
φ ί ϊ

• X S 5

-ÍSÍ¡ ІЦ-
W й ¿ J ІІ iLtyÜ І«ц/ t

; ') г 'Г і (^Г / Τ*»Γ·
■' ■' ·! t .· ’ Í . J-!'.; : / <>; J ; fe.·

4-j а ¿ і JÍ

ZKCLÜS32IHC· sciBMí

SIMLIB:
A CLASS LIBRARY FOR

OBJECT-ORIENTED SIM ULATION

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Oğuz Işıklı

July, 1993

^ ♦ bl|

■1Z‘S

b- ;1 ■} ■ '

0 Copyright 1993

by
Oğuz Işıklı and Bilkent University

in

I certify that I have read tliis thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Varol Akman (Co-advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Mcister of Science.

Prof. Akif Eyler (Co-advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Özgür Uluai^

Approved for the Institute of Engineering and Science:

Prof. Mehmet
Director of the Institute

ABSTRACT

SIMLIB:
A CLASS LIBRARY FOR

OBJECT-ORIENTED SIMULATION

Oğuz Işıklı
M.S. in Computer Engineering and Information Science

Advisors: Assoc. Prof. Varol Akman and Prof. Akif Eyler
July, 1993

Simulation is one of the most widely used techniques in decision making. Math­
ematical modeling of a real world system is a major task of the simulation
analyst. The selection of a computer language for implementing the model is
also important. Recent research in this area has focused on the compatibility
between simulation implementations and the object-oriented paradigm. It is
the purpose of this thesis to explore the use of an object-oriented approach
for the implementation of discrete event simulation applications. We present
a class library which provides the skeletal elements of a simulation. The ad­
vantages and the disadvantages of the approach are discussed with the help of
three prototype implementations: the single-queue/single-server system, the
production-line system, and the elevator system.

Keywords: Discrete Event Simulation, Object-Oriented Programming, Object-
Oriented Design, Class Libraries, C-|—I- Programming Language, Single-Queue/
Single-Server Systems, Production-Line Systems, Elevator Systems.

IV

ÖZET

SIMLIB:
NESNEYE-YÖNELİK BENZETİM İÇİN

BİR SINIF KÜTÜPHANESİ

Oğuz Işıklı
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışmanlar: Doç. Dr. Varol Akman ve Prof. Dr. Akif Eyler
Temmuz 1993

Benzetim, karar verme sistemlerinde çok yaygın şekilde kullanılan teknikler­
den biridir. Bir gerçel dünya sisteminin matematiksel olarak modellenmesi,
benzetim analistinin temel bir görevidir. Model gerçekleştiriminde hangi bil­
gisayar programlama dilinin kullanılacağı da önemli bir konudur. Bu alan­
daki son araştırmalar, benzetim uygulamaları ile nesneye yönelik program­
lama arasındaki yakın benzerlikler üzerinde yoğunlaşmıştır. Bu tezin amacı,
kesikli-olay benzetim uygulamalarında nesneye yönelik yaklaşımın kullanımını
araştırmaktır. Tezde, bir benzetim programının temel bileşenlerini sağlayan
bir sınıf kütüphanesi tanıtılmaktadır. Yaklaşımın avantaj ve dezavantajları
üç prototip uygulamanın yardımıyla tartışılmaktadır: tek-kuyruk/tek-işgören
sistemi, üretim-hattı sistemi ve asansör sistemi.

Anahtar Sözcükler: Kesikli-Olay Benzetimi, Nesneye-Yönelik Programlama,
Nesneye-Yönelik Tasarım, Sınıf Kütüphaneleri, C-b-h Programlama Dili, Tek-
Kuyruk/Tek-Işgören Sistemleri, Üretim-Hattı Sistemleri, Asansör Sistemleri.

VI

To my parents and friends

ACKNOWLEDGMENTS

I would like to thank my co-advisors Assoc. Prof. Varol Akman and Prof. Akif
Eyler (Department of Industrial Engineering) who have provided a pleasant
research environment and motivating support during this study.

I would also like to thank Prof. Mehmet Baray and the rest of the faculty
of the Department of Computer Engineering and Information Science for the
academic environment they have created.

Finally, I would like to thank my family, my friends, and everybody who has
in some way contributed to this study by lending moral support.

Vll

Contents

1 Introduction 1

2 Object-oriented simulation 4

2.1 The object-oriented p a ra d ig m .. 4

2.2 Basic concepts of computer s im u la tio n .. 6

2.3 OOP and simulation code development.. 9

2.4 The use of a class lib ra ry ... 11

2.5 Previous and related w o r k .. 12

3 Design of the class library 15

3.1 Object-oriented design of classes... 15

3.1.1 The use of prototypes .. 16

3.1.2 Class definitions.. 18

3.2 General form of a simulation app lica tion 20

3.2.1 Construction of a m o d e l ... 20

3.2.2 Running the m o d e l.. 24

3.3 Scheduling and execution of e v e n ts .. 27

viii

3.4 Mapping a model to a p ro g ra m ... 30

4 Implementation 32

4.1 Definition of classes... 32

4.1.1 The Sim Object c la s s .. 33

4.1.2 The Node class...34

4.1.3 The C ollection class.. 35

4.1.4 The Queue c la ss ... 36

4.1.5 The Buffer class .. 37

4.1.6 The So urce class .. 37

4.1.7 The S ink c l a s s .. 38

4.1.8 The S erver class... 39

4.1.9 The C ar r ier c la ss.. 40

4.1.10 The E n t it y class... 41

4.1.11 The Distribution c lass... 42

4.1.12 The SIMULATION c la ss .. 43

4.1.13 The S im E v e n t c la ss ... 44

4.1.14 The StableEvent class... 44

4.1.15 The M o v in g E v en t c la s s ... 46

4.1.16 The E v e n t List c l a s s .. 47

4.2 Communication between objects...47

4.3 User-defined behavior... 51

CONTENTS ¡X

4.4 System se rv ice s ... 5g

5 Three example systems 59

5.1 The single-queue/single-server exam ple ... 59

5.2 The production-line exam ple... 61

5.3 The elevator exam ple.. 53

6 Conclusion 7j

A Class declarations in SIMLIB 75

CONTENTS X

List of Figures

3.1 The hierarchy of system classes in SIM LIB.................................. 20

3.2 The definition of SERVER... 22

3.3 Constructor of S erver object for the no-crash c a s e 23

3.4 Constructor of S erver object for the cr«ish c a se 23

3.5 Object declarations of the single-queue/single-server application 24

3.6 Object links for the single-queue/single-server application 24

3.7 The definition of SIMULATION... 25

3.8 An example ShouldStop m e th o d .. 26

3.9 Sample output from the method D o n e .. 27

3.10 Class definitions for the event clcisses... 28

3.11 A sample Ezecwie m eth o d ... 30

3.12 The main body for a derived SIMULATION o b je c t31

4.1 Execute method of E n t it y In t o Sy s t e m ... 49

4.2 Execute method of EntityIntoQueue 50

4.3 Execute method of E n t it y F romQ u e u e ... 50

4.4 Execute method of E n t it y In t o S e r v ic e ...51

xi

4.5 Execute method of EntityFromSe r v ic e 52

4.6 Execute method of EntityFromSystem 52

4.7 A subsystem with a decision n o d e ... 53

4.8 A possible definition for D ecisio nN o d e 54

4.9 Method definitions for D ecisio nN o d e .. 55

4.10 Method definitions for event class EntityForDecision 56

5.1 The single-queue/single-server m o d e l... 60

5.2 The code of the single-queue/single-server e x a m p le 62

5.3 The production-line model with two s e rv e r s 63

5.4 The code of the production-line ex am p le 64

5.5 Model of the elevator system .. 66

5.6 The Execute method of E levE n d S e r v ic e 69

5.7 The Execute method of N e w E n t it y T o ELEVATOR................... 70

LIST OF FIGURES xii

List of Tables

3.1 System classes in S IM L IB ... 19

3.2 Auxiliary classes in S IM L IB .. 19

3.3 List of event classes provided in S IM L IB 29

4.1 Return conditions for CanSend and CanReceive......................... 48

6.1 Comparison of code length (number of lines) of the three proto­
types implemented with and without S IM L IB 72

xm

C h ap ter 1

Introduction

Simulation is one of the most widely used techniques in decision making. Math­
ematical modeling of a real world system is a major task of the simulation
analyst. The selection of a computer language for implementing the model is
also important.

