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Ayşe Ferhan Yeşil
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ABSTRACT

ANALYSIS OF NONEQUILIBRIUM STEADY-STATES

Ayşe Ferhan Yeşil

Ph.D. in Physics

Advisor: Mehmet Cemal Yalabık

November 2016

Non-equilibrium is the state of the almost all systems in the universe. Unlike

equilibrium systems, they interfere with their surroundings which results in never

ceasing fluxes. There is no unified theory to understand these systems, since their

complexity have no bounds. However, there is a restricted subset of them, namely

a steady state, in which system maintains constant fluxes and its macroscopic

observables are not changing in time. Majority of the non-equilibrium problems

that the scientific community is interested in comprise systems at steady states or

the way such systems relax to steady states, due to their relative ease of analysis.

Steady states of Totally Asymmetric Simple Exclusion Processes (TASEPs)

are the main focus of this dissertation. We analyze them through Monte Carlo

(MC) simulations. The technique is basically a computational experiment done by

utilizing random numbers. Performing a computational experiment is a natural

way to study these systems since most of the time they are still too complex to

have analytical solutions.

We present MC simulation results of our studies on the response of TASEP

steady states to sinusoidal boundary oscillations. Typically over-damped systems,

such as TASEPs, give monotonous frequency response to sinusoidal driving. How-

ever, there are exceptions to these all which draw significant attention from the

community, e.g., stochastic resonance. We report a novel resonance phenomena

on over-damped systems. We present our results in two different but related

works.

In our first work, we study the motion of shock profiles of TASEP with single

class of particles under oscillatory boundary conditions using MC analysis. We

also model its dynamics as a Fokker-Planck (FP) system, which incorporates a

retarded-oscillatory force with a static single well potential. We solve the FP

system by numerical integration. We showed that amplitudes of statistical quan-

tities in both of these systems, (e.g., average position), display resonant effects

and their results are qualitatively very similar.
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In our second work, we showed that by periodically manipulating the bound-

ary conditions of TASEP with two classes of particles, we can achieve otherwise

unreachable states of the system by the same parameters. We also report the

hysteresis behavior in the same system, existence of which leads to the identifi-

cation of typical velocity of the system. All these phenomena are the results of

resonant response of the particle number density of the system.

Keywords: Non-equilibrium systems, steady states, ASEP, Fokker-Planck Equa-

tion, Resonance, Over-damped systems.



ÖZET

DENGEDE OLMAYAN DURAĞAN DURUMLARIN
ANALİZİ

Ayşe Ferhan Yeşil

Fizik, Doktora

Tez Danışmanı: Mehmet Cemal Yalabık

Kasım 2016

Doğadaki hemen her sistem dengede olmayan sistemdir. Dengede olan sistem-

lerin aksine, bu sistemler daimi bir madde veya enerji akışı oluşturacak şekilde

çevreleriyle etkileşirler. Karmaşıklıklarının bir üst sınırı olmadığından hepsini

bir çatı altında birleştirecek bir teori de yoktur. Bu sistemlerin karmaşıklığının

daha kısıtlanmış bir hali olan durağan durumlarda ise sistemdeki akış sabit-

tir ve sistemin gözle görülebilen özellikleri zaman içinde değişmez. Analiz et-

menin kolaylığı nedeniyle, araştırmacıların ilgilendiği dengede olmayan sistemler

çoğunlukla ya durağan durumdadır ya da durağan duruma gelmeye çalışıyordur.

Tezimin merkezinde durağan durumdaki tamamen asimetrik basit dışlama

süreçleri (TASEP) var. Bu sistemleri biz Monte Carlo simülasyonları ile analiz

ettik. Bu teknik temel olarak rastgele sayıları kullanarak yapılan bilgisayar

deneyidir. Çoğu zaman bu sistemler analitik olarak çözülebilmek için çok

karmaşık olduğundan onları bilgisayarlı deneyler yaparak anlamaya çalışmak

sıklıkla kullanılan bir yöntemdir.

Biz TASEP durağan durumunun sinüs biçimli sınır koşullarına olan tep-

kisinin MC simülasyonu ile elde edilen sonuçlarını sunuyoruz. Alışıla geldik

haliyle frekans bakımından TASEP gibi aşırı-sönümlü sistemlerin sinüs şeklindeki

sürülmelere tepkisi tekdüzedir. Ama bunun dışında kalan olasılıksal (stokastik)

rezonans gibi bilim insanların ilgisini oldukça fazla çekmiş örnekler de bulunur.

Biz de aşırı sönümlü sistemlerde yeni bir rezonans olgusunu bildiriyoruz. Bununla

ilgili sonuçlarımızı biribirinden farklı ama birbirleriyle alakalı iki iş halinde

sunacağız.

İlk işimizde tek tür parçacık bulunduran TASEP sistemine ait şok yapılarının

sinüslü yapıda sınır koşulları altındaki hareketini MC yöntemiyle analiz ettik.

Aynı zamanda bu sistemin dinamiklerini bir tek çukurlu durgun potansiyeli ve

bir de rötarlı sinüs yapıda kuvveti olan aşırı-sönümlü Fokker-Planck (FP) sistemi

olarak da modelledik. Bu FP sistemini nümerik integral alma yoluyla çözdük.
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Gösterdik ki iki sistemde de bulunan ortalama konum gibi kimi istatistiksel

nicelikler rezonans özellikleri sergilemekte ve iki sistemin sonuçları birbirlerine

oldukça benzemektedir.

İkinci işimizde ise iki türde parçacık bulunduran TASEP sisteminin sınır

koşullarına periyodik şekilde müdahale ederek aynı değişkenlerle başka türlü elde

edemeyeceğimiz durumlara ulaşabilmenin mümkün olduğunu gösterdik. Aynı

sistemin histeresis davranışı, ki sayesinde sistemin kendine özgü hızını tespit ede-

bildiğimiz davranıştır bu, gösterdiğini bildirdik. Tüm bu bahsi geçen olgular sis-

temin içindeki parçacık sayısının rezonans davranışı sergilemesinin sonucu olarak

ortaya çıktı.

Anahtar sözcükler : Dengede olmayan sistemler, durağan durum, ASEP, Fokker-

Planck Denklemi, Rezonans, Aşırı Sönümlü Sistemler.



Acknowledgement

To my beloved family, my dearest friends, my boyfriend and especially to my

mother.

I am indebted to my advisor for his patience, care and endless motivation of

sharing his knowledge with me. And I am also indebted to Department of Physics

for their support during my PhD.

vii



Contents

1 Fundamentals 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Equilibrium Statistical Mechanics . . . . . . . . . . . . . . . . . . 4

1.2.1 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Non-equilibrium Statistical Mechanics . . . . . . . . . . . . . . . . 9

1.3.1 Near-Equilibrium Systems . . . . . . . . . . . . . . . . . . 9

1.3.2 Aging Systems . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Far from Equilibrium Systems . . . . . . . . . . . . . . . . 11

1.3.4 Steady States . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.5 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The Model: Asymmetric Simple Exclusion Process . . . . . . . . . 15

1.4.1 Definitions and general properties . . . . . . . . . . . . . . 15

1.4.2 Universality class, hydrodynamic limit and mappings of

ASEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 First order phase transitions: Shock profiles 30

2.1 Single Class of Particles . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Shock Profile . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Two Classes of Particles . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Shock Profile . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



CONTENTS ix

3 Methodology 43

3.1 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Monte Carlo Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Kinetic Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . 48

4 Original Work 52

4.1 Strong Frequency Dependence in Over-damped Systems . . . . . . 52

4.1.1 Analysis and Discussions . . . . . . . . . . . . . . . . . . . 55

4.2 Dynamical Phase Transitions in TASEP . . . . . . . . . . . . . . 68

4.2.1 TASEP under Periodically Driven BC . . . . . . . . . . . . 70

4.2.2 Variations in the character of Frequency Dependence . . . 70

4.2.3 Pulse Response . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusions 85



List of Figures

1.1 Detailed balance (a) vs steady state (b). Even though in both of the

cases probability of A,B,C are all equal (when all ω’s are equal) and

one third, in the steady state there is always a probability current in

the clockwise direction. So steady state is a weaker condition than the

detailed balance and it carries the condition of non-equilibrium systems,

that is, non-vanishing currents. . . . . . . . . . . . . . . . . . . . . 3

1.2 These are common schematic diagrams of free energy for first and sec-

ond order phase transitions. Each well in the free energy corresponds

to an ordered state. Tt corresponds to the tuning parameter of the

transition, and Tc corresponds to the critical tuning parameter. . . . 8

1.3 ASEP dynamics on periodic and open boundary conditions. . . . . . 16

1.4 Each surface with −π/4 degree slope maps to occupied site and with

+π/4 degree slope maps to a vacancy. Red lines indicates how hopping

of ASEP particles will change the texture of the surface. After the

hopping, slope of the occupied site becomes −π/4, and the vacant site

becomes +π/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Lattice sites in ZRP mapped to vacancies in ASEP, and particles

mapped to adjacent occupied sites on the left of the vacany their site

mapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 One species, open boundary TASEP model. . . . . . . . . . . . . . 31

2.2 Phase diagram of TASEP with single species, with open boundary con-

ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

x



LIST OF FIGURES xi

2.3 Shock profile for different numbers of particles in a lattice of 50 sites.

i indicates the site, ρn(i) indicates the density profile that corresponds

to the n number of particles. . . . . . . . . . . . . . . . . . . . . . 36

2.4 Schematic description of TASEP with two species of particles under

open boundary conditions. . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Mean field phase diagram of TASEP with two types of particles. Here

α1 = α2 = α, β1 = β2 = β and γ1 = γ2 = δ = 1. . . . . . . . . . . . . 38

2.6 Schematic density vs lattice plot for TASEP with two classes of parti-

cles. In the left box the lattice is in TR phase. However on the right

box it is in HL phase. It displays that these two phases can coexist. . 41

2.7 Schematic density vs lattice plot for TASEP with two classes of parti-

cles. First-class particles display the shock profile, for various numbers

of particles in the lattice. Whereas, the second-class particles remains

in low density state (LD). . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 First Fourier components that give the magnitude of the oscillatory

response (as the expectation value of the position) of the system

as a function of wavelength. Each plot corresponds to different

values of boundary smoothness x0/L. Dotted line corresponds to

the cosine (C) or out of phase component and continous line cor-

responds to the sine (S) or in phase component. Notice here that

the scales of the plots are not equal. . . . . . . . . . . . . . . . . . 57

4.2 The probability densities of marked points in Fig. 4.1. (a) Point

A (λ = 0.6) accounts to consecutive dark and light patterns along

the x-axis, which indicates standing waves of two wavelengths that

fits to the lattice size. (b) Point B (λ = 1.6) accounts to only one

wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Shock profile distributions for various numbers of particle number. 60

4.4 The linear relationships between particle number n and shock posi-

tion xs for the profiles in Fig. 4.3. The shock position xs is defined

as the lattice position at which the density ρn(i) corresponds to

the midpoint of the profile. The inset displays the relationship

when boundary conditions change sinusoidally with period τ as

discussed in the text. Here N = 50 and τ = 120. . . . . . . . . . . 62



LIST OF FIGURES xii

4.5 Probability distribution P (n) of particle number n., for a lattice

size of N = 50 and α = β = 0.1. . . . . . . . . . . . . . . . . . . . 63

4.6 Response of the probability distribution function P (n) to a pulse

type perturbation to the entrance rate. The arrows shows the

maxima of the curves. See text for the details. . . . . . . . . . . . 64

4.7 Change in probability density ρ(n, t) from its time average. Point

a and b are marked in Fig. 4.2. (a) Point a (τ = 140) accounts to

two wavelengths. (b) Point b (τ = 700) accounts to one wavelength

of the system. Simulations are carried out for N = 50 and different

periods calculated over 106 MCS. . . . . . . . . . . . . . . . . . . 67

4.8 Fundamental components (C and S in Eqn. 4.8) with respect to

different period values. It is apparent that the response of the

system has resonance like structure. Points a and b correspond

to the density distributions in FIG. 4.7. Inset shows there is also

sinusoidal behavior present for smaller values of τ . . . . . . . . . . 67

4.9 Joint probability density functions p(n1, n2) for various paramaters un-

der constant BC. Exit rates for the plot (a) are β1 = β2 = 0.285, for the

plot (b) are β1 = β2 = 0.275, and for the plot (c) are β1 = β2 = 0.265,

and for the plot (d) they are asymmetric as β1 = 0.265 and β2 = 0.285.

For all of the graphs the rest of the rates are equal to 1. . . . . . . . 68

4.10 Various shock profiles in a system size of N = 100. Time-independent

boundary rates are α1 = α2 = 1 and β = 0.2675. . . . . . . . . . . . 69

4.11 Time dependence of the joint density distribution ρ(n1, n2) correspond-

ing to the marked points in Fig. 4.12. In each plot, the density at time t

as well as density at t+τ/4 (dashed lines) are drawn together to display

the motion or the change of shape. Here N = 200 and ∆β = 0.1. . . . 74

4.12 Average density spread (∆̄) graph with respect to different period val-

ues. Inset shows the average spread for higher values of period. In-

teresting points are labeled with letters (see details in text). Density

distribution for these points are given in Fig. 4.11. . . . . . . . . . . 75

4.13 Average density spread (∆̄) responses of the system for different mag-

nitudes of perturbation, ∆β ∈ 0.05, 0.1. It is apparent that the extrema

of the response is independent of the size of the periodic drive. . . . . 76



LIST OF FIGURES xiii

4.14 Average density spread (∆̄) with respect to oscillation period τ for

various values of lattice sizes. Both axes are scaled by N . . . . . . . 77

4.15 Hysteresis plots as a fuction of different periods of oscillation (τ). They

are formed by following the trajectory of 〈n2〉ti vs 〈n1〉ti for values of ti

within a period. The trajectory reaches its limiting forms (two of them

are present) starting from τ ≥ 5000 and below τ ≤ 500. . . . . . . . 78

4.16 Hysteresis area for two different perturbation magnitudes, ∆β = 0.05

and ∆β = 0.1 and N = 200. The inset shows close up to the phase

transition point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.17 P (n1, t) for various values of t. P (n1, 10000) is a near steady-state

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.18 Shock densities corresponding to n1 = 30 for various values of t. . . . . 82

4.19 Shock profiles that are associated to particle number n1 = 65 for various

times t elapsed after the pulse. . . . . . . . . . . . . . . . . . . . . 83

4.20 Relaxation of the deviation δ1(t) for smaller and larger values of n1 for

N = 100. Inset shows δ1(t) for all values of n1. . . . . . . . . . . . . 84



List of Tables

2.1 Density and current values that correspond to the phases of TASEP. 32

4.1 Dimensionless quantities that are used in scaling the Fokker-Planck

equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiv



Chapter 1

Fundamentals

1.1 Introduction

Better part of the phenomena of nature is at non-equilibrium state. That is, one

way or another they are subject to change in time. Some of them are changing

as slow as the lifetime of the universe while others are changing as fast as the

neutralization reaction of an acid and a base. Besides if not at the time being,

things will eventually change by being subject to flux of energy or matter or

both, to or from their surroundings. These vast non-equilibrium phenomena

has yet to be explained by a general theory. However, whether such a general

theory exists itself is subject to discussion. Once, this problem is addressed by

John von Neumann as “the theory of non-elephants,” [1] by which, as Per Bak

claimed, he meant there may not be any such theory since the subject matter is

overwhelmingly diverse.

