unitcell with n atoms mandates a ficti-

tious, metallic structure. However, upon a Peierls type structural transforma-

tion, the metallic state changes to semiconductor. In Fig. 10.11(b) we present

reconstructed structure of zigzag nanoribbon with 2n=32 which is optimized in

the 2×1 unitcell. The corresponding band structure with Eg ∼0.76eV gap is con-

venient for 2D electronic application. However, the band gap varies with 2n; it is

small for low values of 2n, but increases and saturates to Eg=0.75eV for 2n > 32

as presented in Fig. 10.11(b). The charge density isosurfaces of V and C bands

clearly show that they are associated with edge states. Both armchair and zigzag

nanoribbons have nonmagnetic ground state; as an example the nonmagnetic

zigzag nanoribbon with 2n=32 is favorable than the magnetic state by 394meV.

In contrast to inert π- and π∗-bonds of nitrogene, the bonds of two folded atoms

at the edge of nanoribbons are chemically active and can form strong bonds

with foreign atoms. Upon the saturation of nitrogene at the edges by hydrogen

atoms, the bands associated with edge states are discarded and the DFT band

gap increases to ∼ 4eV for both armchair and zigzag nanoribbons.

10.2.4 Multilayers of Nitrogene

Not only single layer nitrogene, but also bilayer and its 3D graphitic phase con-

structed from the stacking of single nitrogene layers, namely nitrogenite are stable.
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Figure 10.11: Nitrogene nanoribbons: (a) Atomic configuration and the energy
band structure of the armchair nitrogene nanoribbon. Variation of band gap
with n and charge density isosurfaces of specific band states at the edges of
conduction(C) and valence(V) bands are shown. Energy bands calculated by HSE
are shown by dashed lines. (b) Same for zigzag nanoribbon, where calculations
are performed for 2×1 unit cell.
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The relative lateral displacement of adjacent nitrogene layers by r = (a1 + a2)/3

leads to minimum energy, AB stacking for bi-layer as well as ABAB... stacking

for 3D nitrogenite. Accordingly, three nitrogen atoms at the alternating corners

of a hexagon face similar nitrogen atoms of the adjacent layers, while the remain-

ing three nitrogen atoms face the centers of hexagons. This way the N-N bonds

in each nitrogene become staggered relative to ones in the adjacent layers. The

stacking geometry of layers described in Fig. 10.12 is reminiscent of graphene

stacking in graphite. In the same figure, the variation of total energy relative

to the spacing z between two layers is shown; the minimum energy occurs for

z=3.38 Å, and the binding energy of layers is weak and is only Eb= 10meV/cell.

However, owing to increased interlayer interactions from both sides, nitrogenite

has relatively higher binding energy relative to free standing nitrogene layers (or

exfoliation energy) Eb=98meV/cell and a relatively smaller interlayer distance of

z=3.26Å . The weak interlayer interaction exhibits predominantly a vdW charac-

ter. Consequently, bands of bilayer and nitrogenite are not affected significantly

by the weak coupling between adjacent nitrogene layers.
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10.3 Antimonene

Here we first examined the 3D bulk crystal of Sb having the trigonal lattice and

R3-mh space group, which display a pseudo layered atomic configuration as if it

is constructed by the stacking of the layers having buckled honeycomb structure.

Using structure optimizations based on conjugate gradient method we then re-

vealed two single-layer phases of Sb, namely buckled antimonene (B-antimonene

or simply B-Sb) similar to silicene and washboard antimonene (W-antimonene

or simply W-Sb) similar to black phospherene. While W-Sb is prone to long

wavelength instability, an asymmetric washboard structure (aW-antimonene or

simply aW-Sb) is found to have slightly lower energy. We carried out an extensive

analysis to ensure that B-Sb and aW-Sb single-layer structures are stable above

the room temperature. We examined the character of their bonding and inves-

tigated the effects of vacancy defects. We then characterized these phases, their

quasi 1D nanoribbons, bilayers and multilayers by calculating their mechanical,

electronic and magnetic properties. Furthermore we showed how these properties

deduced for suspended antimonene are modified when antimonene was grown on

substrates like germanene and Ge(111) surfaces.