Recent research in this area has focused on the compatibility between sim­
ulation implementations and the object-oriented paradigm [6]. The basic idea
is to model the components of a system as objects and to define the behavior
of the components as methods attached to these objects. Objects are treated
as “black boxes,” encapsulating code and data. They communicate with the
outer world through methods. This enables the representation of any system
component in a modular fashion (with the advantages of readability and main­
tainability).

Once a clear design of the classes involved in the model is at hand, it takes
less time to map the system to be simulated to a program in an object-oriented
programming (OOP) language. The inheritance mechanism of OOP aids in the
development of new classes from existing ones, thus resulting in reusable code.
The encapsulation principle of OOP, combined with the use of abstract data
types, enhances modularity.

It is the purpose of this thesis to explore the use of an object-oriented ap­
proach for the implementation of discrete event simulation applications. The

CHAPTER 1. INTRODUCTION

domain of interest (arguably) covers only a small portion of the simulation ap­
plications that are developed in the “real world,” but this is adequate to present
the main idea of this study. The general structure which best illustrates our
interest is a production-line model employing components like queues, servers,
carriers, etc. connected to each other in a linear fashion. The execution of the
model can be basically stated as the traveling of entities between components
to receive service.

The general components of such a system can be modeled as objects and
collected in a library for future use. While the components of the library
provide the basic characteristics, it is the task of the programmer to define
additional behavior depending on the particular application to be developed.

In our research, we tried to extract a minimal (in some sense, canonical) set
of system components to include in our simulation library—SIMLIB. There­
fore, we first developed three prototype applications which may be regarded
as “classical” in the area of discrete event simulation. These are (i) a single-
queue/single-server system, (ii) a production-line system, and (iii) an elevator
system. Our aim was to investigate the general concepts of simulation program­
ming along with the most frequently used data structures. Essential insights
resulting from this phase of the study facilitated the design of SIMLIB to a
great extent.

Later, the same systems were implemented by the classes and routines
provided by SIMLIB. Using our previous experience, a comparison between
the two development strategies was carried out. Major aspects of the latter
approach, such as the class hierarchy, the execution of events, the navigation
of entities, and the integration of user-defined behavior into system behavior,
were distinguished.

SIMLIB has been implemented using the C-1--1- language [24] on SUN Work­
stations^ running under the UNIX^ system. C-1-+, inheriting the portability of
C, has received wide acceptance. The broad range of functionality of the lan­
guage and its availability on every UNIX system have been the major reasons
for us to choose *

*SUN Workstation is a registered trademark of Sun Microsystems, Inc.
^UNIX is a registered trademark of AT&T Bell Laboratories.

CHAPTER 1. INTRODUCTION

The organization of the thesis is as follows:

• Chapter 2 states the basic notions of OOP. The general concepts of sim­
ulation are also described in this chapter. These ideas are combined to
define the purpose of the research, i.e., the use of an object-oriented class
library for simulation. The chapter ends by reviewing some previous
related work.

• Chapter 3 deals with design issues. By “design” we simply refer to the
declaration of classes, viz. definition of object types along with their
attributes and methods. After listing the classes included in SIMLIB, the
development of simulation applications with such a library is illustrated
by example code fragments.

• Chapter 4 demonstrates the implementation of SIMLIB. The definitions
of the classes are given in this chapter. The communication mechanism
that is used to ease the execution of the model by providing a clear
interface for the transfer of entities among objects is explained. The
system services provided by SIMLIB are introduced.

• Chapter 5 details the three prototype implementations that have been
developed. These—a single-queue/single-server system, a production­
line system, and an elevator system—are described together with their
corresponding models. This chapter aims to demonstrate the efficacy of
our approach by providing a comparison between the procedural and the
OOP paradigms.

• Chapter 6 concludes the thesis and discusses the advantages and the
limitations of our implementation. Finally, prospects for future work are
stated.

To provide the reader with the class definitions of SIMLIB, the header file
of the system containing the class declarations is listed in Appendix A.

C h ap ter 2

Object-oriented simulation

Simulation software generally uses certain types of abstract data modules to
model the components of a real world system. Examples include entities trav­
eling through the system, queues where entities are forced to wait until the
occurrence of a certain event, points where entities are serviced, etc. The im­
plementation of these data modules with an object-oriented approach is the
main purpose of our study.

In this chapter, we first provide the bcisic ideas of the object-oriented
paradigm and the general concepts of simulation. Then we concentrate on
the use of a C-|—l-based class library to ease the task of coding simulation
software. We conclude by reviewing some previous work related to our study.

2.1 T he object-oriented paradigm

The concepts of OOP are having a profound impact on software engineering.
Advantages of this programming methodology over traditional programming
have been documented in [5] and [12]. In [12], Meyer states that

“. . . object oriented design may be defined as a technique which,
unlike classical (functional) design, bases the modular decompo­
sition of a software system on the classes of objects the system
manipulates, not on the functions the system performs.”

CHAPTER 2. OBJECT-ORIENTED SIMULATION

Our purpose here is not to provide a complete characterization of OOP, but
rather to state the general aspects of this methodology, especially focusing on
the properties that make OOP a feasible candidate for simulation applications.
From our point of view, the four key components of OOP in this respect are
abstract data types, encapsulation, inheritance, and late binding.

Abstract data types

Data abstraction allows the programmer to create data structures which
can be manipulated in the same way and with the same level of efficiency
as language defined types. The key construct in implementing abstract data
types in C ++ is the class. The elements of this data structure are referred to
as “member variables.” Member variables are hidden from the outside world
except for some specially designated functions. Only the functions of the class
and these specially permitted functions can access the data part of a class
variable. Functions can be “overloaded,” that is, facing multiple definitions, a
compiler selects the correct interpretation at run time.

Encapsulation

The encapsulation principle treats classes as self-contained program units.
Unlike conventional programming methods, encapsulation requires that present
and future uses for a data structure be explicitly recognized by the developer of
the class and the interface between the data and the outside world be declared.
So, a class is a “black box” which offers a selection of services while hiding
the details of how these services are actually implemented. This leads to the
design of a class as a self-contained, encapsulated programming entity, which
in turn leads to reusable code.

Inheritance

Inheritance allows the construction of a class to include all the members
(data and functions) of another cl«iss. The clciss whose members are included
is called the 6ase class; a class which is being constructed from the bcise class
is called a derived class. Inheritance encourages the design of hierarchical data
structures with classes as the building blocks. This also yields reusable code,
since a new cliiss is more easily constructed from an existing class which already
has some of the desired properties.

CHAPTER 2. OBJECT-ORIENTED SIMULATION

Late binding

Binding refers to the process in which a procedure and the data on which
it is to operate are related. Traditional languages use early binding which per­
forms this relation during code construction. In contrast, OOP provides late
binding which delays the binding process until run-time.

Many of OOP’s characteristics can be traced to the SIMULA language [13].
SIMULA has been popular in academic use but has never gained widespread use
in the commercial environment. While SIMULA embodies some of the OOP
concepts, it is not a pure OOP language. Smalltalk, one of the purest OOP
languages, has been heavily influenced by SIMULA’S model of computation.
Now, there are many OOP languages available in the market. Some of these
are special-purpose languages presented cis front-end program development en­
vironments (especially in the area of object-oriented database management).
Most of these hybrid object-oriented languages have extended the definitions
of popular languages such as Pascal, C, or LISP. Among these, the C-1—|- lan­
guage, an extension of C, is known as the leader. C-f-t- was designed by Bjarne
Stroustrup at AT&T in the early 80s [24]. Its acceptance spread from AT&T
to major universities and to other computer industry firms.

The first implementation of C-f-f wcis released as a preprocessor for any C
compiler. This decision was made to ease the adoption of C-|-+. Currently,
there are many C-I-+ compilers.

2.2 B asic concepts o f com puter sim ulation

All real world systems have something in common: they contain interacting
subsystems and the task of these subsystems is to convert system inputs to
system outputs. So, we define a system as a relation between inputs and
outputs.

Simulation is the “imitation” of the operation of a real world system over
time [1]. This process has the purpose of generating an artificial log of the
system, and results derived from this history can be used to draw conclusions

CHAPTER 2. OBJECT-ORIENTED SIMULATION

on the operating characteristics. Regardless of its complexity, the successful
simulation of a system depends on an understanding of its structure. Such an
understanding is required to study how an organized collection of subsystems
can process the inputs.

The behavior of a system is studied by the development of a simulation
model. The model is usually a collection of statements and assumptions about
the operation of the system to be simulated. These assumptions are expressed
in mathematical, logical, and symbolic relationships between the objects of the
system.