Nonetheless, systems at far from equilibrium have to be studied in some way,

with or without a general theory. One of the most common approaches to study

a non-equilibrium system is to construct a simple model. Of particular inter-

est are the models that demonstrate the curious phenomena of non-equilibrium
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systems with simple dynamical rules. Totally asymmetric simple exclusion pro-

cesses (TASEP) are considered as one of those; they are generally accepted as the

paradigmatic model for non-equilibrium systems (NES) [2].

In contrast, there is a well-established general theory for equilibrium systems.

This accomplishment is due to the very powerful condition called detailed bal-

ance (see Fig.1.1). Namely, each transition between the micro-states (a macro-

scopic state is composed of micro-states) should be equilibrated by its reverse

transition. Mathematical expression for this condition can be expressed as

Piωi→j = Pjωj→i, (1.1)

where Pi is probability of state i, ωi→j is transition rate from state i to j and

i, j ∈ A,B,C. Equation 1.1 leads to another powerful condition associated to

equilibrium systems, i.e, time-reversal symmetry of the system. Both of these

properties add up to the ergodicity condition: ensemble average (average over

all possible copies of the system) and the time averages are equal. Therefore,

at equilibrium all micro-states that map to the same macro-state energy E have

equal probabilities, which is proposed by Gibbs as being proportional to e−E/kBT

[3].

After excluding systems that satisfy the aforementioned conditions, everything

else yields non-equilibrium states. We will study a sub-class of non-equilibrium

systems, namely steady states in which flux is constant throughout the system.

In particular we will focus on steady state of a one dimensional model system

named asymmetric simple exclusion process (ASEP).

Organization of this dissertation thesis is as follows: In this chapter, first a dis-

cussion about the properties of equilibrium systems and the equilibrium origins of

notions such as phase transitions and order parameters are provided. Then it fol-

lows with discussions about the phase transition and other important concepts in

non-equilibrium systems. This chapter concludes with description of asymmetric

simple exclusion process (ASEP), discussions about why it is important to the

non-equilibrium community, how it is related to the other known models, and

what are its exact solutions are given. Also information about its applications to

2
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Figure 1.1: Detailed balance (a) vs steady state (b). Even though in both of the
cases probability of A,B,C are all equal (when all ω’s are equal) and one third, in the
steady state there is always a probability current in the clockwise direction. So steady
state is a weaker condition than the detailed balance and it carries the condition of
non-equilibrium systems, that is, non-vanishing currents.

the physical and other natural phenomena are shared. Chapter 3 is devoted to

the discussion of shock profiles supported by Totally Asymmetric Simple Exclu-

sion Process. Shock profiles are at the center of our findings which we present in

Chapter 5. Therefore a detailed discussion about them is crucial to the complete-

ness of this thesis. Both TASEP with single class and two-classes of particles with

open boundaries are discussed. In Chapter 4, the main methodologies we used

in our original work is explained in detail. These methods are master equation

technique, Monte Carlo simulations and also Fokker-Planck equation. Chapter 5

consists of our original work, one of which is published in Physical Review E and

the other is submitted to the same journal. Finally, Chapter 6 is the conclusion

chapter. In this chapter, the summary of our findings in our original work and

discussion about their impact is provided.

3



1.2 Equilibrium Statistical Mechanics

In statistical mechanics, equilibrium means thermodynamic equilibrium. That is,

the net flux of matter or of energy inside the system or in between systems which

are in contact with the system, is zero. However the required time for a system to

come to equilibrium differs from system to system. Sometimes it is at the order of

seconds; other times it can take so long that the distinction between equilibrium

and non-equilibrium gets blurry. For instance: glass. It takes galactic years for

glass to relax into the liquid state on its own.

In general, quantities such as total energy, total number of particles, or total

volume, chemical potential or temperature are enough to characterize the state

of the system in equilibrium. However, some states need additional variables to

be completely described. Common feature of these states is broken symmetry,

however other features (such as density etc) can also be used to differentiate these

states. The phenomena addressed here is the phase transition; and the variable

mentioned is the order parameter. This phase transition phenomena will be

explained in the following section.

1.2.1 Phase Transitions

Knowledge of the equilibrium phase transition phenomena is essential for under-

standing the non-equilibrium phase transitions. Whereas, the former laid the

foundations of the latter.

To begin with, consider a system that is composed of smaller components,

such as atoms, molecules or particles. It can form stable or metastable structures

as its components lose their symmetries. In other words, lost symmetries create

structures. In equilibrium, one of those structures becomes thermodynamically

stable (whereas other structures are metastable), i.e., that particular structure

corresponds to the minimum of free energy. Change in thermodynamic condi-

tions may destabilize the equilibrium structure, and eventually another structure

4



becomes more stable, ergo the new equilibrium state. This change of the stability

of structures is called the phase transition in equilibrium systems.

Phase transitions can be observed in daily life. For instance, in case of liquid-

solid transition of water, by decreasing temperature one can reach from the sym-

metric water state to the symmetry broken ice state, or the other way around

by increasing the temperature. Furthermore, ice or solid is the crystalline phase

where water molecules are ordered in lattice structure. And water is the amor-

phous (structureless) liquid phase where molecules are disordered and sym-

metric. By decreasing the temperature, molecules break symmetries (lose some

degrees of freedom) and become more ordered, i.e, they undergo transition from

water to ice. Many phase transitions can be understood from this change of sym-

metry, that is to say their existence is due to symmetry breaking. However, not

all phase transitions happen due to symmetry breaking. The liquid-gas transition

of water, is an example of such transitions. Both of the states that transform dur-

ing the transition, are symmetric, and they don’t have a rigid structure. What

differs between them is the density. Water molecules are closer to each other in

liquid phase, and farther apart in gas phase.

In all of the above cases, one can define an order parameter, to distinguish

between two different phases and observe its value through the phase transition.

In the liquid-solid transition case, order parameter can be defined as the symmetry

of the system. And in the liquid-gas transition case, order parameter can be

defined as the density.

Likewise, toy models of equilibrium systems can demonstrate phase transi-

tions, as well. Their demonstration capabilities of the transitions make them

very convenient to understand the equilibrium phase transitions on a more con-

trolled setting. Ising model is considered to be one of the simplest of those, it can

be used to explain a significant part of the phenomena relating to phase transi-

tions. Therefore, it is worthwhile to mention at least briefly here. For a deeper

understanding, one can refer to the books [4, 5, 6, 7].

Ising is the paradigmatic model for equilibrium phase transitions. It is a 2-D

5



lattice model, in which each lattice point is assigned with a spin σ that can have

either +1 or −1 values. Its Hamiltonian is of the form: H = −J
∑

i,j,i6=j σiσj,

where i, j indicates the nearest neighbors, and J is the exchange energy which

has been scaled by Boltzmann constant (kB) multiplied by temperature. (Beauty

of the equilibrium statistical mechanics lies in the fact that to make predictions

about system at equilibrium one does not need to take into account the dynamics

of it [3]. As it is the case here, calculating its Hamiltonian gives enough informa-

tion about the system. ) At 0 temperature, the system is in its lowest possible

(ground state) energy. This state is possible if all the spins have the same value.

Though, as the temperature increases, energy also increases. And the energy in-

crease favors changes in spin states, such that domains of spins with opposite sign

appear inside the bulk. These domains disperse in the bulk as the temperature

continues to rise. At the critical point, the physical picture of the bulk consists of

large domains of, say for instance, plus spins enclosing smaller domains of minus

spins which are enclosing domains of plus spins, and so on and so forth. This

physical picture leads to important conclusions: First, the correlation length di-

verges at the critical point. Second, when you zoom into the picture, you always

end up with the same picture with which you started with. This shows that at

critical points systems become self-similar or in other words scale-invariant.

Wilson discovered in 1975 ( for which he was awarded with Nobel Prize in 1982)

the renormalization group theory by employing the scale invariance. The

discovery immensely availed the further understanding of criticality [8].

Along with the correlation length, closely related physical quantities, such as

magnetic susceptibility and specific heat also diverge. Critically diverging physi-

cal properties of the system, exhibit a singularity (T −Tc)−α at the critical point.

Therefore when they are approaching to the critical point from below or above,

they diverge. this behavior is called power law divergence. Usual Ising model

is a static model. However, in a dynamical model with critical phase transitions,

the correlation time of the system may also diverge when the system tends to the

critical point. This phenomenon is called the critical slowing down. Moreover,

together with the exponent of correlation length, all the diverging properties may

have their own critical exponents. And they are related to each other with
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scaling laws.

Another important issue about the phase transitions is the classification of

them. It plays a vital role in identifying the known phenomena in completely

different systems. According to Ehrenfest there are two types of phase transitions

with respect to the continuity of the order parameter at the transition. If the

order parameter has a jump, then the phase transition is first order, and if

the order parameter is continuous then it is second order phase transition.

The name first order comes from the fact that order parameter is a first order

derivative of the free energy. In the case of second order phase transitions, the

second derivative of the free energy is discontinuous. The aforementioned critical

behaviors are characteristics of the second order phase transitions.

Fig. 1.2 displays the difference between the typical free energy diagrams for first

and second order phase transitions as a function of tuning and order parameters

[9]. Each well of the free energy diagram corresponds to a phase of the system.

In the first order transition, system has two states one is stable (deeper well)

and the other one is metastable. When phase transition occurs these phases

exchanges their stability, i.e., metastable one becomes stable and the stable one

becomes metastable. On the other hand, in the second order phase transitions

minima of the free energy corresponds to the ordered phases of the system. Upon

phase transition the ordered phases merge into form a disordered phase. When

approaching the phase transition, system can jump from one weakly ordered state

to the other since the barrier between them is lowered, this jumping behavior is

the reason behind the increased fluctuations [9] near criticality.
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First Order Second Order

T  < T T  < T c

T  =  T T  =  T 

T  > T T  >  T 

c

c

t

t

t

Figure 1.2: These are common schematic diagrams of free energy for first and second
order phase transitions. Each well in the free energy corresponds to an ordered state.
Tt corresponds to the tuning parameter of the transition, and Tc corresponds to the
critical tuning parameter.
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1.3 Non-equilibrium Statistical Mechanics

Despite most of our knowledge about statistical mechanics comes from studying

them, equilibrium systems are more the exception than the rule. All systems

exchange matter or energy with their surroundings. And the exchange is not

equally reciprocated. Therefore, they yield a non-zero flux. In other words, such

systems are in a non-equilibrium state. The flux can be of particle number, or of

heat, or of energy etc. Nevertheless, if left alone any system should exhaust the

sources of flux and come to an equilibrium with its surroundings. This process

of coming to an equilibrium, relaxation, takes different amounts of time for

different processes. Hence, non-equilibrium systems can be classified with respect

to the relaxation time scales. There are different battery of methodologies of

study, mostly depending on these time scales.

1.3.1 Near-Equilibrium Systems

Near-equilibrium systems, as their name gave away, are the closest to the equi-

librium state. So they are the fastest to relax into it. These systems can be

produced by applying small external perturbations to the equilibrium systems.

Therefore, they may have the most of the characteristic properties of equilibrium

state.

To study these systems, mostly linear response theory and methodologies de-

rived form it are incorporated [10]. This is due to the fact that these systems

are so close to the equilibrium state, they are considered as being in the linear

regime. In this regime, all currents of the system vanish over time. Fluctuation

dissipation theory (FDT) relates the system’s current fluctuations with the re-

sponse of the system to the perturbation [10]. The FDT can be used to predict

the unperturbed system’s noise or fluctuations by looking at the response to the

perturbation, or by looking at the thermal fluctuations of the system it can be

used to derive the response of the system [10]. These expressions can be math-

ematically formulated as follows: For an observable O the two-time correlation
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function is

C(t, t′) = 〈O(t)O(t′)〉, (1.2)

for times t and t′. Here observable average is calculated over thermal noise. And

conjugated response R(t, t′) of the system is

R(t, t′) =

〈
∂O(t)

∂h(t′)

〉
(1.3)

where h(t′) is the external field applied to the system at time t′ and t > t′. FDT

relates the response and fluctuations as

R(t, t′) =
1

T

∂

∂t′
C(t− t′), (1.4)

where T is the temperature.

1.3.2 Aging Systems

There are some frustrated phenomena in nature which relax to the equilibrium

state very slowly. This process of very slow change in the system called aging.

Aging is characterized by the breaking of time-translational invariance and the

violation of FDT when relaxing. The time translational invariance implies that

the functions that describe the system only depends on the time difference t− t′

and not the actual values of t and t′. And since in aging phenomena the time

translational invariance is broken, fluctuation dissipation theory does not hold

and Eqn. 1.4 depends explicitly on t and t′

R(t, t′) =
X(t, t′)

T

∂

∂t′
C(t, t′). (1.5)

These systems generally have at least two different time scales, i.e., system

may have fast equilibrating and very slow equilibrating properties[11].