10.3.1 3D Crystal of Sb

Antimony has a 3D crystal with trigonal lattice and (R3-mh) space group. Exper-

imental values[154] of this 3D crystalline phase structure are the cohesive energy,

EC=2.75 eV/atom and the trigonal lattice constants a=b=4.31 Å, c=11.27 Å, and

Sb-Sb bond distance 2.91 Å. Our calculated values obtained from full structure

optimization are EC=3.12 eV/atom, a=b=4.28 Å, and c=11.18 Å. In Fig. 10.13

(a), the atomic configuration together with the relevant structural parameters

are illustrated. This 3D bulk phase can be viewed as consisting of ABCABC

type of stacking of the single-layer structure. Each isolated single-layer can be

identified as a buckled honeycomb structure with three fold rotation axis passing

through the center of hexagons. Because of the ABC stacking, the Sb-Sb bonds

exhibit a staggered arrangement in the top view. The smallest interlayer spacing

between single layers is z=2.3 Å and hence it allows not only vdW attraction,

but also significant chemical interaction. This is clarified by the contour plots of

the total charge density on a plane including two atoms in different layers. In
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this respect, 3D Sb is different from graphite and MoS2, where interlayer binding

is mainly vdW attraction. Because of significant interaction between layers we

identify this 3D crystal as pseudo-layered. The calculated bands of the vibration

frequencies are presented in Fig. 10.13 (b). As shown in Fig. 10.13 (c), the phase

of antimonene crystal studied in this chapter is a metal. Corrections to DFT

band energies using HSE06 method confirmed the metallic state. Metallicity is

attained by strong coupling between adjacent layers of buckled honeycomb struc-

ture. The total and orbital projected densities of states in Fig. 10.13 (d) show

that 5p-like orbital states dominate the top of the valence band and the bot-

tom of the conduction band, whereas lower part of the valence band is derived

from 5s-orbitals. Pseudo layered character of the 3D Sb crystal has led us to

consider first the 2D single-layer, buckled honeycomb structure of Sb similar to

silicene.[155, 93]

10.3.2 Monolayer Antimonene

Considering the atomic structure of the layers in 3D bulk crystal in Fig. 10.13

(a), we performed structure optimizations including lattice constants using CG

method, and found that the suspended buckled honeycomb structure with 2D

hexagonal lattice can be indeed a candidate for a stable structure corresponding

to a local minimum on the Born-Oppenheimer surface. We specify this single-

layer structure as B-antimonene. To increase the degrees of freedom of structure

optimization using (1×1) primitive cells, we repeated the structure optimization

calculations using (4×4) supercells, which also ended with the same geometry and

cohesive energy. Incidentally, the planar honeycomb structure did not survive

after structure optimization despite its cohesive energy of 2.20 eV/atom.

B-antimonene structure has a cohesive energy of 2.87 eV/atom and formation

energy of -0.25 eV/atom relative to the 3D pseudo layered Sb crystal structure

(having R3-mh space group). In Fig. 10.14 (a), the atomic structure, 2D hexag-

onal lattice, the primitive unit cell and various relevant structural parameters

including bond angles, α and β are presented. In the B-antimonene structure,

the sp2-bonds of unstable planar honeycomb structure are rehybridized to main-

tain the stability through the buckling of ∆=1.67 Å, whereby the three spnα

orbitals of one Sb atom having the bond angle α = 89o with three nearest Sb
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Figure 10.14: 2D structures of antimony. (a)The equilibrium 2D crystalline struc-
ture of buckled honeycomb structure, i.e. B-antimonene, with hexagonal lattice.
The primitive unit cell has two Sb atoms. Optimized values of the structural pa-
rameters, such as lattice constants, bond lengths and bond angles are also shown.
Bonding between Sb atoms is depicted by the isosurfaces and contour plots of
the total charge density. ∆ is the buckling, where Sb atoms on the corners of
the hexagon alternatively move up and down. (b) Same for 2D, symmetric wash-
board structure, i.e. W-antimonene, having 2D rectangular lattice. Rectangular
primitive unit cell has four Sb atoms. In the side view one deduces two atomic
planes. (c) Same for 2D, asymmetric washboard structure, i.e. aW-antimonene,
with rectangular lattice. The primitive unit cell has four Sb atoms; single-layer
structure is composed of four atomic planes.
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atoms form covalent σ-bonds and provide the rigidity of antimonene. Remaining

two electrons on each Sb atom form spnβ orbitals with relatively high p contribu-

tion, which ooze perpendicularly. They are involved in the π- and π∗-like bonds

between the pairs of up and down Sb atoms in the primitive unit cell. In this

respect, unlike graphene and silicene, which have unsaturated metallic bonds, the

bonds of B-antimonene are saturated. The bonding of B-antimonene is illustrated

by the isosurfaces of the total charge density in Fig. 10.14 (a).

The mechanical properties of B-antimonene are characterized by its in-plane

stiffness, C = A−1
0 δ2ET/δε

2
T and the Poisson’s ratio, ν = −εx/εy, A0 being the

equilibrium area of the unit cell. The calculated values are Cx = Cy=41 N/m

and νxy=νyx=0.21. Apparently, the stiffness of B-Sb is much lower than that of

graphene (with C=350 N/m) or BN (with C=240 N/m), but comparable to that

silicene (with C=65 N/m2). Antimony being the fifth row element makes longer

but weaker bonds as compared to the second row elements.