In some cases, the developed model can be “solved” by mathematical meth­
ods. Such solutions require the help of techniques like differential calculus,
probability theory, algebra, etc. However, many real world systems are so
complex that their models cannot be solved analytically in a precise way. In
those cases computer simulation is used to imitate the behavior of a system.
The output of simulation is an envisionment of the real system and is accom­
panied by necessary statistical data.

Our study covers the simulation of discrete event systems. In a discrete
system, the system state changes only at discrete points in time. For example,
in a queueing system, the variable representing the number of entities in the
queue changes only when a new entity arrives at the queue or when an entity
leaves the queue. The major concepts of a discrete-event model of a system
are briefly defined as follows:

System state A collection of variables that contain all the information nec­
essary to describe the system at any time

Entity Any object or component in the system which requires ex­
plicit representation in the model (e.g., a server, a customer,
a machine)

The properties of a given entityAttributes

Set A collection (list) of associated entities, ordered in some log­
ical fashion (e.g., a queue of customers waiting for service or
a set of parts traveling in a conveyor)

Event An instantaneous occurrence that changes the state of the
system (e.g., arrival of a new customer)

Activity A duration of specified length, with a known beginning alid
end (e.g., a service time or an inter-arrival time that is de­
fined in terms of a statistical distribution)

Delay A duration of unspecified length, with an unknown end (e.g.,
the waiting time for a customer in a queue, which depends
on the total of service times of the customers that are ahead
of that customer in the queue)

The task of the modeler is to extract these components from the real world
system and to construct a computational framework in a programming lan­
guage. Modeling is the first and the most important phase of simulation.
Once a validated model is ready, the other phases are carried out more easily.
In [19], Pidd describes the stages of a simulation process as:

• modeling

• programming

• experimentation

CHAPTER 2. OBJECT-ORIENTED SIMULATION 8

Modeling usually employs a number of approaches to characterize the sys­
tem: the use of logic to represent the rules which govern the behavior of the
system, the representation of stochcistic behavior by taking samples from a
probability distribution, the comparison of alternative policies in terms of mod­
ularity and scalability, and finally validation.

Many simulation applications are large, i.e., they have many entities, un­
dergo many state changes, and comprise numerous possible interactions be­
tween entities. So, a modular model must lead to a modular program for the
overall performance of the project. Considering that the program can be used
by an unskilled client, the interface between the program and the user should
receive special emphasis. Generally such programs employ three main sections:
a parameter editor which allows the user to set the values of the variables of
the system, a simulator which simulates the operation over time using the logic
and rules of the system, and a report generator for the presentation of results.

CHAPTER 2. OBJECT-ORIENTED SIMULATION

Instead of experimenting with a real system, it is easier to perform trials on
a dynamic computational model (where the attributes of the system are easily
changeable). If the model is a valid representation of the system, the results
of the simulation can be transferred to the real world.

The three stages that are described briefly above are not entirely distinct.
When developing a system model, the analyst should consider the programming
implications of the model. Similarly, when programming, the ease of exper­
imentation should be kept in mind. In the experimentation phase, potential
errors or new ideas may lead to revisions in the model and the program. Our
study is aimed at the development of an approach that covers the boundary
between the modeling and the programming phases.

2.3 OOP and sim ulation code developm ent

The purpose of modeling a real world system is to identify the components
(entities) of a process and to define the interfaces of these entities with each
other. For example, in a single-queue/single-server system, the entities are the
customers (entities to be served), the queue (the FIFO list where customers are
forced to wait), and the server (the entity where customers get service and leave
the system). Each of these entities have attributes and behavior to characterize
their operation in the system. To model this process, the system analyst should
extract this characterization. Once the abstraction of the entities are clearly
defined, the complete system can be modeled easily.

OOP focuses on the objects that make up the system. The behavior of each
object is encapsulated in the object itself rather than the main program. This
results in modular and reusable code because specific details are embedded in
the declarations rather than the main code. The guidelines of OOP are stated
as follows [10]: •

• Identify the classes in the system

• Define the interface of each class with other classes and the system

• Implement and validate the claisses

CHAPTER 2. OBJECT-ORIENTED SIMULATION 10

• Write the main program which creates and manipulates the objects ac­
cording to the interfaces provided

In fact, the above guidelines can be applied to simulation code development.
The entities (object classes) coming from the model are the components of the
system. Their interaction (interface) with other classes is also defined in the
model. Mapping this formalization to code in an object-oriented fashion will
lead to a program which will ensure the correct representation of the system.
After the correct implementation of the classes, the main program initiates the
simulation and invokes the necessary methods to run the complete process.

From this point of view, the above guidelines can be mapped to object-
oriented simulation code development as follows:

• Identify the components and processes (entities) of the system under
study

• Define an object class to represent each entity of the system along with
its interface

• Characterize the conditions that lead to changes in the system state,
treat these as events and specify the actions of scheduling, occurrence,
and results of these events in the object classes they are related

• Develop the main program which creates the entities of the system

Once initiated correctly, the overall running of the program is completely
determined by the behavior of the entities. For if our major purpose in sim­
ulation can be stated as observing the changes of a system with respect to
some parameters, these changes are embedded in the entities and these events
invoke the necessary methods of the classes to represent the state evolution of
the system. For example, the queue in a single-queue/single-server system will
contain the necessary data structures for keeping the customer entities and will
provide the necessary services for the arrival of a new customer into the queue
and the removal of the next customer for service. During the execution of these
events, necessary statistics, e.g., the number of entities inserted into the queue
or the total waiting time in the queue, will be collected automatically.

CHAPTER 2. OBJECT-ORIENTED SIMULATION 11

Two aspects of OOP, inheritance and reusability, are also worth noting
here. Clear definition of system entities would allow developers to minimize
their programming efforts. Reusable components and submodels can provide
the necessary services without a need for inspecting or verifying the implemen­
tations of these previously defined classes. Such a clear definition will focus on
the characterization of an entity along with its interface and will not probably
contain any piece of code that is specific to an application. For example, a
queue has its major attributes and behavior, and once defined, this cleiss can
be used in a variety of applications that need to implement such FIFO lists.
If extra or different behavior of a previous!}· defined entity is required, then
inheritance can be used to refine the old definition.

Inheritance allows a new class to be derived cis an extension of an existing
class. The derived class, in addition to inheriting the attributes and operations
of the base class, can add new members of its own as well as restricting access
to the definitions of the base class. Inheritance promotes modularity because it
allows designers to express the ways in which objects are similar (or different).

2.4 T he use o f a class library

The term library, as a software engineering concept, is used to denote a col­
lection of data structures and subroutines kept in an orderly fcishion. The
aim of this collection is to allow the reuse of previously defined data types
and functions whenever possible. A carefully designed library can reduce code
development time in a programming environment.

The most distinguishing advantage of object-oriented libraries comes from
the inheritance property. In procedural languages, it is not easy to borrow
the characteristics of a data structure without redefining it entirely. But OOP
allows the definition of new classes as extensions of existing classes. Therefore,
having a core set of class definitions for a particular purpose, the programmer
can derive new classes with a higher level of complexity without rewriting all
the definitions.

Pidd [19] states that the notion of establishing a simulation software li­
brary will increase the modularity of the applications developed. Rather than

CHAPTER 2. OBJECT-ORIENTED SIMULATION 12

devising subroutines from scratch, these structures can be devised and kept
in a library as reusable code. For example, complex queue handling may be
a component of many models so the necessary class definitions can be made
available in a library. They are then included as necessary in new programs;
when more specialized attributes or actions are needed, appropriate derived
classes might be constructed.

Simulation programs make heavy use of certain abstract data types like
queues, conveyors, servers, etc. Therefore, the existence of a class library which
provides the skeletal elements of a simulation application is clearly useful. Such
a library should contain the most basic elements. Another important point
is to allow the programmer to extend the services of the library. This can
be accomplished by defining subclasses from the existing classes. These new
elements can use the actions of their parent classes or override them.

In summary, major roles of a simulation class library can be stated as
follows:

• Provide a set of basic objects and actions related to these objects that
are commonly implemented in simulation software and include services
such as gathering statistical data and error-checking

• Allow the user to make extensions to this library to obtain more special­
ized components and actions

2.5 Previous and related work

Looking at the history of simulation, we can state that early applications have
been implemented through the use of general purpose programming languages
such as FORTRAN, ALGOL, Pascal, C, PL/1, and BASIC. Now, there are
more than one hundred special purpose simulation languages available. The
most popular of these for discrete event simulations are GASP [20], GPSS [23],
SIMSCRIPT [22], SIMAN [17], and SLAM [21].

The availability of these languages has not changed the fact that FORTRAN
is the most popular language for simulation. Most authors attribute this to

CHAPTER 2. OBJECT-ORIENTED SIMULATION 13

the fact that the choice of language is primarily based upon the availability
and the user’s knowledge of the language [21].