Some of the aging phenomena happen due to quenched, i.e, frozen, disorder

distributed inside the bulk of such systems. Experimentally, these disorders can

be formed by super cooling the system. By cooling the system very fast, one

causes the system’s dynamical parameters to stick at positions where they are
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not allowed to evolve themselves to the new energy of the system. The most well

known example to such process is glass. It is formed by super cooling viscous

liquid into the glass state, through a process called vitrification. [12, 13].

1.3.3 Far from Equilibrium Systems

Dynamics of the far-from equilibrium systems are constructed so that they do

not equilibrate over finite time. These systems are the most abundant of the

non-equilibrium phenomena. From turbulence to life, it is everywhere in nature.

Also there are other systems, which are designed to retain fluxes through

everlasting time dependent parameters. These kind of systems are always driven

to be far from equilibrium. The subject matter of this thesis is an example of such

systems. We studied TASEP with time dependent boundary rates that allows to

maintain non-diminishing flux in the system.

1.3.4 Steady States

Non-equilibrium steady state (NESS) is the condition where macroscopic quanti-

ties appear to be stationary, whereas a constant flux is supported throughout the

system. Unlike the steady state of an equilibrium, the non-equilibrium system

under steady state (SS) continues on impacting its surroundings. Mathematical

expression of SS is as follows: Let C and C ′ be configurations of a system and

P (C) be the probability of configuration C then the change of probability in time

is:

∂

∂t
P (C) =

∑
C′

P (C ′)w(C ′, C)− P (C)
∑
C′

w(C,C ′), (1.6)

where w(C,C ′) denotes the probability rate of transition from configuration c to

configuration C ′. Under steady state condition,

∂

∂t
P (C) = 0, (1.7)

11



eqn. 1.6 becomes: ∑
C′

P (C ′)w(C ′, C) = P (C)
∑
C′

w(C,C ′). (1.8)

Eguation 1.8 is the steady state condition, which is a far weaker condition then

the detailed balance condition (Eqn. 1.1). However, both of these conditions

give stationary probability distributions (SPD). Say here, P ∗(C) is the SPD of

a NESS, a constant flux (K∗(C)) is also required to characterize the NESS. In

other words, a NESS is characterized by (P ∗(C), K∗(C)), whereas an equilibrium

state is characterized by (P ∗(C), 0) [2].

1.3.5 Phase Transitions

As it is already mentioned, it is very hard to collect the whole non-equilibrium

phenomena under the same umbrella. Since the phenomena is very vast, and so far

there is no concrete, rigorous mathematical theory which unifies them. However,

there are some properties that are similar to the equilibrium phenomena that we

can use of to understand some of the non-equilibrium phase transitions. These are

the long range order and power law scaling. Also there are phenomena that are

specific to non-equilibrium systems only. These are called emergent behavior,

such as self organized criticality or complex pattern formation.

Long range order: To follow the discussion in the equilibrium phase tran-

sitions section, I’d like to continue here with an Ising model as in the example

of Racz [14]. In equilibrium, it is known that 1-D Ising model does not show

any phase transitions. However, when dynamical anisotropy is added to the

system, even the 1-D Ising displays phase transitions. This anisotropy is intro-

duced to the system as follows [15]: two temperatures are defined so that each

temperature governs the system with its own dynamics that are competing for

their own equilibrium (imposed by their own temperature). These dynamics are

Glauber dynamics for one of the temperatures (TG),

ωG(σ′ → −σ) =
∑

δσ′1,σ1δσ′2,σ2 . . . ωi(σ)δσ′i,−σi . . . δσ′N ,−σN (1.9)
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where ωi is the probability of flipping the ith spin. And the Kawasaki dynamics

for the other temperature (TK):

ωG(σ′ → −σ) =
∑

δσ′1,σ1δσ′2,σ2 . . . ωi,j(σ)δσ′i,σjδσ′j ,σi . . . δσ′N ,−σN (1.10)

where ωi,j is the probability of exchanging the nearest neighbor spins (i, j). Here

the energy is calculated as usual, H = J
∑

i,j σiσj. Solving the master equation

for the NESS, it is shown that this system has phase transitions [15]. The results

conclude, despite being constructed with short range interactions, the system dis-

plays long range ordering. In contrast to the equilibrium systems, due to complex

dynamics non-equilibrium systems show long range ordering when they are away

from criticality (as seen in the example even dynamical anisotropy consisting of

two dynamics can create enough complexity in 1-D) [14].

Self organized criticality (SOC), is a similar phenomenon to equilibrium

criticality yet there is no tuning parameter in this case. It was first introduced to

model sandpiles by Bak et al. [16]. SOC is a property of dynamical systems that

have a critical point as an attractor, i.e, set of numerical values toward which

a system tends to evolve. Their macroscopic behavior displays the spatial and

temporal scale-invariance characteristic of the critical point of a phase transition.

As it is learned from the equilibrium phase transitions, scale invariance signal

long range order. The model works this way: On a two dimensional open lattice,

sites are occupied by zc number of grains. If zc > 4 then the grains at that site

is redistributed to the neighboring sites (avalanche). If the neighboring site is

zc > 4 then it does not get any particle from its neighbor. This redistribution of

particles start from a random place in the lattice and continues until avalanche

stops. Once the avalanche stops, an external source drops particles to the system

until an avalanche starts again. This combination of local (redistribution) and

non-local dynamics (external source adding new particles) yields a steady state.

Properties such as number of active sites (s) during the avalanches, spatial size

and life time of the avalanches all have power law forms P (s) ∼ s−τ . It is

suspected that, non-local dynamics is the most viable candidate for creating the

long range ordering [14].

13



Swarming, is the collective motion of self propelled particles. In nature,

flocks of birds, schools of fish, herds of land animals and swarms of insects move

together in a parallel, organized way. The physical models explain these behavior

is rather simple. Models assume some basic rules for individual’s motion in the

swarm. They assume these individuals never occupy the same place or get over-

close to each other (short range repulsion), they are aligned towards the average

direction and the average position of their neighbors. From these simple rules the

swarming behavior of animal crowds emerge.

Pattern Formation: As previously stated, in equilibrium, systems lose sym-

metries and form structures, or in other words they lose degrees of freedom to

form patterns. For instance, the crystalline structure of ice is a pattern. However,

in non-equilibrium systems the complexity of the dynamics take part in forma-

tion of richer and much more beautiful patterns. Examples of such innumerable

patterns are snowflakes, Jupiter’s rings and Red spot, stripped patterns of shear

flow. The most studied part of the non-equilibrium pattern formation phenom-

ena is the deterministic systems that can be described by the nonlinear partial

differential equations. Due to instabilities of these equations, patterns may form.

Even for control parameters ( e.g. boundary conditions, driving forces etc) with

fixed values, nonlinear equations may have many steady solutions. Moreover, all

these solutions may differ in nature. They can be isotropic, complex patterned

or somewhere in between. They can exist together or individually. By tuning

of the control parameter, they may emerge or disappear or lose or gain stability

[17, 18].
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1.4 The Model: Asymmetric Simple Exclusion

Process

1.4.1 Definitions and general properties

ASEP is a one dimensional driven diffusive system on which particles are allowed

to hop between sites exclusively. The name ASEP carries all the critical infor-

mation to determine the system’s properties. It is a process, a stochastic one

with continuous time dynamics (implying that probability of two events happen-

ing at the same time equals 0), which has no underlying energy relations. It is

an exclusion process since only one particle can occupy a site, also known as

misanthropic or hard-core repulsion relations. These relations mimic short-range

interactions of real physical systems. The dynamics of the model are simple

since when left to itself, ASEP bulk dynamics can settle down to an equilibrium

state, since particles of ASEP are just random walkers. In order to drive this

system out of equilibrium, one needs to create currents, therefore formation of

an asymmetry is required. This could be done via coupling the bulk to parti-

cle reservoirs of different “potentials”, or changing the internal dynamics. When

latter is the case, random walkers become asymmetric random walkers [2]. In

both cases one can create a current towards chosen direction.

First appearance of ASEP in the literature has occurred as a model to explain

ribosomes translating along mRNA [19, 20]. Then it independently reappears

again in mathematical context and named as exclusion process by Spitzer [21].

He proposed it as a Markov chain, with exclusively interacting particles. Over

the course of years, it becomes the paradigmatic model for non-equilibrium phe-

nomena and lures significant attention from scientific community.

As previously stated, ASEP is a stochastic process, that is, defining a Hamilto-

nian is not necessary. Kinetic approach is sufficient to explain its phenomenology

[2]. It is a Markov process, meaning that the future evolution of the system

is only defined by the configuration of the system at present time. Past has no
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effect in this evolution, i.e., system is memoryless. Moreover, it has continu-

ous time dynamics, i.e. the probability distribution of the time intervals have

Poissonian distribution. Computational equivalent of its dynamical details is

random-sequential updating which is discussed in more detail in the Method-

ology chapter.

ASEP is defined on a one dimensional lattice. Particles are allowed to hop to

their right if the right site is empty with probability p dt. And they hop to their

left if that site is empty with probability q dt (see Fig. 1.3 and Eqn.1.12).

10 → 01 with rate p, (1.11)

01 → 10 with rate q.

The nomenclatures of different exclusion processes in this class are as follows:

if q = 0 then bulk is called totally asymmetric simple exclusion process (TASEP).

If p > q it is called partially asymmetric simple exclusion process (PASEP), or if

p = q it is called the Symmetric Exclusion Process(SEP).

q p

q pα

β

δ

γ

Figure 1.3: ASEP dynamics on periodic and open boundary conditions.

One can study these bulk dynamics in combination with different types of

boundary conditions. The most common of those are: ring boundary conditions

(simply bulk dynamics), open (finite size lattice) and infinite boundaries. In the
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case of open boundary conditions particles are injected and removed from the

boundaries with certain probability rates. (See Eqns. 1.13 and 1.14. )

On a lattice of size N the left-most site (site 0):

0 → 1 with rate α, (1.12)

1 → 0 with rate β,

and at the right-most site (site N):

0 → 1 with rate γ, (1.13)

1 → 0 with rate δ.

These probability rates chosen so that they match the bulk dynamics. For

instance, in case of TASEP, since introducing particles from the boundary that is

opposite to its hopping direction does not make sense (it cannot hope forward!),

particles are injected from the boundary from where they can hop forward (β = 0)

and they are extracted from the opposite boundary (γ = 0).

Moreover, there are other variations of ASEP. They may differ in construc-

tion of the dynamics as well as time update schemes (i.e, discrete time update

schemes [22]). For instance, fixed hopping rates can be replaced with particle

dependent [23] or site dependent rates [24]. Introducing different particle types

with competing [25] (moving to the same direction) or mirror dynamics (moving

to the opposite direction) [26], introducing other lanes to the system and letting

particles on different lanes somewhat feel each other’s presence [27] can also be

done. All of those dynamics are also carefully curated to fit the relevant system

they have been used to model.

ASEP is to non-equilibrium systems what the Ising model is to equilibrium

systems. This is due to its non-trivial simplicity, which is albeit being exactly

solvable it can still show all the crucial non-equilibrium phase transition phenom-

ena. Additionally, ASEP has many application areas from biological to physical
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transport phenomena [2], which will be discussed in the next sections.
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1.4.2 Universality class, hydrodynamic limit and map-

pings of ASEP

Mappings can be used to identify the universal properties of models. Also, it may

help building an understanding of the nature of phase transitions by examining

the phenomenological differences between models as well as similarities. They

may also avail the exchange of solution methods.

On the other hand, looking at the hydrodynamical limit gives an idea about

coarse-grained (far less detailed) dynamics of the system over long length scales.

All the mappings that will be discussed in this section either help ASEP to

be solved exactly, or help the mapped system to be understood through ASEP’s

known mathematical properties.

1.4.2.1 KLS Model

The Katz-Lebowitz-Spohn (KLS) model is a kinetic Ising lattice gas with attrac-

tive nearest-neighbor interactions, evolving under spin-exchange or particle-hole

dynamics. It is also a paradigmatic model to the systems that are driven out-of

equilibrium. It was proposed in 1984 as a model to describe fast ionic conduc-

tors [28, 29]. The model was originally defined on a 2-D lattice where particles

interact with the Hamiltonian:

H = −4J
∑

nx,ynx′,y′ , (1.14)

where x, y labels the Cartesian coordinates of a site and nx,y shows the occupancy

of that site and can take binary values 0 and 1, the coordinate pairs (x, y) and

(x′, y′) denote nearest neighbors.

Stationary KLS system shows very similar phenomena to the Ising model.

However it can be taken out of equilibrium by applying some drive which favors

exchanges along a preferred axis. The system then begins to show curious phe-

nomena that are vastly different from the Ising model. The only source of these
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new phenomena is the breaking of the detailed balance condition [30].

In one-dimension dynamics of KLS is as follows:

0100 → 0010 with rate 1 + δ, (1.15)

1100 → 1010 with rate 1 + ε,

0101 → 0011 with rate 1− δ,

1101 → 1011 with rate 1− ε.

It can be observed from these dynamics that the jump rate of the particle depends

on where it hopped from and where it is hopping to. Here ε and δ are coefficients

whose signs define whether the interaction is repulsive or attractive.

Moreover, here it can also be observed that KLS model in 1-D is a more

generalized form of TASEP. In the limit of vanishing interactions, i.e, δ = ε = 0,

these relations reduce to the bulk dynamics of TASEP.

10 → 01 with rate 1. (1.16)

The KLS does not have exact solutions in any dimensions [30]. This mapping to

ASEP may help to develop a method to solve it.

1.4.2.2 KPZ Universality Class

The absence of Gibbs type of distribution is the known challenge of non-

equilibrium systems. Nonetheless, there are efforts to find universality classes

for non-equilibrium systems. KPZ universality class is being one of them, finding

its scaling distributions and limiting functions is an active research area [31].