The optimized atomic structure with relevant structural parameters and

the bonding of the single-layer, symmetric washboard structure, namely W-

antimonene are described in Fig. 10.14 (b). This structure has 2D rectangular

lattice like black phospherene and contains four Sb atoms in the primitive unit

cell. Its calculated cohesive energy and formation energy are 2.88 eV/atom and

-0.24 eV/atom, respectively. Like B-antimone, each Sb atoms are threefold coor-

dinated with in-plane Sb-Sb bond distance of 2.85 Å and interplanar Sb-Sb bond

distance of 2.88 Å. The corresponding bond angles are γ=91o and η=99o. Accord-

ingly, the single-layer W-antimonene consists of two parallel atomic planes. This

atomic configuration attributes directional elastic properties to W-antimonene,

namely Cx=14 N/m and νxy=0.42, but Cy=34 N/m and νyx=1.01.

The total energy of symmetric W-antimonene can be further lowered by 10

meV/atom, if one of two Sb atoms, which were located in either plane in the

primitive unit cell of symmetric W-Sb, are slightly displaced outwards and also

the lattice constants of the rectangular primitive cell are modified. This asymmet-

ric reconstruction takes place to prevent the structure from the long wave length

instability, as we discuss in the forthcoming sections. We specify the asymmet-

ric structure as aW-antimonene in the rest of the chapter. In Fig. 10.14 (c) we

describe the atomic structure of aW-Sb together with its relevant structural pa-

rameters and isosurfaces of total charge distribution. Similar to W-Sb, aW-Sb has
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strongly directional mechanical properties with Cx=12 N/m and νxy=0.36, but

Cy=29 N/m and νyx=1.20. High Poisson;s ratio is indigenous to the washboard

structure.

10.3.3 Stability

Rather high cohesive energies of optimized structures at T=0 K may not ensure

that 2D antimonene phases correspond to deep minima in the Born-Oppenheimer

surface. In fact, these 2D structures may undergo instabilities due to long wave-

length lateral/transversal displacements, as well as thermal excitations at high

temperatures. The most critical issue we have to clarify is whether these 2D

antimonene phases are stable and remain stable at high temperature. In order

to verify B-, W-, and aW-antimonene remain stable against low frequency acous-

tic vibrations inducing long wavelength transversal/longitudinal displacements in

different directions of the BZ, we calculated the frequencies of vibrational modes

using a fine grained k-point sampling. The vibrational bands including the ZA

band along symmetry directions of BZ are presented in Fig. 10.15(a)-(c). The

optical branches are well separated from the acoustic branches. All calculated

frequencies are positive ensuring the stability of B-antimonene. However, for the

symmetric W-Sb, the vibrational frequencies of specific branches becomes imag-

inary as k → 0 as shown in Fig. 10.15 (b). This indicates instability in W-Sb

structure for long wavelength acoustic vibrations. This instability has been re-

stored through the reconstruction of the atomic structure leading to aW-Sb, all

of its modes attained positive vibrational frequencies in Fig. 10.15 (c).

Even if the stability is assured through the positive frequencies of all vibrational

132



modes in BZ, the structure may correspond to a shallow local minimum on the

Born-Oppenheimer surface. Thus, the structure can be prone to instability at

finite temperature. Further to the calculations of vibrational frequencies, we

performed ab-initio MD calculations to test the stability at high temperature.

First, both structures remained stable at 700 K for 3 picosecond. Then the

temperature increased to 1000 K. Both B-Sb and aW-Sb structures remained

stable for ab-initio MD simulations lasting 2 picosecond at 1000 K. These MD

results indicate that both antimonene structures can maintain their stability at

least above the room temperature and hence the local minima corresponding to

these phases are deep enough to sustain their various applications above the room

temperature.

Next we address the questions of whether the stability of antimonene phases

are affected by vacancy defects. The isolated vacancy defects are treated b y

periodically repeating them in a 5×5 supercell of antimonene, whereby the cou-

pling with nearest defects is minimized. For single vacancy defect in B-Sb, three

two folded Sb atoms around the vacancy are relaxed and formed an equilateral

triangle, whereby the second nearest neighbor distance is reduced from 4.05 Å to

3.72 Å. Accordingly, the structure around the vacancy is squeezed, but remained

symmetric without re-bonding of surrounding atoms. This situation is in contrast

to the vacancy in graphene, where reconstruction or re-bonding of carbon atoms

surrounding the vacancy is observed. [151, 152, 133] The vacancy formation is an

endothermic process and the formation energy of the single vacancy in B-Sb is

5.03 eV. At the end, the defect structure remained stable by gaining permanent

magnetic moment µ=1.0 µB per vacancy. The single-vacancy defect in aW-Sb

displays similar behavior. Vacancy formation energy is relatively smaller and is

4.22 eV. Three Sb atoms surrounding the vacancy undergo a relaxation without

re-bonding. They form a triangle with edges of ∼ 3.60 Å. The single vacancy in

aW-Sb structure attained also a permanent magnetic moment of 0.6 µB per va-

cancy. Clearly, like B-Sb, the single vacancy defect does not cause any instability

in aW-Sb.
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10.3.4 Electronic Structure