Continual search for better approaches for implementing simulation models
has shown that there is a promising relationship between the concepts of sim­
ulation and expert systems [11, 14, 15, 16, 18]. In particular, it seems that the
OOP approach of expert systems is appropriate for implementing simulation
models [3, 25].

It is not possible to cover all the research on object-oriented approach to
simulation in this section. In the sequel, we review some studies that are most
relevant.

MODSIM II [2] and Sim-f-f- [10] are two object-oriented languages that can
be used for simulation purposes. The syntax and structure of MODSIM II is
beised on that of Modula-2. It has additional constructs for object types and
simulation. The compiler emits C code and its simulation constructs are based
on SIMSCRIPT II.5 [22] language. Its graphical capabilities provide the user
with a variety of interface tools. From the OOP view, it supports inheritance,
dynamic binding, polymorphism, data abstraction, and information hiding.

Sim+-f is a C-f-l- package of object types and routines specially designed
for writing object-oriented parallel simulations that execute on multiprocessors.
Besides portability, the system provides facilities for parallel I/O, built-in user
level and system level tracing, performance analysis, and run-time mapping
of entities to processors to support parallel simulation. Standard simulation
libraries for random number generation, data collection, and linked list manip­
ulation are also available.

In [7], Basnet et al. describe their research to develop an object oriented
modeling environment. Highlights of their work are as follows:

• Physical and information/decision components of a system are modeled
separately •

• Set theoretic formalisms can be constructed to represent system intelli­
gence

• A model specification language to describe the fundamental structure of

CHAPTER 2. OBJECT-ORIENTED SIMULATION 14

system elements is necessary

• It is desirable to provide the system modeler with a graphical environ­
ment that allows the building, running, and analyzing of a model without
directly interacting the language

Kaylan [9] focuses on a framework for discrete event simulation by support­
ing the model construction and experimentation phases with a graphical user
interface. This framework is implemented in Smalltalk-80 [8] language with
the OOP approach. He states that OOP incorporated with discrete event sim­
ulation reveals a modular and expandable simulation application environment
which can be modified for modeling a range of production systems from job
shops to flexible manufacturing systems.

The appropriateness of OOP languages for developing discrete event sim­
ulations is also discussed in [6]. Examples of implementations are presented
using a library of C-f-f- classes. As a result, Eldredge et al. state that OOP is
highly compatible with the representation used in simulations. The paradigm
enables a program to be written with a focus on the description of the problem
rather than the algorithms for solving the problem.

Blair and Selvaraj [4] present DISC-f--|- (Discrete Event Simulation in C-|-+),
a library of routines written in C and C-f-f- to support the design and program­
ming of simulation models. DISC-f-f allows the simulator to construct simpler
models from standard library objects or design more complex models by de­
riving specialized and sophisticated objects from the library objects.

C hapter 3

Design of the class library

The design of a class library based on object-oriented principles mainly consists
of the declaration of basic classes. By declaration, we mean the definition of the
object classes along with their attributes and methods. In this chapter, first,
we introduce the classes we have included in our design. Then, we present the
details of developing simulation applications in our paradigm. This is followed
by a section on the scheduling and execution of events. The last section treats
the mapping of simulation models to source code.

3.1 O bject-oriented design of classes

OOP treats each data unit as an object. In fact, this is not the case for most
of the OOP languages of today as these languages have built-in data types
like integer, character, etc. with predefined operations on them. Besides,
from a utilitarian viewpoint it is wasteful to declare an object for each piece
of data used in an application. A better interpretation for the declaration
of objects might come from the notion of “necessity.” In other words, one
should define an object class for a particular purpose if this data type is really
most appropriately represented and used in the form of an object. Then, the
question is to determine the “appropriateness.”

Before introducing a new class for a data type of interest, the following
issues should be studied:

15

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 16

• Does the associated data type contain information that should be kept
out of the “sight” of the main program? In other words, is it necessary
to provide access to all attributes of the data or would a clean interface
be adequate?

• Is it possible to represent the data as a self-contained unit? This might
be owing to the fact that not all the users of a class should care about
the overall aspects of the class. Objects derive their power from their
“privacy” and this should be kept in mind in order not to declare classical
record structures in the form of objects.

• Can the data type later be used for similar purposes? If so, is it possible to
declare new data types and functions depending on the existing definition
with little effort?

The questions above correspond to the principles of abstract data types,
encapsulation, and inheritance, respectively. The difference between an ob­
ject and other structures finds its explanation in these principles. For object-
oriented simulation applications, it is therefore necessary to consider the use of
objects in such a fashion. Before mapping the components of a model to source
code, the designer/programmer should decide about the data representation for
these components.

3.1.1 The use of prototypes

In the early stages of our study, we developed three prototype simulation appli­
cations with the sole purpose of determining the basic object types of a general
simulation application. The development languages were C and C-I-+ but the
design was not object-oriented. These applications were later used a testbed
to investigate the effectiveness of the object-oriented approach. We now briefly
describe these prototypes in order to give an idea of the skeletal elements of a
simulation application. •

• A single-queue/single-server system
In this model, the parameters of the system are the inter-arrival time of
the customers and the service time of the server. The execution is quite

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 17

simple: customers entering the system join the queue with respect to a
given distribution of inter-arrival time and the server provides service to
the customers by removing them from the queue one by one. At the end
of the service time, customers leave the system.

• A production-line system
This is a modified version of the preceding system. Entities enter the
system and travel through a number of server units before they leave.
Transportation between two consecutive servers is performed by carriers.
To avoid the blocking of servers, input and output buffers are placed be­
fore and after each server. After the last server, entities leave the system.
The parameters of the model are the inter-arrival time of entities, the
number of servers, the service time distributions of servers, the capaci­
ties of buffers, and the travel-time and capacities of the carriers.

• An elevator system
The model consists of a number of floors and an elevator. A customer
arriving at the elevator indicates a request and starts waiting. The ele­
vator visits the floors to meet the requests. This is done by picking up
the customers who wish to travel in the current direction of the elevator.
Customers leave the system when they reach their floor.

In addition to determining the basic components of a general simulation
application, the implementation of these prototypes has also helped in char­
acterizing the execution principles of such applications. Briefly, the steps of
execution of a simulation application are cis follows:

-S e tting up th e m odel: In this phase, the components of the system are
created and the necessary parameters are set. This also includes the definition
of the interface between the components by declaring the actions to be taken
at the time of the events.

-R unning the m odel: The program is run for a certain length of time.
Once the model has been defined, this phcise is used for validation of the system
and collection of the results.

-O u tp u t of results: After the execution of model, the results should be
presented in a proper fashion. The results are mainly statistical information

CHAPTER :i. DESIGN OF THE CLASS LIBRARY 18

representing the system performance but other information like a transcript of
the overall run can be helpful.

Our primary aim in the implementation of the prototypes has been to
determine these characteristics. Using the ideeis acquired from this phase,
our fundamental task—the determination of the clcisses in SIMLIB—has been
eased to a great extent.

3.1.2 Class defin itions

Inspired by the ideas of the prototyping phase, we have divided our classes into
two categories:

• System classes: These represent the real-world components of a model.
Examples include servers, queues, or the entities traveling through the
system.

• A uxiliary classes: These do not have physical counterparts but rather
serve as control and support structures. Events, event lists, and distri­
butions are in this category.

The complete list of classes we have decided to include in our library can
be found in Tables 3.1 and 3.2. (These do not reflect the initial structure of
our design. As we proceeded with the development of SIMLIB, we used the
three prototypes as a testbed. This resulted in contributions and changes in
the design.) It may not be easy to meet the requirements of each and every
simulation application but a library which provides the general objects with a
flexibility to allow the tailoring of the provided services is the purpose of this
study.

Using the inheritance principle, the system classes have been designed in a
top-down manner. In fact, all these objects share some common characteristics
like attributes (that denote system-related information) or actions (that are
performed to keep statistical data). For example, each system object should
have an ID number, a status to represent the current state of the object, and a
name for debugging purposes. In addition to these attributes, methods to set

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 19

Class Represents
Sim Object the base object for the generic behavior of system objects
Entity the entities that are serviced and transferred in the system
Node a particular point in the system
Collection a list of entities
Queue a collection of entities under a FIFO regime
Buffer a queue with a predetermined capacity

the nodes where entities are generated
the nodes where entities leave the system

Source
Sink
Server the nodes in the system where entities are processed
Carrier the objects that transfer the entities through the system

Table 3.1. System classes in SIMLIB

Class Purpose
Event store the time point and type of changes in system state
EventList keep a list of future events in chronological order
Distribution provide statistical distributions of durations for activities
Simulation hold the current state of the system

Table 3.2. Auxiliary classes in SIMLIB

and retrieve the values of the attributes can also be shared by the classes. For
example, once a queue and a buffer are considered, the only difference between
these two is seen to be the behavior of the objects when an entity is inserted
into these collections. The queue always places the incoming entity to the end
of the list while the buffer does this only if its capacity is not exceeded. So,
the Remove method of the buffer can ecisily use the corresponding method for
the queue with a small amount of extra code.