Most of the observed stochastic phenomena obeys the Gaussian universality

class. Their statistics share common properties. The fluctuations of the systems

are ordered with square-root of time, at time t, as t1/2, and their spatial distri-

butions order with 0th order of the time, i.e, they are spatially uncorrelated [31].
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However, models belong to KPZ universality have different scaling exponents.

Their fluctuations scale with time t as t1/3 and their spatial correlations scale

with t2/3 [31].

In the long time and large space asymptotic limits ASEP is in the KPZ univer-

sality class. Besides, there are many other systems belong to this class [31] such

as turbulent liquid crystals, fronts of burning media, facet boundaries, growth of

bacteria colonies, wetting of papers.

1.4.2.3 Surface Growth Process

Surface growth process (SGP) is the simplest of the non-equilibrium systems

which have both strong fluctuations and power law correlations, i.e. , effective

criticality [14]. It is the discrete realization of KPZ equation (Eqn. 1.21) [32].

The growth of the surface, advancement perpendicular to the horizontal sur-

face, can be simply expressed as ∂thi = v(hi), where hi is the height of the surface

at site i and v(hi) is the velocity of the advancement of that surface. The model’s

scaling function is exactly solvable. And through its scaling functions, it belongs

to the same universality class with ASEP [31].

For each configuration of the ASEP C = (τ1, τ2, . . . , τn), where τi stands for

the occupation variable i.e. if ith site is vacant then τi = 0, and if it is occupied

τi = 1, a unique surface profile hj can be mapped to it such as

hj =
∑
j≤k

(1− 2τk) (1.17)

Schematically mapping can be done by the following procedure (See Fig.1.4):

If the gradient of the height of a site i is descending then it maps to an occupied

ASEP site, and if it is ascending then it maps to a vacancy in ASEP chain

[32]. In the reverse mapping, hopping of a particle changes the gradient of the

corresponding site, accordingly.
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Figure 1.4: Each surface with −π/4 degree slope maps to occupied site and with +π/4
degree slope maps to a vacancy. Red lines indicates how hopping of ASEP particles
will change the texture of the surface. After the hopping, slope of the occupied site
becomes −π/4, and the vacant site becomes +π/4.
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1.4.2.4 Zero Range Process

Zero range process (ZRP) is another driven diffusive model on a one-dimensional

lattice, where particles can occupy lattice sites without any restrictions. The

particles’ probability of leaving their site pi(n) depend on how many particles

(n) are occupying that site (i). This model is also introduced by Spitzer in his

seminal paper which he introduced the ASEP as well [21]. It is widely applicable

to numerous phenomena such as granular systems, interface growth, dynamics of

polymers or avalanches, various transport processes, and glasses [33].

ZRP can be considered as the integrated version of ASEP. If a ZRP has N

sites with M particles on it, it maps to an ASEP with N ′ = N + M sites. Each

site in ZRP mapped to a vacancy in ASEP and if a ZRP site is occupied then

each particle on it maps to occupied sites that are on the left of the vacancy it

mapped to. (See Fig. 1.5).

Figure 1.5: Lattice sites in ZRP mapped to vacancies in ASEP, and particles mapped
to adjacent occupied sites on the left of the vacany their site mapped.
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1.4.2.5 Hydrodynamic Limit

It is known that various different one dimensional phenomena such as growth

phenomena, turbulence or directed polymers in a random medium are different

versions of the same problem. They can all be expressed with the KPZ or Burgers’

equation. And ASEP is one of the simplest discrete realization of these equations.

Continuum equations are proposed for microscopic models in order to find

the scaling limits or to observe the collective or macroscopic behaviors of such

systems. Going from coarse-grained (hydrodynamic in this context) limit to mi-

croscopic scale also have advantages. For instance, the discontinuities in hydrody-

namic equations signal interesting phenomena. By going to the microscopic limit,

one can understand the underlying causes of it through examining the dynamics

[34].

Hydrodynamic limit of ASEP was shown to be described by the inviscid Burg-

ers’ equation [35]. Starting from an ASEP model, if one rescales time and space

in the same way, particle density satisfies a deterministic partial differential equa-

tion,i.e., inviscid Burgers equation (IBE). One-dimensional Burgers’ equation (or

viscous Burgers’ equation) has the following form:

∂

∂t
ρ+ ρ

∂

∂x
ρ = ν

∂2

∂x2
ρ+ F (1.18)

where ρ and F are functions of x and t. And ρ is the macroscopic density, and

F is an external drive. When the diffusion term is absent, ν = 0, and there is

no external driving, Burgers’ equation becomes the inviscid Burgers’ equation.

ASEP is the discrete realization of the IBE, which supports shock profiles as well

[36].
∂

∂t
ρ = − ∂

∂x
(p− q)ρ(1− ρ). (1.19)

Equation 1.19 is a conservation equation, which is a paradigmatic equation for

equations whose solutions can develop discontinuities, i.e., shock waves. For the

solution of it, initial density is defined as ρo = ρ−I(−∞,0) + ρ+I(0,∞), with ρ+

and ρ− are being the densities right and left of the origin and are satisfying the

condition ρ+ 6= ρ− . And I(x,y) indicates the interval between x and y. Benassi

24



et al showed that due to entropy condition, i.e, the wave to the left should move

faster than the wave to the right, there exists weak solutions to this equation [35]

of the form:

ρ = (p− q)(1− ρ+ − ρ−)t. (1.20)

These solutions are discontinuous and has the form of a shock.

Besides there is an equation sharing the same name with KPZ universality,

Kardar-Parisi-Zhang (KPZ) equation. It is a non-linear stochastic equation that

describes surface growth or growing interface phenomena [37].

The KPZ equation has the following form:

∂h(~x, t)

∂t
= ν∇2h+

λ

2
(∇h)2 + η(~x, t) (1.21)

with noise at point x, and at time t has properties < η(x, t) >= 0, and,

< η(x, t)η(x0, t0) >= Dδ(x− x′)δ(t− t′). (1.22)

Here h(x, t) is the height of the surface at point x, and at time t, ν is the surface

tension term, together with the ∇2h term it gives the relaxation or the smoothing

of the surface. Second term (λ/2(∇h)2) on the RHS is the non-linear term, which

accounts for the excess velocity due to local slopes.

These two equations are actually the same. Burgers’ equation can be ob-

tained from KPZ equation (eqn.1.21) by taking the gradient of the height function

ρ(x, t) = ∇h(x, t), which explains why several growth processes can be mapped

to ASEP.

Also note here, fluctuations of the KPZ equation, are recently proved to be

in the KPZ universality class in the long time limit [31]. However, scaling of its

spatial correlations are still unknown.
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1.4.2.6 Quantum Mappings

ASEP on a ring (that is to say, ASEP’s bulk dynamics) can be mapped to spin

1/2, anti-ferromagnetic XXX( J = Jx = Jy = Jz) Heisenberg chain with non-

Hermitian matrices (due to the asymmetry of the motion)[38]. Equivalently, it

can be mapped to the 1-D Ising model, where spins are interacting only in the

z-direction and with a transverse magnetic field is in the x-direction. Realization

of the quantum mappings lead to the employment of Bethe ansatz on the ASEP

problem on a ring [2]. It enables exact calculations for problems related to the

spectrum of Markov matrix of ASEP [38].

1.4.3 Exact Solutions

ASEP is an exactly solvable model. The most significant of the solution methods

are the matrix product ansatz (MPA) and Bethe ansatz [38].

MPA was introduced by Derrida et al for TASEP with open boundaries [39].

It is based on the quantum inverse scattering technique [2, 40]. It has non-

commuting operators, each assigned to different sites of the lattice. These opera-

tors can be of two types, one type is for the occupied sites, and the other one is for

the vacancies. Provided that the quadratic algebra relations are satisfied, these

matrices give the exact steady state distribution of TASEP [39]. The technique

further enabled the calculation of current fluctuations [34], equal time correla-

tions and large deviation functionals [41]. Also by utilizing this technique Speer

proved that the steady state distribution of ASEP with two species of particles

is not a Gibbs measure [42].

Second technique is the Bethe ansatz which is traditionally employed in finding

exact solutions for one-dimensional quantum many-body systems. Application of

the ansatz to 1-D stochastic processes was first done by Dhar [43]. As discussed

in the previous section ASEP can be mapped to several 1-D quantum systems.

These mappings hint the application of Bethe ansatz to these systems is possible.
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It availed the extraction of information about the spectrum of the Markov matrix

[2] and the related information such as its spectral gap [44, 45, 46, 47] and large

deviation functions [48, 49, 50]. From the spectral information, it is also found

that the relaxation time scales as T ∼ Lz with the dynamical exponent z = 3/2,

where L is the system size. This exponent is the same with the KPZ equation’s

relaxation exponent [2].

There are also other mathematical methods applied to ASEP. Some of these

are: [2]: quadratic algebra [51], Young tableaux [52], combinatorics [53], orthog-

onal polynomials [54], random matrices [55], determinental representation [56].

1.4.4 Applications

From the first time it was introduced in 1968 as a model for RNA translation

by ribosomes [57], ASEP is used as a model for various biological transport phe-

nomena, as well as vehicular transport and some of chemical diffusion problems.

Modeling of those systems with the mathematically very well established ASEP

provides an opportunity to understand the dynamics of those systems.

1.4.4.1 Biology

For models in biophysical systems, often the usual ASEP combined with neces-

sary dynamics is used for better explaining the system. For instance, modeling

ribosomes on mRNA or molecular motors ( protein structures which carry cargo

on a microtubule (filament-like protein structure that forms cytoskeleton), one

needs an adjustment to the dynamics such that several lattice sites occupied at

once. Moreover, in both of the aforementioned systems particles tend to detach

from the system even before they reach the end. So introducing detachment (or

also may be the attachment) type of dynamics to the model (Langmuir kinetics)

becomes necessary [2].

On the other hand, in case of co-transportation of molecules, new species of
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particles can be introduced to the system. And these new species may compete

or work cooperatively with each other, that defines conditional transition rates

for ASEP particles [2]. If the particles, e.g. molecular motors, can pass along

each other, then partial exclusion dynamics may be introduced to the system.

Or if the particles are able to interact among different lanes then other lanes can

be introduced to the system with certain interaction rates. These properties are

again crucial in modeling the molecular motor behavior in cellular transport [2].

ASEP with free or dynamical boundary conditions can also be constructed.

Such a system can be used to model the growth model of filaments of fungi

[58, 59]. When growing, filaments of the fungi elongate, and their cytoplasm

moves to the direction of advancement which is made possible by the elongation

of the cyto-skeleton to the same direction. This motion is modeled by the carriage

of building blocks of micro-tubule to the tip of the existing cyto-skeleton [58].

1.4.4.2 Physics and Chemistry

In physics and chemistry the single-file diffusion or any other diffusion structure

that can be reduced to single-file diffusion can also be modeled by ASEP.

Diffusion in zeolites can be a good example of chemical transport through

porous networks. In general, light hydrocarbons diffuse inside zeolites. However,

upon diffusing particles may chemically interact with the atoms of zeolites inter-

acting among themselves. If the interaction among the particles is attractive and

it is larger than the interaction between particles and zeolite atoms, then the par-

ticles diffuse inside the zeolite. Also the ease of diffusion when another particle is

adjacent can be incorporated into ASEP as the increasing jump probability rate

when another particle is present [60].

Likewise, there are many other phenomena, mostly on different narrow channel

transport systems, that ASEP is utilized to model. Some of them are conductiv-

ity of solid electrolytes [61], thin vessel transport of macromolecules [62], repton
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model of polymers in a gel [63], traffic and granular flow [64], stochastic sur-

face growth [65, 66], sequence alignment of genes in computational biology [67],

pedestrian queuing [68], and also some problems in large networks [69].
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Chapter 2

First order phase transitions:

Shock profiles

TASEP is one of the simplest of non-equilibrium systems. It is composed of

asymmetric random walkers on a one dimensional lattice that interact exclusively.

In equilibrium systems, boundaries does not play significant role in any phase

transitions [70]. However, Krug showed that if particle flux is present even in

one-dimensional lattice systems phase transitions that are induced by boundaries

can occur [71].

Although a thermodynamic free energy function cannot be defined for non-

equilibrium systems, (which is needed to characterize the order parameter in

equilibrium systems: the first order derivative of the free energy is the order

parameter), an order parameter can still be defined. In non-equilibrium systems,

the parameter is chosen so that it can define the observed differences between

states. For instance in TASEP, density parameter describes the difference between

the low density and high density states. It jumps (as in the form of a shock) upon

the boundary between the states which indicates a first order phase transition.

The shock in TASEP, also known as domain wall or interface, implies an

average density profile that has the shape of a hyperbolic tangent or of an error
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function [70]. The width of the domain wall (the transition region between high

and low density, it i.e., upper and lower branches of the hyperbolic tangent) is

small-scaled compared to the lattice size [70].

2.1 Single Class of Particles

One species TASEP with open boundaries is a one dimensional lattice which is

attached to two particle baths from its ends. One of the baths supplies particles

(here the left bath) to the system and the other one acts as a particle sink

(right bath). From the left bath, particles are allowed to enter the system with

probability rate α if the left most site is empty. They hop forward with probability

rate γ, provided that the next site is empty. And when they reach the right most

end, they exit the system with probability rate β. (See Fig.2.1.) In order to fix

the time scale of the system, every probability rate is scaled with (divided by) γ,

and γ is set to 1. Final dynamics are:

10 → 01 inside the bulk with rate 1, (2.1)

0 → 1 at the right boundary with rate α,

1 → 0 at the left boundary with rate β.

α β
γ

Figure 2.1: One species, open boundary TASEP model.
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2.1.1 Phase Diagram

TASEP is an integrable model (i.e, it is exactly solvable). In their seminal paper,

Derrida et al exactly solved it by implementing a matrix product ansatz [39].

Its steady state probabilities are found with respect to the boundary rates [39].

Hence, its phase diagram is also known. Three different phases of the system are

identified with respect to the particle entry (α) and exit (β) rates: These are low

density (LD), high density (HD) and maximal current (MC) phases.