We gain insight into electronic properties of antimonene phases. As shown in

Fig. 10.16 (a), B-antimonene is a nonmagnetic insulator with an indirect band

gap of 1.04 eV calculated within PBE approximation, which occurs between the

minimum of the conduction band along Γ −M direction and maximum of the

valance band at the Γ point. Calculations carried out by HSE show that the

DFT band gap is underestimated by ∼ 0.51 eV, hence this indirect band gap

increases to 1.55 eV after HSE correction. As shown by inset in Fig. 10.16 (a),

under the spin orbit coupling the degeneracies at the top of the valance band

are removed to split the bands further and the indirect band gap is reduced by

0.25 eV. Apparently, the bad gap of B-antimonene lies in the range, which is

convenient for several electronic applications. In this respect B-antimonene keeps

the promise of potential applications in 2D flexible electronics. The total and

s-, p- and d-orbital projected densities of states indicate that 5p orbital states

dominate the top of the valence and the bottom of the conduction bands. While

the contribution s-orbital states increases in lower parts of the valence band,
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d-orbital states contribute to the upper parts of the conduction band.

We also discuss the calculated electronic structure of symmetric W-antimonene

for the sake of completeness. In Fig. 10.16 (b), the indirect band gap occurs

between the minimum of the conduction band at Γ point and the maximum of

the valance band along the Γ −X-direction. The band gap is calculated within

the PBE approximation is found to be 0.37 eV, which increases to 0.84 eV after

HSE correction. In Fig. 10.16 (c), the band gap of the aW-antimonene decreases

to 0.16 eV upon asymmetric Sb-Sb bond formation. After HSE correction this

band gap increases to 0.34 eV. The direct band gap calculated by PBE increases

from 0.16 eV to 0.19 eV, when the spin orbit coupling is taken into account.

10.3.5 Multilayers

For single-layer structures like MoS2 it is known that the electronic properties

undergo to gradual changes when additional layers are stacked above the first

layer. To reveal whether similar changes can occur in antimonene, we investigated

bilayer and trilayer structures of B-Sb. Furthermore, we explored whether the

multilayer structure may be the precursor for the 3D graphitic structures or they

can be associated with the thin slab of the 3D bulk crystal. The total energies of

the bilayer and trilayer are calculated as a function of the interlayer distance z.

For each value of z the atomic positions and lattice constants are optimized. In

Fig. 10.17 (a) we show the variation of the total energy as a function of z. In the

same figure is shown also the minimum energy AB stacking of B-antimonene single

layers, whereby the B-layer is displaced by r = (a+b)/3 relative to the adjacent

A-layer. The equilibrium spacing is found to be z=3.81 Å, which is approximately

30% longer than the Sb-Sb bonds. The binding energy in equilibrium is 333 meV

per cell or ∼ 83 meV/atom. This binding energy is also confirmed by calculating

the difference of the total energies of the free B-Sb single-layer and of the bilayer

from the expression, Eb = ET [B − Sb]/2 − ET [bilayer]/4. The binding energy

is composed of vdW and chemical interactions between two layers. However,

the chemical interaction leads to significant changes in the electronic structure of

bilayer. Specifically, the semiconducting, single-layer B-antimonene changes into

a metal when two of them are AB stacked to form a bilayer as shown in Fig. 10.17

(b).
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In the trilayer the interlayer interaction is relatively stronger and is calculated

to be 0.7 eV per cell or ∼ 117 meV/atom, since the middle layer is capped

from both sides. This is reflected to the equilibrium interlayer separation, which

is calculated to be z=3.65 Å. It is 0.16 Å smaller than that of bilayer. The

variation of the structure optimized total energy as a function of z is presented

by the black (dark) curve in Fig. 10.17 (c). The ABC stacking is found to be the

most energetic stacking. Decreasing the interlayer separation of the trilayer z from

equilibrium value requires to overcome an energy barrier of 1.35 eV. Thereafter, a

structural transformation takes place, where the interlayer separation is reduced

suddenly to z=2.5 Å and the total energy drops to a second minimum. In this

transformation, the ABC stacking changes to either AAA or ABA stacking. The

energy difference between these two different stacking geometries is minute; their

binding energies approximately 113 meV/atom stronger than that in the first

minimum. Similar structural transformation is explored for multilayers, which

are treated by a periodically repeating structure with ..ABCABC.. stacking as in

the 3D pseudo layered bulk crystal in Sec.III. Here the structure optimized total

energy is calculated as a function of the interlayer spacing, z ranging from z=15

Å to z=2 Å. As shown with the red curve in Fig. 10.17 (c), this periodic structure

has a single minimum at z=2.37 Å with the binding energy of 3.40 eV per cell;

it is identical to the 3D pseudo layered structure. Accordingly, the single-layer

B-antimonene does not construct a 3D graphitic structure with wide interlayer

spacing, it rather replicates 3D pseudo layered bulk crystal as the number of

antimonene layers increases. The electronic structure of the trilayer with z=3.65

Å is similar to that of bilayer and displays a metallic character in Fig. 10.17 (d)

In the bilayer of aW-antimonene, the AA stacking attains the minimum energy.