The hierarchy of system classes in SIMLIB is depicted in Figure 3.1.

Sim O b je c t

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 20

Queue

Buffer

Figure 3.1. The hierarchy of system classes in SIMLIB

3.2 G eneral form o f a sim ulation application

3.2.1 C onstruction o f a m odel

A system consists of objects, each serving a particular purpose. When we
consider a single-queue/single-server model, the objects are:

a A Source where the incoming entities are generated with respect to a
statistical distribution for determining the inter-arrival time

a A Queue where entities are forced to wait under a FIFO regime until
the server is ready to provide service

a A Server where entities get processed after leaving the queue

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 21

• A Sink where entities leave the system

All these objects, besides their methods to process the entities of the system,
hold the necessary statistical information for the final stage of the implemen­
tation. As for the source, the number of entities generated to the system or
for the queue the total time that entities have spent waiting in the queue or
for an entity the total time that has been spent in the system (from source
to sink) are examples of such statistical data. At each state change of the
objects (namely, at each event) the attributes representing the statistical data
are updated.

Definitions of these objects are provided in our library for ease of use. But
before using an object, the programmer should “construct” the object. This
construction process consists mainly of the allocation of memory space for the
object. (It also sets the values of the attributes of the object.) There can
be any number of constructor methods for an object class with the constraint
that the types or number of the specified attributes are different. The following
example for the construction of a server will make this point clear.

Server, in addition to those it inherits from SimObject and NODE, has
extra attributes to represent the structure and state of a processing entity:

-the total number of entities processed,
-the total time that has been spent idle,
-the time point that the server has most recently started waiting,
-the distribution of service time for the incoming entities,
-the distribution of repair time in case of crashes,
-the probability of crash for the server.

The corresponding class definition is given in Figure 3.2.

In C-|--f-, a method having the same name with its class is treated as a con­
structor. In Figure 3.2 there are three constructor methods. The first of these
is the default constructor that is called when no parameters are supplied by the
program. The other two methods specify different ways of creating a server ob­
ject, the first with five parameters and the second with three parameters. The
reason for this is that in some applications the crcish probability and the repair

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 22

class Server:public Node

int total_entities;
double total_idle_time;
double last_wait;

public:
Distribution *dist_service;
Distribution *dist_repair;
double prob_crash;

Server(){}; //constructor methods
Server(char*,int.Distribution*,Distribution^,double);
Server(char*,int.Distribution*);
/ / .

// . other methods
/ / .

};

Figure 3.2. The definition of SERVER

time distribution of the server may not be used. Then the parameters to be
supplied to the constructor are the name and the id of the SERVER object (at­
tributes coming from the superclasses) and the service time distribution only.
The no-crash and crash cases are represented in the constructor declaration as
in Figures 3.3 and 3.4, respectively.

The declarations of the single-queue/single-server application are given in
Figure 3.5. This code fragment is used to create SOURCE, QUEUE, SERVER
and Sink objects.

System objects, after their declaration, can be linked to each other to au­
tomatically navigate the entities through the system. These links are declared
by the SetLinks method of the objects. Each object can specify its input and
output links by this method. The input link denotes the node entities are
received from, and the output node denotes the node entities are sent to.

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 23

Server::Server(char* n,int sid,Distribution* ds)
{
name=malloc(strlen(n)+l);
strcpy(name,n);
id=sid;
status=IDLE;
dist_service=&ds;
total_entities=0;
total_idle_time=0.0;
last_wait=0.0;
type=oServer;
insert_to_objlist(this);
}

Figure 3.3. Constructor of SERVER object for the iio-crash case

Server::Server(char* n,int sid,Distribution* ds,
Distribution* dr,double p)

{
najne=malloc(strlen(n)+l);
strcpy(name,n);
id=sid;
status=IDLE;
dist_service=*ds;
dist_repair=*dr;
prob_crash=p;
total_entities=0;
total_idle_time=0.0;
last_wait=0.0;
type=oServer;
insert_to_objlist(this);
}

Figure 3.4. Constructor of SERVER object for the crash case

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 24

Source S0("Source",0,dist_arrival);
Queue QU("Queue",0);
Server SE("Server",0,dist_service); //no crashes
Sink SI("Sink",0);

Figure 3.5. Object declarations of the single-queue/single-server application

For the single-queue/single-server case, SOURCE sends the generated enti­
ties to Queue, Queue sends the entities coming from the source to SERVER
and Server, after servicing the entities coming from QUEUE, sends them to
Sink. The declaration of these links is as in Figure 3.6.

SO.SetLinks(SO,QU)
QU.SetLinks(SO,SE)
SE.SetLinks(QU,SI)

Figure 3.6. Object links for the single-queue/single-server application

The use of constructor and SetLinks calls make up the representation of
the model in terms of system objects. At this point, the objects are ready to
process as defined in their methods. But the synchronization and execution of
the processes are determined by the events of the system. To run the model,
the programmer should also indicate the events of the system.

3.2.2 R unning the m odel

The running of a model can roughly be described as the continuous execution
of events in the system. Before describing this process, it is necessary to define
the object which controls the state evolution of the model. This object is of
the Simulation class; each simulation application either uses an object of this
class or derives a new class from it.

The attributes of a SIMULATION object are the current time point of the
simulation run, a chronological list of events to occur, and a status variable
(Figure 3.7). The methods are as follows:

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 25

class Simulation
{
public:

double SimClock;
EventList PEL;
int SimStatus;

friend SimEvent;

SimulationO;
virtual void Init();
virtual void StepO;
virtual void Run();
virtual void Done();
virtual int ShouldStopO;

};

Figure 3.7. The definition of SIMULATION

-a void constructor
-Hiit is called to set some application specific values before the execution of

the simulation
-Step executes the next event to occur
-Run executes events until the stopping condition of the simulation is ful­

filled
-Done is called after the simulation to display statistical results
-ShouldStop checks, before the execution of each event, whether the simu­

lation is to continue

Run, after calling ShouldStop, invokes Step to carry out the simulation. The
user can override ShouldStop to define the stopping condition of the program.
Examples of the stopping condition can be a particular status of one of the
system objects, a bound on the total number of entitites processed by the
system, or a time limit. The code fragment in Figure 3.8 denotes the ShouldStop
method of our single-queue/single-server example which stops the execution
after 1000 units of time have elapsed.

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 26

int QueueSimulation: : ShouldStopO
{

if ((SimClock>=1000) || (SimStatus!=SIM_OK))
return(TRUE);

else
return(FALSE);

}

Figure 3.8. An example ShouldStop method

The simulation is carried out by executing the events that are retrieved
from the eventlist of SIMULATION. These events are either inserted to the
list (scheduled) by the programmer explicitly or the execution of an event can
schedule another event in a triggered fashion. For example, considering the
arrival of an entity to a queue, if the queue is empty at that time and the
server that takes input from the queue is idle to accept the entity for service,
then the removal of the entity from the queue and the start of service for that
entity can be automatically scheduled. (Otherwise the entity is forced to wait
in the queue.)

Done is used to display the results of the simulation run. This is accom­
plished as follows. All system objects are kept in a list that is maintained by
the system. Insertion of objects to this list is handled by the constructors.
Done sends a message to all these objects in the list to invoke their StatPrint
methods which output statistical information related to their object. A sample
output for our single-queue/single-server application is presented in Figure 3.9.

The body of a simulation program mainly consists of /mf, Run^ and Done.
These methods correspond to the modeling, running, and experimentation
phases of a siniulation application, respectively. The catch is that Init per­
forms only some initializations while the components of the model are defined
as object declarations browsed from the library.