In this system, order parameter is the density (d). The LD phase has density

d < 0.5 and the HD phase has density d > 0.5. The phase transition from LD to

HD phase is first order. Moreover, in the MC phase density is d = 0.5, and the

current reaches its maximum value j = 0.25. Phase transitions among HD-MC

and LD-MC are second order. In the phase space these phases are located: LD

at β > α and α < 1/2, HD at α > β and β < 1/2 and MC is at α > 1/2 and

β > 1/2 (See Fig. 2.2).

In the HD phase low exit rate controls the bulk density. Since particles enter

faster then they exit the system, they start to accumulate. Therefore, density of

the system is controlled by the exit rate and it is 1 − β. Similarly, in the LD

phase low entry rate limits the bulk density and it is equal to α. Particles exit

the lattice faster than they enter. Bulk density stays low. On the other hand, in

the maximal current phase particles enter and exit in fast rates. Density of the

bulk remains 0.5, and the current is at its highest 0.25 all the time. Table 2.1.1

shows the density and current values of these phases as functions of boundary

parameters.

phase density current

MC 1
2

1
4

HD 1− β β(1− β)
LD α α(1− α)

Table 2.1: Density and current values that correspond to the phases of TASEP.
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β

α

MCLD

HD

0.5

0.5

Figure 2.2: Phase diagram of TASEP with single species, with open boundary condi-
tions.

2.1.2 Shock Profile

On the coexistence line between the HD and LD phases (α = β < 1/2), density

profile of the system has the form of the shock. In order to visualize a single

realization of the domain wall, think of the situation where boundary rates are

very small, i.e., α << 1 and β << 1. Under such conditions after a while,

all the particles pass the vacancies and accumulate to the exit boundary. The

configuration of the system eventually will consist of a domain of vacancies and

a domain of particles : (. . . 0000011111 . . . ). If a particle can jump out of the

system, then the rest of the particles arrange themselves so that the domain wall

move to the right by one site. Or if a new particle enters the system, then again

the domain rearranges itself and the domain wall move one site to the left. The

shock profile is time average of these single realizations of the domain wall (See

Fig. 2.3)

As discussed in the introduction, hydrodynamic (continuum) limit of the

TASEP is inviscid-Burgers equation, which has the form:

∂

∂t
ρ = − ∂

∂x
ρ(1− ρ). (2.2)
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Given asymmetric initial densities, left ρL and right ρR, obeying the condition

ρR > ρL, there exists traveling wave solutions of this equation ρ(r − vt) [72, 73],

with velocity v , and v is

v = (1− ρL − ρR). (2.3)

Similarly, if asymmetric initial conditions are given to TASEP satisfying the

same condition as IBE (. . . 000011111 . . . ), the structure persists. However, if

one gives the opposite initial configuration (. . . 1111100000 . . . ), the structure

quickly diffuses[36], even though in both cases currents are 0 inside the domains.

However, in the second configuration it can be seen that the system’s dynamics

enable hopping at the interface. Therefore, in the course of time it diffuses. These

results shows that shocks are stable structures of the dynamics.

Ferrari showed that position of the domain wall can be tagged by introducing

a novel type of particle into the system [74]. He defined the dynamics of this

novel class (2) of particle as

10 → 01 (2.4)

20 → 02

12 → 21.

Observe here that, due to its dynamics after sufficient time has elapsed before

measuring, this particle will be found at the domain wall (. . . 00000211111 . . . ).

Therefore, it will tag the position of the shock. He showed that the velocity

r(t)/t of the tag particle converges to Eqn.2.3 [74] where r(t) is the position of

this particle at time t.

Moreover, the particle number can take a wide range of values on the co-

existence line. Therefore, the shock profile is doing a biased random walk on the

lattice. From the perspective of the second class of particle, Schutz showed that

[36] velocity of the shock profile is

v =
JR − JL
ρR − ρL

, (2.5)
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and the diffusion constant is

D =
1

2

JR + JL
ρR − ρL

, (2.6)

where JR and JL are currents and ρR and ρL are densities for left side and right

side of the shock.

As a side note, on the coexistence line taking ensemble averages of the occu-

pation numbers of the sites does not yield any physically realizable observable

[75]. By averaging out the densities that corresponding to all particle numbers,

the measurements flatten out the shock profiles and results with a linear density

profile.

Interestingly, Schutz [76] suggested a much more simplistic model of ASEP

which also displays shock behavior. He suggested a model in which particle

dynamics are stochastic at the boundaries, but it is deterministic inside the bulk.

In other words, the system he suggests has parallel lattice dynamics. The phase

diagram has only two phases of low and high densities. They are located at the

first-quadrant of α vs β graph. The transition is on the α = β line. Again, as

in the TASEP, along the phase transition line one can observe the HD-LD shock

structure.
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ρ (i,t)
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n = 0.5N

i

0.5

1

n

Figure 2.3: Shock profile for different numbers of particles in a lattice of 50 sites. i
indicates the site, ρn(i) indicates the density profile that corresponds to the n number
of particles.

2.2 Two Classes of Particles

In the case of TASEP with two classes of particles, second class of particles are

introduced to the system with same dynamics but they are only allowed to move

in the opposite direction. Second-class of particles enter the system from the

right most end, if that site is empty with rate α2. They can hop forward (to the

left), if the next site is empty, with probability rate γ2. And when they reach

to the left most site, they can exit the system with rate β2. If these two classes

of particles come face to face, they exchange their sites with probability rate δ.

Here for the time scaling every probability rate is divided by δ and δ is set to 1.

Figure 2.4 shows the schematic description of the model.

Inside the bulk,

10 → 01 with rate γ1, (2.7)

02 → 20 with rate γ2,

12 → 21 with rate 1.
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At the right boundary,

0 → 1 with rate α1, (2.8)

2 → 0 with rate β2,

and finally at the left boundary,

1 → 0 with rate β1, (2.9)

0 → 2 with rate α2.

α

β
γ δβ γ

α
1

112

2

2

Figure 2.4: Schematic description of TASEP with two species of particles under open
boundary conditions.
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2.2.1 Phase Diagram

The phase diagram of this model is not exact since there is not any exact solution

to this model so far. Evans et al. calculated the phase diagram (see Fig. 2.5)

through mean field (MF) analysis and supported their findings with Monte Carlo

analysis [77].

α

β

HL

L

P
L

HL

TR

Figure 2.5: Mean field phase diagram of TASEP with two types of particles. Here
α1 = α2 = α, β1 = β2 = β and γ1 = γ2 = δ = 1.
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The MF analysis indicates that there are four phases in the phase diagram with

respect to the density. In their case, all parameters are chosen to be symmetric,

such that α1 = α2 = α, β1 = β2 = β. Other parameters are set to 1, γ1 =

γ2 = δ = 1. Starting from the lower values to the higher values of β, these

phases are (see Fig. 2.5): symmetry broken HL (high density (HD)- low density

(LD) phase, “tiny regime” (TR), the L (LD-LD) phase and the power law (P)

phase. In the HL phase even though all the parameters are symmetric for both of

the particles, system displays spontaneous symmetry breaking. This is the first

one-dimensional non-equilibrium model, which is reported to display spontaneous

symmetry breaking [78].

To be able to understand the nature of the phases it is better to look at the

Evans et al’s MF solution first [77]. Here τj = i is the occupation variable at site

j where i = 0, 1, 2 and these values correspond to vacancies, first or second class

of particles in the respective order. In the MF approximation, P (τ1, τ2, . . . , τN) =

P (τ1)P (τ2) . . . P (τN). Note also that if all bulk rates are equal δ = γ1 = γ2, then

particles cannot distinguish between the other class of particles and vacancies.

Therefore, particles’ motion decouples inside the bulk. On the other hand, they

are still coupled at the boundaries. Here, p1,j is the probability of first-class

particle occupying site j, and similarly p2,j is the second-class particle occupying

the same site. Evans et al ended-up with the simplified MF equations of the

system. In the bulk, result of the exact solution to the decoupled TASEP (with

one class of particles) is used. These solutions are then coupled to one another

using MF approximation. And coupling of the two TASEP at the boundaries

yields the effective boundary rates:

αeff1 = α(1− p1,1 − p2,1)/(1− p1) = J1/(J1/α + J2/β), (2.10)

αeff2 = α(1− p1,N − p2,N)/(1− p2) = J2/(J2/α + J1/β).

In the end, first class of particles act as an individual TASEP with boundary

rates (αeff1 , β) and the second class of particles act as another individual TASEP

with boundary rates (αeff2 , β). I would like to note here that we carried out a

more conventional MF analysis and its solutions also confirmed their results.

Now, the phase diagram can be understood from this perspective. Phases are
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superposition of the phases of individual ASEPs. For instance, in the power-law

phase both systems are symmetric and they are in MC phase. In the L phase,

both systems are symmetric and they are in LD phase. However, in the first (it

is the first one since we are counting the phases starting from the high values

of β to lower values) symmetry broken phase TR, even though both systems are

subject to the same boundary conditions they are in different LD phases. Both

of their densities are below 0.5 but they are not equal to each other. Finally,

the symmetry broken phase, even though all parameters are equal one class of

the particles dominate the system. This happens due to the accumulation of

those particles to the exit, and not letting the other class of particles to enter

the system. Eventually, accumulating particles dominate the system (HD phase),

and the other particles get to be in LD phase.

Phase transition between the symmetric L and P phase is second order.

Whereas, there are various claims about the order of the transition from the

symmetry broken phases to the symmetric L phase. Some even claim that the

TR phase is not a real phase but a finite size effect [79]. Arndt et al further

claimed that TR phase does not exist, and there is a first-order phase transition

from HL to L. Both of their argument rely on MC simulations [80]. Finally there

is the third view, that we also came to agree during our studies, which claims

that the TR phase exists and there are two first order transitions, one is from HL

to TR and the other is from TR to L. However, these transitions have different

natures [81]. The two symmetry broken phases HL and TR can exist at the same

time, since they both have the same current. However, TR and L phases never

coexists due to the fact that their currents are not equal [81].

2.2.2 Shock Profile

Shock profiles can also be observed when second class of particles are present in

the system. As previously stated, under the condition of equal bulk rates, the

system can be thought of as two different TASEPs which are coupled at their

boundaries.

40



At the TR, the two phases HL and TR can coexist together. One can see this

in Fig. 2.7. Here, the first-class particles display the shock profile, i.e, they have

high density in some parts of the lattice, and at the other parts they have low

density. Whereas, second class of particles always have lower density than of the

first class of particles. In the left part of the lattice, the lower part of the shock

of first-class of particles and the low density second-class particles exist together,

i.e, the system is in TR phase for this part of the lattice. However, in the left

part of the lattice, first-class of particles are in higher density and second-class of

particles remain in their low density state. Then, this part of the lattice is in HL

phase (See Fig. 2.6).

ρ (i,t)

Ni

0.5

1
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n

n
1

2

n
1

2n

Figure 2.6: Schematic density vs lattice plot for TASEP with two classes of particles.
In the left box the lattice is in TR phase. However on the right box it is in HL phase.
It displays that these two phases can coexist.

The whole phase structure for lower values of β can be understood as the

clogging of the first-class particles to the right end. Suppose entrance rate is

fixed and it is bigger than β. For increasing values of β, the shock profile moves

to the right and the domain in the lattice, where HL and TR phases coexist,

increase. At some point, β becomes sufficiently large enough that there will be

no clogging in the system. After that point, eventually the system reclaims its

symmetry (L phase), since every rate is symmetric for the two classes of particles.

41



Note here, before reaching the L phase β is significantly smaller than the bulk

rate 1, so first-class particles have time to rearrange themselves as a domain when

particle number changes. Moreover, the shock-profile moves to the right or to the

left depending on the entry or exit of a particle.

This discussion about the phase transitions for low-values of β may also indi-

cate that the TR phase always exists, but it may exist for narrower values of β.

This conclusion can further be backed-up by the work of Erickson et al [79] as

a residual point-like interval of β vs density difference as an indicator of the TR

phase.

ρ (i,t)
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Figure 2.7: Schematic density vs lattice plot for TASEP with two classes of particles.
First-class particles display the shock profile, for various numbers of particles in the
lattice. Whereas, the second-class particles remains in low density state (LD).
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Chapter 3

Methodology

The methodologies that were used throughout this thesis are the numerical so-

lutions of the master equation and the Fokker-Planck equation as well as the

kinetic Monte Carlo technique. Relevant details about each of these methods will

be supplied in this chapter.

3.1 Master Equation

Master equation is the fundamental equation that carries the complete infor-

mation about the time evolution of a Markov process. A Markov process has

no-memory of its history. The future of the system only depends on the cur-

rent state of it. A master equation can describe the evolution of the system in

time and how the transitions occur between tits states until the system reaches a

steady state. In this state, probability of the system does not change. However,

not all systems can reach a steady state.

ASEP is a Markov process. Its realizations are connected to one another

through probability rates. A single realization can be the future of a certain real-

ization and also it can be the past of an another realization. These connectedness

manifests itself through probability rates of transitioning from one to the other.

43



Master equation carries all these rate information.

In mathematical terms, say a single realization of ASEP is c, and the proba-

bility rate of transition from c to another realization c′ is ω(c→ c′). A transition

means hopping of a particle in the system. At a time interval dt, the probability

of the hopping is ω(c → c′)dt. Then the master equation which defines the rate

of change of the probability of the configuration c can be written as follows:

∂

∂t
P (c, t) =

∑
c 6=c′

P (c′, t)ω(c′ → c)−
∑
c6=c′

P (c, t)ω(c→ c′), (3.1)

provided that
∑

c P (c, t) = 1. This equation can also be expressed by a matrix

representation. The transition rates of the matrix is called Liouville operator

(L). And the probability P is the vector that carries the information about the

probabilities of all possible configurations :

∂

∂t
P = LP . (3.2)

This Liouville operator carries all the information about the time evolution of the

system.