The equilibrium interlayer separation occurs at z=3.42 Å and the binding energy

is 83 meV as shown in Fig. 10.17 (e). Similar to the bilayer of B-antimonene,

the electronic structure exhibits a metallic character with bands crossing at the

Fermi level along the Γ− Y direction in Fig. 10.17 (f).

10.3.6 Antimonene on substrates

Since suspended single layers cannot form by itself, they can be grown on suit-

able substrates. Under these circumstances, the substrate-antimonene interaction
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becomes crucial and may affect the properties revealed for the suspended single-

layers. To explore to what extent the properties of grown layers are influenced

we investigated binding energy and electronic band structure of B-Sb grown on

germanene and Ge(111) substrates, which are nearly lattice matched.

The atomic structure of B-Sb grown on germanene with AA and AB stacking

has been optimized. As shown in Fig. 10.18 (a), we found that AB stacking is

favorable energetically and has binding energy 250 meV per Sb atom. The equi-

librium separation between Sb and Ge layers is z=3.01 Å. This material consisting

of two single-layer honeycomb structures is a metal due to a significant interlayer

coupling as shown in Fig. 10.18 (b). The comparison made between TDOS of free

B-Sb and DOS projected to B-Sb grown on germanene in Fig. 10.18 (c) clearly

indicates the influence of germanene substrate . The stability and significant in-

teraction between germanene and antimonene suggests that composite materials

derived from lateral stacking of (B-Sb)p/(Germanene)q (p and q denote the num-

bers of layers) or their periodic alternation can be fabricated to achieve diverse

functionalities. Notably, owing to significant interlayer chemical interaction this

composite structure is rather different from van der Waals heterostructures.

As an alternative substrate, the Ge(111) surface is considered, which is mim-

icked by a slab of bulk Ge consisting of three (111) atomic planes. The top and

side views of the optimized atomic structure of B-Sb on the Ge(111) substrate

are shown by insets in Fig. 10.18 (d), where the optimized total energy versus the

spacing between Ge(111) and B-Sb is also presented. The binding energy is 400

meV per Sb atom, and the equilibrium separation is 2.37 Å. The energy bands

corresponding to the equilibrium structure of B-antimonene grown on Ge(111)

is metallic in Fig. 10.18 (e). The total and projected densities states and their

comparison with the total density of states of free B-Sb single-layer in Fig. 10.18

(f) clearly indicates significant substrate effects on the properties of antimonene.

In particular, high density of states of grown Sb layer at the Fermi level is noted.

While Ge and germanene engaged in significant interaction with the grown B-Sb

and they modified its electronic band structure, there might be substrates, which

do not affect the properties of grown antimonene phases.
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10.4 Nanoribbons

Since finite size ribbons or patches of antimonene shall be used in various ap-

plications, their stability and electronic properties become relevant for the char-

acterization of antimonene phases. Here we consider armchair and zigzag edge

geometries, which are specified by the number of Sb atoms, n in their prim-

itive unitcell. In Fig. 10.19(a) we show the primitive unitcell and optimized

atomic structure of the B-antimonene armchair nanoribbon with n=22 and the

corresponding electronic energy band structure. Relaxations occur mainly at the

edges. B-antimonene nanoribbon has nonmagnetic ground state. Two bands,

each located at the edge of valence and conduction bands (V and C, respectively)

delineate the band gap in the momentum space. They are derived from the states

localized at the edges as demonstrated by band decomposed charge density iso-

surfaces. The PBE indirect band gap is calculated to be Eg=0.218 eV, which

increases to Eg=0.574 eV after HSE correction. The variation of the PBE band

gap Eg with the width of the ribbon or n is also shown.

Since the edge atoms of the zigzag B-Sb nanoribbon undergo a reconstruction,

the structure optimization using the primitive unitcell with n atoms mandates a

fictitious, metallic structure. However, upon a Peierls type structural transforma-

tion in the 2×1 cell, the metallic state changes to ferromagnetic semiconductor.