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 27

Simulation stopped with status 0 at time 50001.4
♦♦♦Statistics for source <Source>^^^
Number of entities generated: 10000
Mean arrival rate: 5.00014

♦♦♦Statistics for queue <Queue>^^^
Total entities inserted in the queue: 10000
Maximum queue length: 3
Mean time spent in the queue: 1.1794
Mean number in the queue: 0.235873

♦♦♦Statistics for server <Server>^^^
Number of entities served: 10000
Total busy time: 39877.4
Mean service time: 3.98774
Utilization: 0.797526

♦♦♦Statistics for sink <Sink>^^^
Number of entities processed: 10000
Total waiting time for processed objects: 23588
Total system time for processed objects: 51671.4
Mean time spent in the system: 5.16714
Mean number in the system: 1.0334

Figure 3.9. Sample output from the method Done

3.3 Scheduling and execution o f events

There are two types of system-event objects: StaBLEObject denotes the
state changes for the system-objects derived from NODE and MovingEvent
is associated with CARRIER. The class definitions for these two classes and
their base class are shown in Figure 3.10.

The base class SiMEVENT includes attributes denoting the time and type
of the event and the system object which the event effects. There are also
links to the next event to occur and to the SIMULATION object that owns the
event. Derived from this class, StaBLEEvent has an extra attribute to hold
the entity that is the object to be processed by the event. The other subclass,
MovingEvent, has two extra attributes to specify the departure and arrival

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 28

class SimEvent

public:
double time;
int type;
SimObject* owner;
SimEvent* next;
Simulation* sim;

friend EventList;
friend Simulation;

virtual void Print(ostream&){};
virtual void Execute(){};
virtual void SetSim(Simulation*);
double GetTimeO;

>;

class StableEvent:public SimEvent

protected:
Entity *object;
friend EventList;

public:
void Print(ostreami);

>;

class MovingEvent:public SimEvent
{
protected:

SimObj ect *departure_point;
SimObject *arrival_point;

public:
void Print (ostrezunft);

};

Figure 3.10. Class definitions for the event classes

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 99

nodes for transportation events.

SIMLIB provides a list of standard events (Table 3.3). The programmer is
free to define events for other actions. Each user-defined event object should
incorporate the methods for constructing the object properly. Another method
that should be defined is Execute. This method declares the actions to be
performed when the event occurs.

Type
StableEvent

MovingEvent

Object Event
Source EntityIntoSystem
Queue EntityIntoQueue

EntityFromQueue
Server EntityIntoService

EntityFromService
Sink EntityFromSystem
Carrier BeginTransport
Carrier EndT ransport

Table 3.3. List of event classes provided in SIMLIB

The events are kept in the FEL (Future Event List) attribute (an instance of
EventList) of the Simulation object in chronological order. FEL includes
two mostly used methods: one to insert new events with respect to the value
of their time attribute and another to remove the next event from the list for
execution.

Each event class has its Execute method which is invoked when the Step
method of the simulation object retrieves it from the event list. The Execute
methods perform the actions to represent the state changes of the system.
They mainly call the methods of their owner objects for this purpose. In many
cases, the execution of an event triggers another event and new events can be
scheduled. To illustrate the scheduling and execution of events, we conclude
this section with the code of the Execute method of EntityIntoService
(Figure 3.11).

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 30

void EntitylntoService::Execute()
{
double duration;

//invoke the server's BeginService method
owner->BeginService(object.time);

//compute the service time
duration=(owner->GetDist())->generate();

//schedule the event for end of service
sim->FEL.schedule(new EntityFromService

(time+duration,owner,object));
}

Figure 3.11. A sample Execute method

3.4 M apping a m odel to a program

In the preceding sections, the steps of developing a simulation application
within our framework were briefly described. In this section, we combine these
ideas in the form of a methodology.

Before starting the coding process, a verified model of the system to be
simulated should be ready. The model should focus on two aspects of the
model: system components like queues, servers, or carriers, and events of the
system. If no extra behavior is required, then system objects and events can be
directly browsed from the library. Otherwise, the programmer should derive
new classes representing the application-specific elements of the model.

Objects, whether system-defined or user-defined, are introduced to the pro­
gram along with their constructor calls. The constructor calls will insert the
objects in a system-maintained list that can be used for debugging and out­
put purposes. For compatibility with the system-objects, user-defined objects
should inherit the necessary methods (or they would override the inherited
methods with proper implementations).

CHAPTER 3. DESIGN OF THE CLASS LIBRARY 31

The links between objects can be declared with the SetLinks methods of the
objects. To do this call, each object should have one input and output link. If
there are multiple links, then the decision for the navigation of objects should
be coded into the methods of the derived system-object or into the Execute
method of an associated event object.

User-defined events can be employed to add extra behavior to the system.
This is done with the implementation of the Execute methods of the defined
events. Most system-events trigger other events for the continuity of the execu­
tion; the same paradigm applies to user-defined events. (The event list should
never be empty.)

Once the definition of the system-objects and events are coded, the last
step is to define or derive an object (of type SIMULATION) for the control of
execution. The Init method of this object schedules the initial events which
enforce the SOURCE objects of the system to generate new entities. These
events trigger other events which in turn invoke the system-objects to simulate
their cissociated behavior. The execution lasts until the stopping condition
(available in ShouldStop) occurs.

Once the above steps are carried out, only a small amount of code is re­
quired to finish the implementation. An example of such a main body that
uses a derived simulation object for a single-queue/single-server is presented in
Figure 3.12.

QueueSimulation QS;
//control object derived from Simulation class

int mainO

QS.InitO;
QS.Run();
QS .DoneO ;
}

Figure 3.12. The main body for a derived SIMULATION object

C h ap ter 4

Implementation

The purpose of this chapter is to study the implementation of SIMLIB. The
most important task in this regard was the definition of the classes. First
we give a detailed description of these classes—their attributes and methods.
Then, communication among the objects of an application is described. The
addition of user-defined behavior to applications is treated next. The last
section considers the system-maintained services provided by SIMLIB.

4.1 D efinition of classes

SIMLIB has been implemented using the C-|--|- programming language on SUN
Workstations running under the UNIX system. C-t--|-, inheriting the portability
of the C, has received wide acceptance from both academic and industrial users.
The broad range of functionality of the language (combined with its availability
on every UNIX system) has been the major reason for our preference.

Before studying the classes in SIMLIB, we want to describe the notion of
virtual functions. The use of dynamic binding, i.e., the relating of a procedure
with its data at the time of execution, is one of the key properties of OOP.
C-f-1- supports dynamic binding through virtual functions. A virtual function
allows overriding of a function name. Each subclass within the hierarchy can
choose a different implementation for this function. For example, in a graphical
environment that uses a hierarchy of classes to represent different shapes like

32

CHAPTER 4. IMPLEMENTATION 33

circles, triangles, etc., a member function to draw these on the screen can be
defined. Declaring this function as virtual in the base class and writing the
code of the function for each class will result in the appropriate displaying of
each shape object without knowledge of the type of the object. The compiler
will bind the correct definition of this function at run-time. Each derived class
may either inherit the virtual function from its base class or define a function
of its own. The restriction is that the returned value and the arguments of a
virtual function must remain the same for each clciss derived in the hierarchy.

SIMLIB makes use of virtual functions in order to improve readability.
The same function can be used with different objects. For example, an entity
removed from a queue can be sent to a server or another queue vis-à-vis a
decision that is made during the execution of the program. Instead of writing
lengthy conditionals, the code may be written by calling a single function (like
S endE n tity), and the appropriate implementation is invoked by the compiler
with efficient use of virtual functions.

Another concept we want to highlight is the use of friend classes. A class
declared as “friend” can have access to the private instance variables and meth­
ods of a class. This feature is useful since without it, all class declarations
would be “black boxes.” The notion of friend classes provides a method of
communication between classes that need the data of each other.

4.1.1 T he SimObject class

This is the base class of all the system objects (Table 3.1). SimObject member
variables are the common attributes for these classes and SimObject functions
are mainly the virtual definitions for methods that are implemented by the
classes in the hierarchy of Figure 3.1. Being a base class, this class is not
directly used in applications. It has access to SiMEVENT, StableEvent, and
MovingEveNT with friend declarations.

Attributes
-type: Denotes the type of the object. It takes values from an enumer­

ated set of system-object types like oServer, oQueue, o C arrie r, etc.

CHAPTER 4. IMPLEMENTATION 34

-name: Stores a name for the object in a string. This is used for dis­
play and debugging purposes.

-status: The status of an object is kept in this. A typical example is
the BUSY and the IDLE states of a server.

-id: Denotes an identification number for the object. This can be used
to unify objects, especially when more than one instance of a class is used in
an application.

-next: Since all system objects are kept in a list by the system, this is
used as a link to the next SlMOBJECT in the list.

-inlink: This is a link to another SimO bject which provides the enti­
ties for the object.

-outlink: Similar to inlink, this denotes the SimO bjecT to which the
object sends the output.