The condition that the probability is not changing with time (∂P/∂t = 0) is

the steady state condition. It corresponds to the zeroth eigenvalue of Liouville

operator:

LP = 0. (3.3)

For a sufficiently small system size Eqn. 3.3 can be solved analytically by tech-

niques such as generating function method or by directly solving the matrix equa-

tion. However, latter is not possible for majority of the cases, since the size of

the matrix get enormous very quickly. For instance, for an ASEP with lattice of

size N , its Liouville operator will be of size 2N × 2N . Even on the order of 10,

this matrix becomes too big to directly solve with computers.

Some other relevant properties of the Liouville operator of ASEP are as follows

[2]:

• Values of rows of each column of L add up to 0, due to the conservation of

probability.
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• L is not Hermitian therefore its right and left eigenvectors are not conjugate

pairs.

• For finite ASEP, L is ergodic, so that its biggest eigenvalue is 0 and other

eigenvalues are negative.

• Right eigenvector corresponding to the 0 eigenvalue, consists of steady state

probability values of each micro-state. Namely steady state is a dynamical

state, i.e., system is visiting all micro-states with the frequencies (probabil-

ities) registered on steady state vector.

• Perron-Frobenius theorem guarantees that the biggest eigenvalue is non-

degenerate. Therefore, steady state is unique.

• Steady state is dynamic. Thus, microscopic fluctuations can be observed as

well.

• Steady state carries a fixed current along the lattice, whose value depends

on the boundary rates. This implies boundary induced phase transitions

[71].

3.2 Monte Carlo Analysis

A Monte Carlo (MC) simulation is a probabilistic experiment that can be used

to achieve results about a systems properties. Those systems are often too com-

plicated to solve with other methods. MC has a very wide-range of applicability

in physics from modeling many body stochastic [82] or quantum systems [83]

to otherwise non-soluble integrals [84]. The method was invented by Stanislaw

Ulam and Nicholas Metropolis in 1940s, when they are working on the nuclear

weapon project. The method is named after the famous casinos of a small town

named Monte Carlo, France [85].

Master equation (Eqn.3.1) can be directly simulated by random-sequential

update MC analysis, that is to say particle positions are updated randomly
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at each (continuous) time step. Probability of a configuration can be reached

through the frequency of appearance of that configuration during the course of

the simulation. The transition rates between the configurations (hopping rates in

case of ASEP) are taken as input to the algorithm which are simulated by using

random numbers. If it is guaranteed by the master equation itself, the simulated

average probability of the configuration reaches a steady state (probability does

not change). Macroscopic steady state properties of the system can be calculated

from this probability.

Moreover, there may be other computational update schemes of the same sys-

tem that correspond to different steady states. (Here I say the same system in

a sense that some of the basic dynamics of the systems are equivalent such as

particle exclusion, or boundary injection or extraction rules etc.) For instance

ASEP has other computational update schemes which correspond to discrete time

dynamics. These are ordered sequential, sub-lattice-parallel and parallel update

schemes[86, 32].

Say (i, j) are the lattice site indexes of update pairs, in ordered sequential

update scheme starting from left (or right end) of the lattice, (i = 1, j = 2), (i =

2, j = 3), (i = 3, j = 4), . . . , are updated in that (or reverse) order. If it is an

open boundary ASEP, a particle may enter (or leave) the system after all the

updates are finished [86]. On the other hand, in the sub-lattice-parallel update

the lattice size must be an even number. First boundary hoppings are carried

out. Then even pairs are updated, such that (i = 2, j = 3), (i = 4, j = 5), (i =

6, j = 7), . . . , until it reached the opposite end. After that odd pairs are updated

(i = 1, j = 2), (i = 3, j = 4), (i = 4, j = 5) . . . . This is a computationally efficient

scheme and theoretically it corresponds to a transfer matrix representation with

local products [86]. Finally, in the case of parallel-update scheme, all the system

is updated at the same time (bulk hopping, particle entrance and exit). This

scheme leads to the strongest of correlations, therefore it is most commonly used

to simulate traffic systems [86].

Note here that for analytic purposes random-sequential update should be cho-

sen. However, computationally discrete time update schemes are more effective
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[86]. Hence, examining the advantages and disadvantages before proceeding to

carry out a simulation has critical importance.

3.3 Kinetic Monte Carlo

Kinetic Monte Carlo (KMC) algorithm is typically used to simulate time evolution

of systems which have transition rates defined among configurations. The method

is also known as dynamical Monte Carlo method.

In this algorithm transition rates are predetermined. They are not reached

through the simulations. In case of ASEP, transition rates are particle entry

(α), exit (β) and bulk hopping rates (γ = 1). In the course of simulation which

particle will hop next is chosen randomly (random sequential update). This

random update process is carried out as follows: At a given instant, all allowed

hopping (exit and entry included) rates (ωi) are summed, such that Ω =
∑

i ωi.

Then a random number r (uniformly distributed between 0 and 1) is drawn and

the incremental time ∆t is calculated as ∆t = − log(r1)/Ω. This incremental

time corresponds to the necessary time to be elapsed before system to lose its

current configuration. Note here that, continuous time dynamics in this setting

correspond to a Poissonian process. That implies events happen instantaneously

that no two transitions can happen at the same time. Therefore incremental time

(the waiting time of the configuration (∆t) has an exponential distribution. After

the waiting time has elapsed, a particle i is chosen randomly if Ωi−1 < rΩ < Ωi.

Here r is another random number which is uniformly distributed between 0 and

1. Algorithm 1 displays the pseudo-algorithm for this process.
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Algorithm 1: Kinetic Monte Carlo pseudo-algorithm for ASEP with oscil-
lating boundary rates

Initialize time
Start a MC Step

Start a full lattice swipe
Calculate Ω at curret time
Draw a random number r1
Calculate incremental time as:

∆t = − log(r1)/Ω
Draw another random number r2
Choose a particle to hop as:

Ωi−1 < r2Ω < Ωi

Measure the current and density averages.
Repeat until all MC steps are exhausted.

3.4 Fokker-Planck Equation

The Fokker-Planck (FP) equation [87, 88, 89, 90, 91] describes the time depen-

dence of the probability distribution P = P (x, v, t) of the position and velocity

of a Brownian particle inside a potential well V (x). The FP equation has the

general form

∂P

∂t
= −v∂P

∂x
+

∂

∂v

[(
γ

m
v − 1

m

dV

dx

)
P

]
+

D

2m2

∂2P

∂v2
, (3.4)

where D is diffusion and γ is drift constant.

Furthermore the FP equation for over-damped systems can be derived from

the Langevin equation (LE) [5]. LE is the equation that describes the motion

of a Brownian particle inside a potential well V (x),

mẍ = −γẋ+ F (x) + η(t), (3.5)

where force is F (x) = −dV (x)/dx. In the limit of strong friction, velocity of the

Brownian particles relax to the stationary state very quickly and variations of

their velocities are negligible ẍ ∼ 0. Then the Eqn. 3.5 reduces to

ẋ =
1

γ
F (x) +

1

γ
η(t). (3.6)
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where η(t) is chosen to be a Gaussian white noise with properties 〈η(t)〉 = 0 and

〈η(t1)η(t2)〉 = Dδ(t1 − t2).

Moreover, probability of finding Brownian particle in the interval x→ x+ dx

at time t is P (x, t). And we know that the continuity equation of probability

density ρ = ρ(x, t) of the particle is

d

dt
ρ+5.j = 0, (3.7)

where j is the probability current j(x, t), which is j = ρẋ. By substituting the

LE (Egn. 3.6) into the continuity equation (Eqn. 3.7), one gets

∂

∂t
ρ = − ∂

∂x
(ẋρ) = −1

γ

∂(F (x)ρ)

∂x
− 1

γ
η(t)

∂ρ

∂x
. (3.8)

Note here that ρ(x, t) changes with respect to the stochastic variable η(t). Hence

a macroscopic probability density P (x, t) can be defined as P (x, t) = 〈ρ(x, t)〉η,
which is the average probability density over all values of noise η. Let’s define,

time-independent deterministic operator D̂ and time-dependent stochastic oper-

ator Ŝ(t) such that

D̂ =
1

γ

∂F (x)

∂x
+

1

γ
F (x)

∂

∂x
, (3.9)

and

Ŝ(t) =
1

γ
η(t)

∂

∂x
. (3.10)

Then Eqn.3.8 can be written as

∂

∂t
ρ = −D̂ρ(t)− Ŝ(t)ρ(t). (3.11)

Let me introduce here a new probability density d(x, t), such that

ρ(x, t) = e−D̂td(x, t). (3.12)

Using Eqs. (3.11) and (3.12), one gets

−D̂e−D̂td(x, t) + e−D̂t
∂

∂t
d(x, t) = −D̂e−D̂td(x, t)− Ŝ(t)e−D̂td(x, t), (3.13)

multiply both sides with eD̂t, then Eqn.3.13 yields

∂

∂t
d(x, t) = −eD̂tŜ(t)e−D̂td(x, t), (3.14)
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where U(t) = eD̂tŜ(t)e−D̂t. Solution of the Eqn. 3.14 is

d(x, t) = exp

[
−
∫ t

0

dt′Û(t′)

]
d(x, 0) (3.15)

Replacing exponential function with its series expansion ex =
∑∞

0 (xn/n!), and

taking the average over all values of η(t) one obtains

〈d(x, t)〉η =

 ∞∑
n=0

1

(2n)!

〈(∫ t

0

dt′Û(t′)

)2n
〉
η

 d(x, 0). (3.16)

Recall here that the property of noise, which describes its mean as zero and it

is form as Gaussian. Therefore only even values of n remains. Average quantity

〈
(∫ t

0
dt′Û(t′)

)2n
〉η decomposes into 2n!/n!2n identical terms all of which contains

n pairwise averages
〈∫ t

0
dtiÛ(ti)

∫ t
0
dtjÛ(tj)

〉
η
. Using these observations Eqn.

3.16 yields

〈d(x, t)〉η =

[
∞∑
n=0

1

n!

(
1

2

∫ t

o

dt2

∫ t

0

dt1〈Û(t1)Û(t2)〉η
)n]

d(x, 0). (3.17)

Summing back the series

〈d(x, t)〉η = exp

[
1

2

∫ t

o

dt2

∫ t

0

dt1〈Û(t1)Û(t2)〉η
]
d(x, 0). (3.18)

Furthermore, computation of the integral
∫ t
o
dt2
∫ t
0
dt1〈Û(t1)Û(t2)〉η yields

=

∫ t

o

dt2

∫ t

0

dt1e
D̂t1Ŝ(t1)e

−D̂t1eD̂t2Ŝ(t2)e
−D̂t2

=
1

γ2

∫ t

o

dt2

∫ t

0

dt1〈η(t1)η(t2)〉eD̂t1
∂

∂x
e−D̂(t2−t1) ∂

∂x
e−D̂t2

=
g

γ2

∫ t

0

eD̂t1
∂2

∂x2
e−D̂t1 . (3.19)

Now to reach P (x, t) = 〈ρ(x, t)〉η, first one should calculate

∂

∂t
〈d(x, t)〉 =

g

2γ2
eD̂t1

∂2

∂x2
e−D̂t1〈d(x, t)〉η, (3.20)

using Eqns.3.12 and 3.20 results in

∂

∂t
〈ρ(x, t)〉η = −D̂〈ρ(x, t)〉η + e−D̂t

∂

∂t
〈ρ(x, t)〉η (3.21)
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then we reach
∂

∂t
P (x, t) = −D̂P (x, t) +

g

2γ2
∂2P (x, t)

∂t2
. (3.22)

After replacing the operator D̂ with its equivalent, we have the FP equation for

Brownian particles inside a potential well V (x) under diffusive conditions

∂P (x, t)

∂t
=

1

γ

∂

∂x

(
dV (x)

dx
P (x, t) +

g

2γ

∂P (x, t)

∂x

)
. (3.23)

Right hand side of the FP equation is also gives the probability current. Therefore

FP equation is a continuity equation, i.e, probability is conserved.

Moreover, solution of the FP equation depends on the form of the potential.

The simplest form of a potential is a constant V (x) = V . In this case FP reduces

to the heat-equation
∂P (x, t)

∂t
=

g

2γ2
∂2P (x, t)

∂x2
, (3.24)

and its solution becomes

P (x, t) =

√
1

4πD
exp

[
− x2

4Dt

]
, (3.25)

where D = g/2γ2.
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Chapter 4

Original Work

4.1 Strong Frequency Dependence in Over-

damped Systems

Strong frequency dependence is a rare phenomenon in over-damped or diffusive

environments. The existence of it, such as stochastic resonance, indicates inter-

esting underlying dynamics. In our work, we encountered an example of such

phenomenon which occurs in the Brownian motion of an over-damped particle

under the effect of periodically oscillating retarded force that emanates from the

boundaries. We found that, the amplitude of the expectation value of position

has significant frequency dependence which is not how typical resonance behaves.

We model this motion with a Fokker-Planck equation. This problem appeared

when we study the Brownian motion of shock profile of TASEP. In this section I

will first describe the details of our Fokker-Planck analysis. Then I will discuss

how this model is relevant to the motion of shock profile.

In diffusive environment, periodic forces cannot build growing oscillations. Sys-

tem’s response to such forces is monotonous. We suggest an over-damped system

which gives an oscillating frequency response to a position dependent effective

force. Such system are realizable, for Brownian motion under the influence of
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retarded effects coming from the boundaries.

As described in the previous chapter, Fokker-Planck (FP) equation [87, 88, 89,

90, 91] gives the time dependence of the probability distribution P (x, t) of the

position of a particle in a over-damped system:

∂P

∂t
=

∂

∂x

[
−γP (−∂V

∂x
+ Fret) +D

∂P

∂x

]
(4.1)

where γ and D are drift and diffusion constants respectively. In our model,

potential energy V = V (x) is time-independent. And the force Fret is retarded

and emanates form the boundaries. It is sinusoidally time and position dependent.