Because of reconstruction the structure optimization and energy band structures

are performed using the 2×1 unit cell. The atomic configuration, energy band

structure, charge density isosurfaces of specific states of the zigzag B-Sb with

2n=32 are presented in Fig. 10.19 (b). The variation of the band gap with 2n is

also given in the same figure. The small energy gap between filled spin up and

empty spin down bands is calculated within PBE to be Eg=0.200 eV. Upon HSE

correction this band increases to 0.872 eV. Isosurfaces of charge density of specific

states at the band edges demonstrate that they are constructed predominantly

from the orbitals of edge atoms. Hence these states are localized at the edges of

the nanoribbon. The PBE band gap is ∼ 0.1 eV for 2n=20, but increases to 0.23

eV for 2n=40.

In Fig. 10.20 (a) we present atomic configuration, electronic band structure of

armchair and zigzag nanoribbons of aW-antimonene. The armchair nanoribbon

with n=22 is a nonmagnetic semiconductor with a PBE band gap of 0.20 eV,
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which increases to 0.37 eV after HSE correction. Isosurfaces of the selected states

at the band edges illustrate the contribution of the edge atoms. The PBE bands

vary between 0.1 eV and 0.33 eV depending on the values of n. The zigzag

nanoribbon of aW-Sb is treated in 2×1 unit cell due to edge reconstruction. For

2n=32 the zigzag nanoribbon is a metal. However, the character of the ribbon

appears to strongly depend on its width. Depending on the values of 2n, the

zigzag nanoribbon of aW-Sb can exhibit diverse properties, such as metallic,

semimetallic, half-metallic and semiconducting, as shown in in Fig. 10.20 (b).

10.5 Summary

In this chapter, we focus on new material design and prediction using first prin-

ciples calculations. We first investigated silica or SiO2, the main constituent of

earth’s rocks which has several 3D complex crystalline and amorphous phases,

but does not have a graphite like layered structure in 3D. Our theoretical analysis

and numerical calculations predicts that a single-layer honeycomb like allotrope,

hα-silica, can be derived from the oxidation of silicene and it has intriguing atomic

structure with re-entrant bond angles in hexagons. It is a wide band gap semi-

conductor, which attains remarkable electromechanical properties showing ge-

ometrical changes under external electric field. In particular, it is an auxetic

material with negative Poisson’s ratio and has a high piezoelectric coefficient.

While it can form stable bilayer and multilayer structures, its nanoribbons can

show metallic or semiconducting behavior depending on their chirality. Coverage

of dangling Si orbitals by foreign adatoms can attribute new functionalities to

hα-silica. In particular, Si2O5, where Si atoms are saturated by oxygen atoms

from top and bottom sides alternatingly can undergo a structural transformation

to make silicatene, another stable, single layer structure of silica.

In the following section, we predict that nitrogen can form single layer, buck-

led honeycomb structure called nitrogene, which is rigid and stable even above

the room temperature. This 2D crystalline phase of nitrogen is a nonmagnetic

insulator and rather inert due to the saturated π-bonds. Its zigzag and armchair

nanoribbons have fundamental band gaps derived from reconstructed edge states.

These band gaps are tunable with size and suitable for the emerging field of 2D

electronics. Nitrogene forms not only bilayer, but also 3D graphitic multilayer
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structures. When grown on a substrate like Al(111) surface and graphene, nitro-

gene binds weakly to substrates and hence preserves its free standing properties,

but it can easily be pealed off.

Similar to nitrogen, the pseudo layered character of 3D bulk crystal of anti-

mony (Sb films) has led us to predict its 2D single-layer crystalline phase named

as antimonene in buckled honeycomb structure like silicene. Sb atoms also form

asymmetric washboard structure like black phospherene. Based on an extensive

analysis comprising ab-initio phonon and finite temperature molecular dynamics

calculations, we show that these two single-layer phases are robust and can re-

main stable at high temperatures. They are nonmagnetic semiconductors with

band gaps ranging from 0.3 eV to 1.5 eV, and are suitable for 2D electronic ap-

plications. The washboard antimonene displays strongly directional mechanical

properties, which may give rise to strong influence of strain on the electronic prop-

erties. Single-layer antimonene phases form bilayer and trilayer structures with

wide interlayer spacings. In multilayer, this spacing is reduced and eventually

the structure changes to 3D pseudo layered bulk crystal. The zigzag and arm-

chair nanoribbons of the antimonene phases have fundamental band gaps derived

from reconstructed edge states and display diversity of magnetic and electronic

properties depending on their width and edge geometry. Their band gaps are

tunable with the widths of the nanoribbons. When grown on substrates, such

as germanene or Ge(111), the buckled antimonene attains significant influence of

substrates.
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Chapter 11

Conclusions

This thesis was dedicated to investigation of the electronic, mechanical and op-

tical properties of honeycomb-like monolayer structures for understanding the

fundamental laws of physics at nanoscale and utilizing them for designing new

device models. Our explorations follow three main routes; utilizing formerly

known materials for new device design and characterizing their properties, ex-

plaining experimental observations present in the literature by means of first

principle quantum mechanical calculations and discovering new stable monolayer

materials which do not exist in nature.