M eth o d s
As the S imO bject class performs no specialized action, its methods are de­
signed to set and retrieve the values of the attributes:

-SimObject: The constructor method.
-GetStatus: Returns status of a S imO bject instance.
-SetStatus: Sets the value of status.
-Getid: Returns id of a S imO bject instance.
-GetType: Returns type of a SiMOBJECT instance.
-SetNext: Sets the next object in the system list for a SimO bject .
-GetNext: Returns the next S imO bject in the system list.
-GetName: Returns name of a S imO bJECT.
-SetLinks: Sets the values of inlink and outlink.
-GetInLink: Returns a pointer to the S imO bJECT identified by inlink.
-GetOutLink: Returns a pointer to the SiMOBJECT identified by out­

link.
-Print: Outputs a brief description of the SimO bjecT by indicating

name and id.

4.1.2 T he N o d e class

This is designed to represent a particular point in a system. Being the parent
of all other system classes except CARRIER, it denotes the objects that are

CH A PTE ft 4. IMPLEMENTATION 35

stable throughout the execution of a model. It may not be used by most
applications but is useful to represent points of the system where special actions
are performed (e.g., decision making). It also serves as a superclass for user-
defined classes to represent stable objects.

Attribute
-passerobject: Denotes the entity that is currently active at a Node

object. Examples include an entity that is being processed at a server, or an
entity that is to be removed from a queue.

Methods
-Node: The constructor method.
-SetPasser: Sets the value of passerobject.
-GetPasser: Returns the entity that is active at the node.

4.1.3 T he C o l l e c t io n class

This is used to keep sets of entities such as the contents of a carrier. It stores
the entities in a linked list. Insertions and removals are performed at the head
of the list. Q ueue and B uffer classes are derived from this class.

Attributes
-head: Holds a pointer to the first entity in COLLECTION.
-count: Stores the number of entities that are currently in COLLECTION.
-totalentries: Stores the total number of entities that have been inserted

into Collection since the creation of the object.
-maxentries: Stores the maximum number of entities that have been

stored in Collection at a time point since the creation of the object.
-totalwait: Holds the total of waiting times for all the entities that have

been stored in COLLECTION.

Methods
-Collection: The constructor method.
-Insert: Inserts a new entity to COLLECTION. It has two implementa­

tions; one implementation requires an extra argument to specify the time of
insertion for waiting time computations. For example, the contents of a trans­
portation vehicle can be represented by a COLLECTION object and the time

CHAPTER 4. IMPLEMENTATION 36

that entities travel in the vehicle may not be treated as waiting time. For such
Ccises only the functionality of Insert is required to load the entities, rather
than statistical bookkeeping.

-Remove: Removes the most recently inserted entity from COLLECTION
and returns it. Just like Insert, it hcis a second form which performs the neces­
sary statistical data management operations when a time argument is provided.

-IsEmpty: Returns TRUE if COLLECTION has no entities.
-GetCount: Returns the number of entities that are currently in the

C ollection object.
-Print: Outputs the entities that are in the COLLECTION object. This

is done by invoking the print method of every entity in the list.
-GetTotalWait: Returns the value of totalwait.
-BeginWaiting: Performs the necessary actions to transform the enti­

ties to waiting state. (All the entities in the list receive a message to set their
lastwait to the current time of the simulation.)

-EndWaiting: Ends the waiting phase of all the entities in COLLEC­
TION.

-IncTotalWait: Increments the value of totalwait.
- Update Total Wait: Sets the value of totalwait to a new value by adding

the current waiting time of every entity in COLLECTION.

4.1.4 T he Q u e u e class

Derived from COLLECTION, this is used to keep entities in the form of a list
such that insertions and removals are performed in a FIFO feishion. As it differs
from Collection only in functionality. Q ueue has no additional attributes.
But due to its likelihood to be included in an application, extra behavior for
the navigation of entities and statistical data output has been granted.

Methods
-Queue: The constructor method; creates a QUEUE object with name

and id provided as arguments.
-Assign: Sets the values of name and id for an existing QUEUE object.

This function has been provided for objects that are declared in object arrays.
In such cases, the compiler performs the memory allocation by invoking the
default constructor but the programmer may need to set these values explicitly.

CHAPTER 4. IMPLEMENTATION 37

-Remove: QUEUE overrides the remove method to represent the behav­
ior of a queue by returning the least recently inserted entity.

- Receive Entity: This method forces QUEUE to schedule an event to re­
ceive a new entity.

-RequestEntity: This method answers a request that is made to QUEUE
by scheduling an event to remove the entity in turn.

-CanSend: Returns TRUE if QUEUE can provide any entities to a re­
quest, FALSE otherwise.

-CanReceive: Since there is no restriction for insertion into a QUEUE,
this always returns TRUE.

-StatPrint: Outputs statistical information about QUEUE.

4.1.5 The B u f f e r class

Derived from QUEUE, BUFFER represents FIFO lists with a predetermined
capacity. This restricts the use of Insert since an additional check on the
current number of entities is required prior to an insertion.

Attribute
-buffersize: Denotes the maximum number of entities that can be stored

in B uffer at a time.

Methods
-Buffer: Constructs a BUFFER object with a given capacity.
-Assign: Sets the value of buffersize.
-Insert: Overrides Insert by performing a comparison between the val­

ues of totalentries and buffersize before an insertion. If the capacity has been
reached, the entity is not placed in the list.

-CanReceive: Returns TRUE if an entity can be placed in the BUFFER,
FALSE otherwise.

4.1.6 The S o u r c e class

This is responsible for generating entities. It represents an input point where
“outside” entities pass the boundary of the model. The generation of entities is

CHAPTER 4. IMPLEMENTATION 38

determined with a particular statistical distribution cissociated with the object.

Attributes
-distgeneration: Points to a DISTRIBUTION object which determines the

inter-arrival time distribution of the entities generated.
-totalentities: Holds the total number of entities generated since the

creation of the SOURCE object.

Methods
-Source: Creates a new SOURCE object with the values of name, id, and

distgeneration provided.
-Assign: Sets the values of name, id and distgeneration.
-GetDist: Returns a pointer to the DISTRIBUTION object in distgener­

ation.
-GetEntityInterval: Returns the next inter-arrival time determined by

distgeneration of the source object.
-SetPasser: Sets the passerobject (inherited from N o de) to the entity

just generated.
-StatPrint: Outputs statistical information about the object.

4.1 .7 T he Sink class

This represents the points where entities leave the system and mainly collects
statistics about the entities which have traveled through the system. The
entities are destroyed upon completing their system life.

Attributes
-totalentities: Holds the number of entities that have left the system at

the S ink object.
-totalwaittime: Holds the total value of waiting times for all the objects

that have left the system at the SINK object.
-totalsystemtime: Holds the total of time values that have been spent

in the system for all the objects that have left the system at the SINK object.

Methods
-Sink: Constructs a SINK object with the name and id values provided.

CHAPTER 4. IMPLEMENTATION 39

-Asaign: Sets the values of name and id.
- TerminateObject: Updates the values of the statistical iiiforniation at­

tributes before destroying the entity that has arrived at the SINK.
-CanReceive: This function always returns TRUE. It has been imple­

mented to complete the family of virtual functions designed for the navigation
of objects through the system.

- Receive Entity: This method forces SINK to schedule an event to ex­
tract an entity from the system.

-StatPrint: Outputs statistical information about the SINK object.

4.1.8 T he Server class

This is designed to represent the system locations where entities receive service.
These processing units determine the amount of time which the entities will
spend for the required operations. (Examples include the service provided by
the cashier in a bank or the milling process applied to a part in a factory.)
The amount is generated from a service time distribution associated with the
object. Optionally, the cases in which the server is not functional for some
time (i.e., craishes) can be implemented.

Attributes
-totalentities: Holds the number of entities that have been processed by

S erver .
-totalidletime: Holds the total amount of time that SERVER has been

in IDLE state.
-lastwait: Denotes the time point that SERVER has most recently started

waiting.
-distservice: A DISTRIBUTION object to denote the service time distri­

bution for S erver .
-probcrash: The probability of a crash after each service.
-distrepair: A DISTRIBUTION object to denote the repair time distribu­

tion for S erver in case of a crash.

Methods
-Server: The constructor method. It has two forms: one requiring the

name, id, and distservice, and another which additionally takes prob.crash and

CHAPrER 4. IMPLEMENTAriON 40

disLrepair for servers that are subject to crashes.
-Assign: Sets the values of the attributes of the SERVER object.
- Beginservice: Performs the actions to denote the beginning of service

for an entity.
-EndService: Invokes SERVER to end service after making the necessary

statistical computations.
-Isidle: Returns TRUE if SERVER is IDLE, FALSE otherwise.
-GetDist: Returns the distservice object of the SERVER.
-CanReceive: Returns TRUE if SERVER can receive any entities for ser­

vice, FALSE otherwise.
-ReceiveEntity: This invokes SERVER to schedule an event to start ser­

vicing the received entity.
-StatPrint: Outputs statistical information about the SERVER object.