There are significant amount of work dedicated to the behavior of probability

P under the influence of different potentials. Analytical solutions can be offered

for simple potential forms. The equation may be treated as Schrödinger equation

with imaginary time. Its solutions have relaxational behavior in time. The be-

havior is the consequence of absence of inertia (no force is proportional to dx2/dt2

or memory in the system, i.e, the probability of the position of the particle in the

future time t+dt depends only on the probability on current time t. However, in

our case we can get an amplified response from the memoryless system due to the

matching of wavelength and the length of the interval between the boundaries.

Other over-damped phenomena of amplified response (non-monotonous re-

sponse) are also present in the literature. For instance in Brownian motors, a

Brownian particle moves in a ratchet type independent potential and a sinusoidal

force derives the particle over the less steep barrier [92]. The motion is asymmetric

either due to the form of the static potential or due to the time-dependent forces.

Moreover, in vibrational resonance [93] a high-frequency drive may effectively

average over the portions of the potential. The length scale of averaging depends

on the drive. Also, the transport properties of the system depend strongly on

the drive. The force can be of a superposition of sinusoidal or rectangular func-

tions, which may lead to interesting non-linear effects for certain combination of

frequencies [94]. For further information about these and other similar systems,

review by Hänggi and Marchesoni is recommended [95].
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Finally there is the stochastic resonance [96, 97, 98, 99, 100, 101], which is the

phenomenon related to the motion of Brownian particle inside a double-well po-

tential, under the effects of random diffusive force and a sinusoidal force. In this

system, for an optimal value of the magnitude of the random force, transitions

between the walls of the potential amplifies in synchronism with the sinusoidal

drive. Corresponding FP equation was solved by Jung and Hänggi [97]. They

demonstrated that the time auto-correlation function of this system sustains un-

damped oscillations. In this case, resonance means the amplified response of

the switching between the wells at a certain value of the magnitude of the ran-

dom force. A wide variety of systems can be modeled this way, such as seasonal

changes on population systems [102], the dependence of stock prices on periodic

information flow [103], and many other biological phenomena [104, 105]

All of these phenomena include static multiple potential wells and position

independent sinusoidal forces. However, our model incorporates a static mostly

flat (quadratic at the boundary regions and flat in between) potential and a

sinusoidal retarded force that emanates from the boundaries. There are not

many studies of effect of such force field in the literature, i.e., force field which

propagates from the boundaries with a finite velocity. Relevant works are analysis

of a diffusive system in which particles are introduced to the system from a single

boundary and annihilate each other upon contact [106]. Also there is an another

system, with a position dependent sinusoidal force coupled to a bath of oscillators,

acting as a random force was derived the effective force of this Hamiltonian system

[107].

The existence of propagating effects within a memoryless, over-damped system

may seem contradictory. However, mechanisms that drives the diffusion dynamics

can be different than the mechanisms that generates the effective force. For

instance in TASEP, diffusion of the shock front in the bulk is effected from the

change in the boundaries after a delay. Thus we claim shock motion of TASEP

is a discrete realization of the aforementioned FP system.

54



4.1.1 Analysis and Discussions

4.1.1.1 Fokker-Planck Equation

In our analysis, our static potential V (x) has the form

V (x) =

{
0 if |x| < L

2

V0(|x| − L/2)2/x20 otherwise.
(4.2)

The quadratic structure relaxes the boundaries ±L/2 with a range length x0.

Moreover, we have a time dependent force which is emanated simultaneously

from the boundaries and acts on the particle. The force is retarded in time, i.e.,

it reaches the particle with a constant velocity v after a delay proportional to its

distance to the boundaries.

Fret(x, t) = F0 sin

[
ω

(
t− L/2 + x

v

)]
+F0 sin

[
ω

(
t− L/2− x

v

)]
= 2F0 cos

ωx

v
sin

[
ω

(
t− L

2v

)]
. (4.3)

Although the magnitude F0 of the force is constant, its effects display strong

frequency dependence. Eqn. 4.3 indicates that the effects of this retarded force

results in a position and frequency dependent amplitude (2Fo cos(xω/v)). Our

analysis shows that this force depends on how the wavelength compares to the

system size L.

Our FP equation in scaled form is

∂P (z, θ)

∂θ
= Γ

∂

∂z

[
P
dṼ (z)

dz
− ε cos(2πz/λ) sin(θ)

]

+ D
∂2P

∂z2
(4.4)

where we have used the dimensionless quantities in Table 4.1 with unitless po-

tential:

Ṽ (z) =

{
0 if |z| < 1

2

(|z| − 1/2)2L2/x20 otherwise.
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Parameter λ represents the wavelength of the time-dependent force relative to

the unitless distance variable z. It is also proportional to the period of oscillation:

τ = 2π/ω = λL/v.

We have provided numerical results of Eqn. 4.4 for solution of P (z, θ) on a mesh

of 256 points in the z direction. The length of interval of z is L (|x| < L/2) plus

two boundary regions of size 3xo wide each. Then, the equation is integrated with

respect to time variable θ. The step size of the integration is ∆θ/(∆z)2 ≤ 0.1

The integration is started w,th an arbitrary initial condition at θ = 0 and is

carried out until there is no significant change in P (z, θ). Integral converged in

ten repetitions for the period of θ = 2π.

Expectation value of position as a function of θ is calculated as:

z(θ) =

∫ ∞
−∞

dz z P (z, θ).

And, fundamental Fourier coefficients that parametrizes the size of the oscillations

are calculated as :

C =
1

2π

∫ 2π

0

z(θ) cos(θ)dθ

S =
1

2π

∫ 2π

0

z(θ) sin(θ)dθ. (4.5)

In Fig. 4.1, it can be seen that the response of the system has non-monotonous

frequency dependence. When the boundaries becomes sharper, the amplitude of

oscillations grow as the boundary to bulk ratio xo/L decreases. More oscillations

of probability density fit inside of a wider boundary. Moreover, wider boundary

diminishes the variations in z and the features of the plots expand as it gets wider.

Latter signals longer wavelengths for which the response reaches to its asymptotic

value. Here also observe that S component of the response dominates for smaller

xo/L ratio. In our calculations we choose the size of ε, so that magnitude of

response becomes comparable to that obtained from the Monte Carlo analysis.

The matching of wavelength with L+6xo (effective length of diffusion plus the

boundary region) correspond to the extrema of the response. In Fig. 4.2 we show
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Figure 4.1: First Fourier components that give the magnitude of the oscillatory
response (as the expectation value of the position) of the system as a function of
wavelength. Each plot corresponds to different values of boundary smoothness
x0/L. Dotted line corresponds to the cosine (C) or out of phase component and
continous line corresponds to the sine (S) or in phase component. Notice here
that the scales of the plots are not equal.
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Figure 4.2: The probability densities of marked points in Fig. 4.1. (a) Point A
(λ = 0.6) accounts to consecutive dark and light patterns along the x-axis, which
indicates standing waves of two wavelengths that fits to the lattice size. (b) Point
B (λ = 1.6) accounts to only one wavelength.

that the probability densities corresponding to points A and B in Fig. 4.1. In

both of the plots (a) and (b) probability densities increase with z for θ ∼ π/4 and

z ∼ 0. Parity of the number of the maxima present in the response effects position

expectation value. If there are even number of maxima, position expectation value

is negative and if there are odd number of maxima, then the value is positive. The

graph shows oscillations as a function of wavelength. In case of more wavelength

fitting into the system (small λ) the change in z becomes less apparent.
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Dimensionless Quantities

θ = ω(t− L/(2v)) Γ = γV0/(ωL
2)

z = x/L ε = 2F0L/V0
λ = 2πv/(ωL) D = D/(ωL2)

Table 4.1: Dimensionless quantities that are used in scaling the Fokker-Planck
equation.
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Figure 4.3: Shock profile distributions for various numbers of particle number.

4.1.1.2 TASEP

As was discussed in previous chapters, TASEP with one class of particles can be

defined on a one-dimensional lattice with open boundaries. And these systems

support shock profiles of densities. We claim that the motion of a shock profile

of TASEP under periodical boundary conditions is a discrete realization of our

FP model.

Majority of the studies in literature have been focused on TASEP with time-

independent boundary rates. However, there are some recent studies on TASEP

with time-dependent rates. For instance Popkov et al., studied TASEP as a ve-

hicular traffic model under alternately changing red and green traffic lights [108].

Also Basu et al. studied frequency dependent modality on another transport

system [109].
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As we have discussed in Chapter 3, on the phase transition line between high

and low density phases (α = β ≤ 1/2), the system support macroscopic objects,

namely shock profiles. In the MC simulations they correspond to the occupation

statistics of states for associated particle number. Microscopically they are the

segregated states where occupied sites are accumulated to the exit boundary

and vacancies accumulate to the entrance boundary. It is reported that these

profiles do a random walk inside the lattice [36]. We have chosen to study shock

structures macroscopically, since macroscopic structures also display Brownian

motion characteristics, along with their easier to measure statistics [36]. Fig. 4.3

displays these profiles for a lattice of size N = 50. Each profile corresponds to

a different particle number n. Moreover, the flat part of Fig. 4.5 shows that all

the particle numbers in that region are equally likely to be found in the lattice.

This result suggests that the shock profiles do a random. The random walk

is constrained by the boundaries. The mechanism of constraint works in the

following way: If the profile gets too close to the entrance boundary, i.e., lattice

get very crowded, particles can enter the system at a smaller rate. And eventually

particle number decreases and the profile “feels” it is pushed to the middle of the

lattice. Or else, if the profile gets too close to the exit boundary, i.e., lattice get

very sparse, less particles leave the system and new particles enter the lattice.

Particle number increase, which translates to the pulling of the profile to the

midst of the lattice. This mechanism is the cause of non-flat regions around

boundaries in the Fig. 4.5.

The above motion can be interpreted as a random walk inside an effective

potential of V (x), the form of which is the same with the form of associated

free-energy functional proposed by Arndt et al [80]. It is also the form of our

static potential in FP analysis.

In our work, we report the effect of sinusoidally varying boundary rates to the

TASEP with single class of particles. Monte Carlo simulation was used in the

rest of the studies in this chapter. Perturbation causes the frequency of particle

entry or exit rate to change. Therefore, the change in the boundary rates causes

a change in the particle number. This change is conveyed to the shock position

after a delay. It can be see in Fig. 4.4 that the position of the profile is linearly

61



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  5  10  15  20  25  30  35  40  45  50

n

xs

No Oscillation

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

n

xs

t=0
t=τ/4
t=τ/2

t=3τ/4

Figure 4.4: The linear relationships between particle number n and shock position
xs for the profiles in Fig. 4.3. The shock position xs is defined as the lattice
position at which the density ρn(i) corresponds to the midpoint of the profile.
The inset displays the relationship when boundary conditions change sinusoidally
with period τ as discussed in the text. Here N = 50 and τ = 120.

dependent on particle number. By exploiting this fact, we track the particle

number instead of shock position.

Figure 4.6 demonstrates the effect of periodic pulse type of perturbation to

the particle entry rate on P (n) (given in Fig. 4.6) . We defined this perturbation

as follows: We increase the entry rate (on the order of 10 times of the usual rate,

i.e., α = 5) very much for a time of duration 0.1τ ; then we take the response

statistics for during a period of length τ . While reporting, in order to make the

effects more visible time averaged values of 〈P (n)〉τ are subtracted from P (n).

We divide the period into four quarters. In the first quarter the pulse causes

an increase in particle number, which tells us that the probability of finding the

shock profile near the entrance boundary is increased. The bump in the particle

number relaxes to its original state (P (n) − 〈P (n)〉τ = 0). However, in the
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Figure 4.5: Probability distribution P (n) of particle number n., for a lattice size
of N = 50 and α = β = 0.1.
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Figure 4.6: Response of the probability distribution function P (n) to a pulse type
perturbation to the entrance rate. The arrows shows the maxima of the curves.
See text for the details.
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second half of the motion retarded response is apparent. Higher values of the

particle number diminishes (pits of the distribution) yet lower values of particle

numbers are increased as a whole (notice overall slight increase in smaller particle

numbers). This tells us that shock profile is found most likely around the entrance

boundary and then walk inside of the lattice. This retarded effect on the motion

justifies our association of this model with Eqn. 4.1. However, response of the

TASEP system (Fig. 4.8 and Fig 4.7) is not as clean as the response of the FP

system (Fig. 4.1 and Fig 4.2). This problem is due to the diminishing of effective

force away from the boundaries as a result of stronger damping of TASEP.

I will now describe our study of sinusoidal perturbations to the system. I have

described the kinetic Monte Carlo method in the previous chapter. The method

needs pre-determined transition rates given as an input to the algorithm. In this

model, we have time dependent transition rates at the boundaries and static rates

elsewhere. The time-dependent rates are of the form:

β = βo −∆β sin(ωt), (4.6)

and

α = αo + ∆α sin(ωt). (4.7)

These rates are assumed to be constant during a time step ∆t, since ∆t� 2π/ω =

τ . Time tn in nth continuous time step is calculated as tn = (tn−1 + ∆t) mod τ .

Here τ is the period of oscillation. We carried out the simulation for 106 Monte

Carlo steps (MCSs). We define a MCS as N2 changes in the lattice of size N .

We choose a small lattice size to simulate, since we have observed that bound-

ary effects weaken substantially inside the lattice. Also we choose small values of

α and β, as this choice corresponds wider range of random walk. Therefore, we

take lattice size as N = 50, and the αo = βo = 0.1. We perturbed the system

around this point with a significant amplitude such as β = 0.1 − 0.099 sin(ωt)

and α = 0.1 + 0.099 sin(ωt). This perturbation drives the system between high

and low density phases. Fig. 4.7 shows the probability density ρ(n, t) of finding

n particles in the system at time t. The results qualitatively agree with the FP

results. However, note here that in Fig. 4.7, the time average of the density was

subtracted from ρ(n, t) to magnify its time-dependence. Also note that the scales
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in Fig. 4.7 are with respect to the variable t, while those in Fig. 4.2 are with

respect to θ, which contains a phase shift.