In the first part of the thesis, graphene / boron nitride heterostructures were

investigated. First, in Chapter 3, the growth mechanism of epitaxial graphene on

boron nitride was revealed. Although experimental procedures for synthesizing

boron nitride on graphene was known, the atomistic mechanisms taking place

during the epitaxial growth and nucleation of graphene growth was missing. Here

we showed that there are two mechanisms which play crucial roles in the growth

of graphene. First mechanism is the formation of large carbon rings at the edges

which eventually collapse to form honeycomb structure with defects. This collapse

is found to be initiated by the new coming carbon atoms which replace one of

the bonds in the ring, and expands it until the critical size is reached. Second

mechanism is the formation of pentagon-heptagon defects near the edge and their

healing. We have shown that the energy barrier needed to overcome during the
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healing of the pentagon-heptagon defects are much lower than that of the Stone-

Wales defects. We have shown that the presence of a BN or Ni substrate have

crucial effect on growth. These substrates guide the formation of honeycomb

structures from carbon rings and enable the healing of specific defects as growth

proceeds. We also studied graphene growth using carbon dimers as building

blocks and found that defect formation is less frequent as compared to growth

with monomers.

Using the vertically grown graphene / boron nitride heterostructure, we pro-

posed and characterized a nanoscale capacitor model in Chapter 4. In this model

we showed that by applying electric field to vertically stacked graphene / BN

layers, it is possible to create a charge separation between the metallic graphene

plates. We then calculated the stored charge, energy and potential difference

between the metallic layers and showed that this model has a high gravimetric

capacitance value in the range of supercapacitors. More interesting results were

obtained when we compared this model with the classical Helmholtz capacitor

model. We showed that as the size of our model increased, it started to act ex-

actly like a classical capacitor, however due to the quantum mechanical effects at

small separations, the nano-capacitor acted differently and gave high capacitance

values. Thus, by an immediate application of density functional theory on our

model, we were able to observe how quantum mechanical effects become domi-

nant as we go into nanoscale. Furthermore, one year after publishing our results,

these findings were further confirmed by a following experimental study [17].

Similar to vertical heterostructures, we also studied lateral graphene / boron

nitride composites and their applications as a nanoscale planar capacitor in Chap-

ter 5 and 6. Our study fills an important gap in this field regarding the size

dependence of the electronic properties of Graphene/BN composites consisting of

planar stripes of each. Although there are various studies in the literature about

graphene / BN heterostructures, a systematical study graphene/BN composite

stripes and the dependence of their properties on geometrical modifications were

missing. We revealed 1D, as well as 2D aspects together with the transition be-

tween 1D to 2D. We showed important features of the 2D aspect, which was absent

before. We presented an extensive analysis of electronic structure for laterally re-

peating (periodic) graphene/BN heterostructures with varying widths which is

essential for the understanding of these heterostructures and their applications.
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The concept of δ-doping and its dramatic effects to modify the electronic struc-

tures has been introduced to in-plane heterostructures for the first time. Charge

separation in Graphene/BN/Graphene nanoribbons under the external in-plane

electric field was explained which leads to planar nanoscale dielectric capacitors.

The proposed planar nanoscale model which allows diverse parallel, series and

mixed combinations to achieve desired values of charge separation, energy stor-

age and potential difference values can be fabricated in the same plane of micro

or nano-circuits for crucial electronic applications.

Apart from their planar honeycomb geometries, carbon and boron nitride com-

posite nanustructures were further investigated in one dimension in the form of

short atomic chains in Chapter 7. We revealed the growth mechanism of carbon

and BN atomic chains on single layer honeycomb structures. We found that with

the inclusion of each new carbon atom, the existing atomic chain consisting of

n carbon atom leaves its previous position to join with the new carbon atom to

from a chain of n+1 carbon atom. These growth processes were simulated by ab-

initio molecular dynamics calculations at various temperatures and the resulting

chain structures were shown to be stable even though they are free to bend and

slightly tilt. The growth of atomic chains on the single layer honeycomb structures

heralds a self-assembly process, which may have fundamental and technological

implications. The grown chains by themselves, exhibit interesting physical and

chemical properties depending on the number of atoms forming the chain and

the type of chain atom attaching to the substrate. In particular, the physical

properties of even numbered and odd numbered carbon chains can behave dif-

ferently leading to interesting even-odd disparity. We also showed that atomic

chains grown on single layer substrates attribute useful functionalities to bare

h-BN and graphene. These properties are dependent on the number of carbon

atoms in the chains. Apart from creating localized electronic states in the band

gap and local magnetic moments it is demonstrated that carbon chains can also

be used for increasing the interlayer spacing between BN flakes, where specific

molecules can be stored.