Moreover, we choose corresponding FP parameters so that these analysis be-

come compatible with each other. For instance, we choose diffusion constant of

FP equation to be D = ∆, where ∆ = 2α(1 − α)/(1 − 2α) is known exactly

??. For α0 = β0 = 0.1 this yields the value D = 0.225. Also, in FP analysis

boundary width to lattice length ratio is taken as xo/L = 0.08, since we have

observed in MC analysis that there is atypical behavior within two lattice sites to

the boundaries. (Note here that we exclude this problematic region when drawing

Fig. 4.7.)

Similar to the FP analysis we measured the fundamental components of the

response of the system:

C =
1

τ

τ∑
0

n(t)cos(2πt/τ)

S =
1

τ

τ∑
0

n(t)sin(2πt/τ) (4.8)

where

n(t) =
∑
n

ρ(n, t)n. (4.9)

Fig. 4.8 shows the C and S components of the response. It is apparent that

oscillations are not as clear as the ones obtained from the FP analysis. We

attribute this to the weakening of the effective force away from the boundaries.

This damps the effect in higher frequencies. However, the force is still effective

enough to cause frequency dependent response.
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Figure 4.7: Change in probability density ρ(n, t) from its time average. Point a
and b are marked in Fig. 4.2. (a) Point a (τ = 140) accounts to two wavelengths.
(b) Point b (τ = 700) accounts to one wavelength of the system. Simulations are
carried out for N = 50 and different periods calculated over 106 MCS.
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ferent period values. It is apparent that the response of the system has resonance
like structure. Points a and b correspond to the density distributions in FIG. 4.7.
Inset shows there is also sinusoidal behavior present for smaller values of τ .
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4.2 Dynamical Phase Transitions in TASEP

This section describes our MC analysis of TASEP with two classes of particles

under periodically oscillating boundary conditions. We oscillate the boundary

rates around a phase transition point. We show that depending on the frequency

of the perturbation, system’s response changes significantly. Furthermore, we

identify a dynamical phase transition between a symmetric response and a near-

symmetric response. The transition is abrupt, it is a function of frequency and it

is independent of magnitude of the perturbation.

As we have discussed in Chapter 3, the model has four phases, half of which

are symmetric and the other half is asymmetric. The symmetric phases are power

law (P) and low density (L) phases. And the asymmetric phases are a tiny regime

(TR) and high density-low density phase. In the symmetric phases both of the

particles are at the same state, but in the asymmetric phases even though the

parameters are symmetric for both of the particles they are not in the same state,

i.e., spontaneous symmetry breaking occurs. Fig. 4.9 displays joint probability

density functions ρ(n1, n2) for some of the parameters which are relevant to our

work. These points are chosen either from the TR phase or they are in close

proximity of this phase. The TR phase is composed of superpositions of shock

N/2 N

(c)

N/2 N

(b)

N/2

N

N/2 N

(a)

N/2 N

(d)

Figure 4.9: Joint probability density functions p(n1, n2) for various paramaters under
constant BC. Exit rates for the plot (a) are β1 = β2 = 0.285, for the plot (b) are
β1 = β2 = 0.275, and for the plot (c) are β1 = β2 = 0.265, and for the plot (d) they are
asymmetric as β1 = 0.265 and β2 = 0.285. For all of the graphs the rest of the rates
are equal to 1.

profiles. Fig. 4.10 shows these profiles. Each of the plot corresponds to the

density distribution of first class of particles only, provided that n1 > n2. This

condition implies limiting the average to the one leg (lower half of n1 = n2 line) of
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the boomerang shaped probability distribution. In agreement with our previous

model, motion of shock profiles under periodic boundary conditions is composed

of two different features. One of them is the diffusive motion inside an effective

force and the other one is the motion under an effective force that is created by

the manipulation of boundary conditions. The latter has a retarded effect on

the position of the shock. We have observed interesting phenomena through the

interplay of these two features such as strong frequency dependence and hysteresis

in the density function of the system. This hysteresis behavior was observed in

similar systems [110]. However, in our system hysteresis appears abruptly when

perturbation frequency is lowered. We associate these phenomena with a typical

velocity within the system.
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Figure 4.10: Various shock profiles in a system size of N = 100. Time-independent
boundary rates are α1 = α2 = 1 and β = 0.2675.
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4.2.1 TASEP under Periodically Driven BC

The kinetic Monte Carlo analysis of this work shares the basics with our previous

study. Apart from the introduction of the second class particles, differences lie on

the which and how rates are oscillated. In this model, we only oscillate the exit

boundary rates and take all other rates to be equal to 1. The exit rates oscillate

as

β1 = βo −∆βs(t)

β2 = βo + ∆βs(t)

where s(t) = sgn[sin(2πt/τ)]. Here τ is the period of oscillation, ∆β is the

magnitude of oscillation and β1 = β2 = βo is the anchor point we oscillate the

boundaries around. In order the remain in the TR phase we have taken βo = 0.275

and ∆β = 0.1. Each MC simulation is for 105 MCS. We calculated the period

dependent averages by obtaining time dependent averages within each period and

them averaged over the periods.

4.2.2 Variations in the character of Frequency Depen-

dence

We oscillate the boundary rates in a way that we can break the symmetry between

the two classes of particles. Our anchor point is in TR, since in this parameter

regime, system supports the widest range of random walks of shock fronts.

Before going further let me share some observations with you. For instance, for

very high frequencies, effective boundary rates equate the anchor value and sys-

tem remains in the unperturbed state. On the other hand for very low frequencies

system flows from one asymmetric boundary state to the other. We utilize joint

probability density distribution to capture the characteristics of responses. De-

pending on the frequency, these characteristics vary significantly. The results for

a system of size N = 200, with respect to different frequencies are in Fig. 4.11. It

can be observed that the boomerang-shaped profile (such as the ones in Fig. 4.9)
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can appear and disappear as a function of frequency. This shape of the density

distribution is preserved for high-frequencies of oscillation. However, this dis-

tribution is not static. It is slightly displaced in response to the perturbation.

We name these states as “near-symmetric” states. Their joint density functions

do not preserve the exact symmetry between two classes of particles due to the

displacement. However, they maintain their shape during a perturbation cycle.

Nonetheless, the shape varies at different frequencies. It can be of the form

which resembles the shapes in Fig. 4.9. However, the shape corresponds to

τ = 300 is not in Fig. 4.9. To reach this kind of shape, one needs to go for

higher values of β (deeper into the L phase), which is not in the parameter range

of oscillations. This signals a resonance-like response of the system, i.e., by os-

cillating the boundary parameters one can drive the density fluctuations much

higher than it can be obtained from the static values in the same range. By

further changing the frequency the boomerang shape is regained.

We quantify the response behavior by introducing a new variable. We start

by dividing a period into 100 time intervals as ti = iτ/100 where i is ith interval

0 ≤ i ≤ 100. And 〈n1〉ti and 〈n2〉ti are the expectation values of particle numbers

at time ti.

〈nm1 〉ti =
∑
n1,n2

nm1 p(n1, n2, ti)

〈nm2 〉ti =
∑
n1,n2

nm2 p(n1, n2, ti)

∆2
1(ti) = 〈n2

1〉ti − 〈n1〉2ti
∆2

2(ti) = 〈n2
2〉ti − 〈n2〉2ti

We define the new variable “average spread” as

∆̄ =

√∑
i(∆

2
1(ti) + ∆2

2(ti))

100

The parameter ∆̄ gives the average fluctuation value in number of particles during

a period. Figure 4.12 displays ∆̄ as a function of period. The extrema of the

graph indicate resonance-like behavior. These points are identified with letters

A − E, each of which corresponds to the distributions in Fig. 4.1. For instance,
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for point A density is similar to L phase with some tail into symmetry broken

phase (τ = 140) or for point B (τ = 190) the shape is very similar to the

boomerang-shape of the symmetric case. The density shape corresponding to

point C (τ = 300) has the shape of deep L phase discussed above. Point D

(τ = 610) corresponds to a near-symmetric phase with displacements. Finally for

point E (τ = 2900) and the points beyond, system stays in the symmetry broken

phases. In these low frequencies, hysteresis structure emerges abruptly.

Fig. 4.13 displays the effect of magnitude of oscillation on the spread param-

eter. It is apparent that the structure of the response remains the same, and it

is also apparent that it depends on the amplitude (∆β). At higher frequencies,

decrease in the amplitude results in decrease in the variation of the spread. How-

ever, at lower frequencies it gets harder to push the system to the asymmetric

states. Therefore, it takes longer times for spread to subside. Figure 4.14 shows

the results of the response with respect to the change in lattice size. The figure

indicates that characteristic times of the system are scaled by N . This is already

expected, since there is a typical velocity of the system. Yet, the response ex-

trema are not simply scaled by N since they may be affected the by the boundary

regions.

Fig. 4.15 shows the hysteresis behavior as a function of τ . The structures are

joint probability distribution functions drawn with respect to expectation values

of particle number. The area A that one wing of the hysteresis covers is

A =
∑
ti

〈n2〉ti∆〈n1〉ti .

Here ∆〈n1〉ti = 〈n1〉ti − 〈n1〉ti−1
, and the summation is on one wing. Figure 4.16

displays that hysteresis exists for all frequencies yet large-scale hysteresis appears

when period becomes at the order of τ ∼ 5N . These results are independent

of the amplitude or the lattice size. This limit is the starting point of the large

scale motion of the probability density ( in the A vs τ) . This motion signals

system is no more in a near-symmetric state. The typical velocity of the system

can be estimated as τ/N ∼ 0.2. Existence of it implies that faster frequencies

cannot induce large scale hysteresis. The inset to Fig. 4.16 displays that the
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starting point of the large scale motion has some structure. This point is the the

dynamical phase transition point, where tuning parameter is the frequency.
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Figure 4.11: Time dependence of the joint density distribution ρ(n1, n2) corresponding
to the marked points in Fig. 4.12. In each plot, the density at time t as well as density
at t + τ/4 (dashed lines) are drawn together to display the motion or the change of
shape. Here N = 200 and ∆β = 0.1.
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Figure 4.12: Average density spread (∆̄) graph with respect to different period values.
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in Fig. 4.11.
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is independent of the size of the periodic drive.
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4.2.3 Pulse Response

To be able to isolate the underlying mechanisms behind the different type of

responses we have also carried out computations where we apply a pulse type of

perturbation to the exit rate of first class of particles only. This pulse lasts one

tenth of a period of τ = 10000. The size of the pulse is β1 = 0.535 and t = 0.01τ

is its duration. When the duration ends the system relaxes to the nearest time-

independent steady state. As a result, time-dependent shock profiles and average

lattice occupation are obtained. To our surprise, both of them show significant

oscillatory behavior.

Figure 4.17 displays the probability of particles on one wing of the hysteresis

curve

P (n1, t) = K

n2=n1−1∑
n2=0

p(n1, n2, t).

Here K is a normalization constant. It is apparent that for smaller and larger

values of n probability subsided earlier. Moreover, in figures 4.18 and 4.19 we

show the behavior of shock profiles for various different times elapsed after the

pulse ends. In short times after the pulse ends, since some particles leave during

the pulse, large n1 shocks are deformed into small n1 shocks. Small n1 shocks

are lost completely since when the particle number in the lattice is that small

its entire population is evacuated during the pulse. System recovers from these

losses differently. Large n1 shocks are restored exponentially and small n1 shocks

are recovered resulting in oscillatory damping.

We define a parameter of relaxation to the steady state after the pulse has

been applied to the system. This was defined as the probability density deviation

from that of the steady state:

δ1(t) =
∑
n1

[P (n1, t)− P (n1,∞)]2. (4.10)

This parameter distinguishes the deformation of large n1 shocks and the loss of

small n1 shocks. Fig. 4.20 shows deviation values for profiles corresponding to

n1 < N/2 and n1 > N/2. The inset shows deviations for all values of n1. It is
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Figure 4.17: P (n1, t) for various values of t. P (n1, 10000) is a near steady-state
distribution.

apparent that for both types of shocks deviation continues to increase after the

pulse has ended. Eventually, the deviations relax to steady state values. It is

seen that small n1 distributions relax with shorter time-scale oscillations. This

hints that, rather than the bulk effects the boundary rates are dominant in this

relaxation. This surprising forms of behavior are the reasons behind the different

types of response we report.
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Chapter 5

Conclusions

We have reported the effect of sinusoidally oscillating boundary conditions (BC)

on two different TASEP systems. The result of the boundary conditions is to

generate an effective force on the Browninan motion of the shock profile. We

report interesting phenomena of resonant nature arising due to the interference

between this effective force and the system size.

In our first work, we have studied TASEP with single class of particles. We

have demonstrated that under the oscillatory boundary conditions the motion of

shock profile can be modeled with an over-damped Fokker-Planck system. Monte

Carlo analysis of the former and the numerical analysis of the latter confirm that

their results have a strongly frequency dependent nature and are qualitatively

very similar. The phenomena can be explained by the matching of the particle

number oscillations with the system size. Other forms of oscillations could be

tried to strengthen interrelationship of the TASEP system with the FP analysis.

In our second work, we reported the results of a Monte Carlo study of TASEP

with two classes of particles under oscillatory boundary conditions. We find that

the response of the system again has strong frequency dependence. We track

the response through the shape of the joint probability density: it extends or

gets compact in response to changes in frequency. Variation of the size has
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significant structure that does not depend on the magnitude of the drive, and

scales with the system size. Basis of this phenomena is the motion of shock

profiles within the system. Moreover, we reported the abrupt appearance of

hysteresis as the frequency of perturbation is lowered. This abrupt appearance

signals a dynamical phase transition. Appearance of hysteresis indicates that

there is a velocity threshold in the system. Below it, the system flows between

two states, each of which corresponds to the extreme limits of the BC, throughout

an oscillation cycle. The characteristic velocity value is ∼ 0.2 lattice sites per unit

time. We identify near symmetric states in which the joint probability density

preserves its form but is slightly displaced during a cycle. These effects appear

at higher frequencies and the particular shape depends on the frequency.

In both of the works we report the response of the systems at the phase transi-

tion points, where systems support the motion of the shock profiles to the largest

extent. Other points on the phase diagram, may also be analyzed to describe

more dynamical mechanisms.
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