Originating from the chain structures, in Chapter 8 we described new two

dimensional allotropes of carbon and boron nitride atoms, namely α-graphyne

and α-BNyne. By performing both phonon frequency and finite temperature

molecular dynamics analysis, we showed that both α-graphyne and α-BNyne are

stable structures for even chains, but unstable for odd chains. We also calculated
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the electronic structures for each of these materials and showed that α-graphyne

structures have Dirac cones and their Fermi velocities decrease with increasing

size. It is also implied that, all atoms being chemically equivalent is not a pre-

requisite for the existence of Dirac cones in the electronic structure. Upon hydro-

genation, the Dirac cones are replaced by a large band gap. Since the formation of

a single hydrogen vacancy renders a magnetic moment of 1 µB, magnetic nano-

materials can be designed by creation of domains of hydrogen vacancies. Our

calculations of mechanical properties revealed α-graphyne and α-BNyne are not

as stiff as graphene and the single layer h-BN, but they are strong enough to

sustain the technological applications.

In Chapters 9, we diverge from graphene / boron nitride compounds to inves-

tigate other similar honeycomb-like structures which form the the second major

part of the thesis. In the literature, one of the interesting experimental result that

lacked theoretical explanation was the formation of layered silicene on certain

substrates, which is crucial for future silicon technology. Although experimen-

tal observations made in several different research groups proved the existence

of layered silicene; the mechanisms behind this layered structure was unknown.

To this end, the new dumbbell structure of silicon atoms explained in Chapter

9 explained these experimental results. The dumbbell unit of silicon revealed

in this theses is a cage-like orientation of silicon atoms in tetrahedral geometry,

and form the building blocks of multilayer silicene. By covering the substrate

with appropriate amounts and orientations of dumbbells; it becomes possible to

obtain layered silicene. Our optimized layered silicene constructed from dumb-

bells match well with experimental results and explains the experimental data.

Interestingly, it turns out that dumbbells exist not only on silicene, but also on

other monolayer structures such as germanene, graphene and silicon-carbide.

In Chapter 10, we focus on new material design based on first principle simu-

lations. First, we revealed a new honeycomb-like two dimensional material which

forms after the oxygenation of silicene. We showed that a single oxygen atom

can easily penetrate the silicene monolayer, but when silicene is bombarded with

massive amounts of oxygen, single O atoms stay between the Si atoms, buckle

the structure further and finally stabilize in a new orientation. We proved the

stability of this new structure, which we name as silicatene, by means of ab-initio

molecular dynamics calculations, phonon curves and total energy calculations.
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Silicatene turns out to be a wide band gap semiconductor, which attains remark-

able electromechanical properties showing geometrical changes under an external

electric field. In particular, it is a material with a negative Poisson’s ratio and

has a high piezoelectric coefficient. The existence of this material was also con-

firmed by recent experimental studies, in which monolayer silicatene was grown

on ruthenium surfaces covered by silicon carbide.

In the final section we focused on other possible two dimensional allotropes

composed of Group V elements nitrogen and antimony, investigated various differ-

ent 2D allotropes of these elements and revealed their stable forms using phonon

calculations and molecular dynamics simulations at high temperatures. We pre-

dict that nitrogen can form single layer, buckled honeycomb structure called

nitrogene, which is rigid and stable even above the room temperature. This 2D

crystalline phase of nitrogen is a nonmagnetic insulator and rather inert due to

the saturated π-bonds. Its zigzag and armchair nanoribbons have fundamental

band gaps derived from reconstructed edge states. These band gaps are tunable

with size and suitable for the emerging field of 2D electronics. Nitrogene forms

not only bilayer, but also 3D graphitic multilayer structures. When grown on a

substrate like Al(111) surface and graphene, nitrogene binds weakly to substrates

and hence preserves its free standing properties, but it can easily be pealed off.

Results of our ab-initio simulations and NEB[33] calculations suggest that nitro-

gene can nucleate at the edges of nitrogene and h-BN seeds. When grown on

substrates, nitrogene interacts weakly even with reactive metal substrates and

maintain the properties of free nitrogene. Similar analysis was also performed

for monolayer structure of Sb atoms, resulting in a stable structure called anti-

monene.

Finally, this thesis reveals new fundamental properties of honeycomb struc-

tures, nanoscale device models and material predictions from ab-initio calcula-

tions. We hope our predictions and computational results presented in this thesis

will be further confirmed by experimental studies in the near future
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[137] V. O. Özçelik and S. Ciraci, “Self-assembly mechanisms of short atomic

chains on single-layer graphene and boron nitride,” Phys. Rev. B, vol. 86,

p. 155421, 2012.

[138] D. Kaltsas and L. Tsetseris, “Stability and electronic properties of ultra-

thin films of silicon and germanium,” Phys. Chem. Chem. Phys., vol. 15,

pp. 9710–9715, 2013.

[139] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen,

and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotech.,

vol. 9, no. 5, pp. 372–377, 2014.
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