4.1.9 T he C a r r i e r class

This denotes objects that perform transportation between system objects. Ex­
amples include conveyors in a production system, or trucks carrying goods in
a transportation network.

Attributes
-contents: This attribute is a COLLECTION object to represent the set

of entities that are currently in CARRIER.
-capacity: The maximum capacity of CARRIER.
-entitiescarried: Holds the total number of entities that have been car­

ried by the object.
-distance: The length of the path which the CARRIER object is travel­

ing. This is used if the path of CARRIER is a single link between two system
objects.

-speed: The speed of the CARRIER object. The value of the attribute
can be changed according to the status and the load of the CARRIER.

-totalwaittime: Holds the total amount of time that CARRIER has been

IDLE.
-lastwait: Denotes the time point that CARRIER has most recently

started waiting.

CHAPTER 4. IMPLEMENTATIOX 41

-from: Denotes the system object that CARRIER has most recently de­
parted from.

-to: Denotes the current destination of CARRIER.

Methods;
-Carrier: Constructor method for CARRIER. Required attributes are

name, id, capacity, distance, and speed.
-Assign: Sets the values of the attributes for existing CARRIER objects.
-GetContents: Returns the COLLECTION object of CARRIER to provide

the list of entities being carried.
-CanReceive: Returns TRUE if CARRIER can load any entities for trans­

portation.
-CanSend: Returns TRUE if CARRIER can provide any entities. In other

words, this method can be used to detect whether CARRIER has reached its
destination with its contents or not.

-ReceiveEntity: This method instructs CARRIER to load an entity into
contents. If the capacity of CARRIER has been reached, then an event to start
the transportation process is also scheduled.

-RequestEntity: Upon receiving this message, CARRIER removes an en­
tity from its contents. If all the entities have been removed, then an event to
travel to the loading point of CARRIER can be scheduled.

-Begin Waiting: Sets CARRIER to the waiting state.
-EndWaiting: Ends the waiting of CARRIER. The necessary computa­

tions to keep the statistical time values are also performed.
-Move: Performs the actions to denote the start of transportation for

C arrier .
-Stop: Performs the actions to denote the end of transportation for

C arrier .
-StatPrint: Outputs statistical information about the CARRIER object.

4.1.10 T he E n t it y class

This represents the units that are serviced in the system, e.g., customers in a
bank or parts in a production line. Their generation is performed at SOURCE

and at any time point during the execution there can be many instances of
entities. Upon completing their life after traveling in the system from one

CHAPTER 4. ¡MPLEMENTATION 42

object to another, they are destroyed at SINK.

Attributes
-entrytime: Denotes the time point that ENTITY has been generated.
-totalwaittimc: Holds the total amount of time that ENTITY has spent

waiting for service.
-lastwait: Keeps the value of the time point that ENTITY has most re­

cently started waiting.
-next: Since entities can be kept in collections, this attribute is used as

a link to denote the next ENTITY in the list.

Methods
-Entity: Constructs a new Entity object.
-BeginWaiting: Sets ENTITY to waiting state.
-EndWaiting: Invokes ENTITY to receive service (processing, trans­

portation, etc.) after a waiting phase.
-Print: Outputs information about the ENTITY object.

4.1.11 The D is t r ib u t io n class

This is designed to provide statistical distributions for say, inter-arrival times
of customers or service times of servers. Using a random number generator,
objects of this class return a duration of time with respect to the type and
parameters of the required distribution. The clciss currently can provide sta­
tistical values for constant, normal, and exponential distributions.

Attributes
-type: Denotes the type of DISTRIBUTION. It can take a value of

dConstamt, dNorraal, or dExponential.
-mean: For constant distributions, this denotes the constant duration

value to be returned at each invocation. For normal and exponential distribu­
tions, this holds the value of the mean of the distribution.

-deviation: For normal distributions, this holds the value of the stan­
dard deviation.

CHAPTER 4. IMPLEMENTATION 43

Methods;
-Distribution: Constructs a DISTRIBUTION object. It has two forms;

one of which requires the value of deviation for normal distributions.
-Generate: Invokes DISTRIBUTION to return a time length with respect

to type, mean, and deviation.
-Print: Outputs information about the DISTRIBUTION object.

4.1.12 The SIMULATION class

This is used to keep the current state of the simulation. Each application either
uses an instance of this class or derives a new class from it. SIMULATION
controls the execution by invoking events at the time they are expected to
occur. The stopping of the execution is also checked by this object.

Attributes
-SimClock: Holds the current time of the simulation run.
-PEL: Denotes the list of chronologically ordered events that are ex­

pected to occur.
-SimStatus: The current status of the simulation run. Examples of

system-defined states for simulation are SIM_0K and SIM_FEL_EMPTY. The pro­
grammer can define states depending on the characteristics of the application.

Methods

-Simulation: The constructor method.
-Init: This is used to perform some initializations before the running

of the program. Initial events are scheduled with the help of this method.
(System object links are also defined here.)

-Step: Executes the next event from the event list.
-Run: Runs the program by calling Step in a loop.
-Done: Called after Run to display the statistical results.
-ShouldStop: Checks whether the stopping condition of the simulation,

viz. reaching a predetermined time limit, has occurred or not.

CHAPTBR 4. IMPLEMENTATION 44

4.1.13 T he S im E v e n t class

Events of a simulation application are represented by this cla^s. In fact,
S imEvent is the base class for the events of the system. The two sub­
classes, Mo vingEvent and St a bLEEven t , inherit most of their attributes
from SimEv e n t . This class provides access to the SIMULATION class as a
friend.

Attributes
-time: Denotes the time of the event.
-type: Denotes the type of the event.
-owner: Stores a link to the object at which the event occurs.
-next: A pointer to the next event.
-sim: Denotes the SIMULATION object executing the event.

Methods
-Print: Prints information about the event.
-Execute: This is responsible for the operations to be performed at the

execution of the event. Each event class defines an Execute method which is
called when the event is to occur. With this virtual function, all events are
processed in the same way, while the implementation of the method can differ
from class to class depending on the characteristics of the event.

-SetSim: Sets the value of sini by defining the SIMULATION object which
is to execute the event.

-GetTime: Returns time of the event.

4.1.14 T he S t a b l e E v e n t class

This denotes the events that belong to the system objects except CARRIER.
These events take only one ENTITY as their subject. (Therefore, there is only
one additional attribute to denote this entity.) Examples include generating
an entity, inserting an entity into a queue, or servicing an entity.

Attribute
-object: Denotes the ENTITY which is the subject of the event.

CHAPTER 4. IMPLEMENTATION 45

The classes derived from StaBLEEvent serve to provide the general be­
havior of system objects. A list of these classes and the operations performed
by their corresponding Execute methods are:

• E n tityIntoSystem : This event is invoked when an ENTITY is to be
generated into the system. The owner of En tityIn to SysteM events is
Source . The Execute method of this event class sets the ENTITY gener­
ated as passerobject OÍ the source. Then, an inter-arrival timéis computed
from the distribution of the SOURCE and the next E ntityIntoSystem
event is scheduled. If another system object has been specified as the out­
put node of Source, then after querying the status of this next object.
E ntity is sent to the output node.

• E n tityIntoQ ueUE: This event denotes the arrival of an ENTITY to a
Q ueue—which is the owner of this event class. With the execution of
this event, the ENTITY (stored in object) that is passed to the event is
inserted in the QUEUE (stored in owner). At this moment, there is at
least one entity in the queue so the output node of the queue is checked
and if it can receive entities, an E n t it y F rom QUEUE event is scheduled.

• E n tityF romQ u eu e: Removal of an ENTITY from a QUEUE is per­
formed by the execution of this event. The Execute method updates the
contents of the owner queue. Then, the entity that is removed from the
queue is sent to the next system object if this output node is able to
receive entities.

• E n tityIntoService: This event denotes the beginning of a service
process at a SERVER object. By the Execute method of an E ntityIn-
To S ervice event object, the owner server is invoked to change its state
to BUSY. Then, the service time is computed from the distribution and
an event denoting the end of the service is scheduled. •

• E n tITYFromSerVICE: The processing of an entity is terminated by
this. The owner of this class is SERVER. After stopping the processing
of the server, the Execute method performs two checks: first to commu­
nicate with the output node object to send the entity that has been just

CHAPTER 4. IMPLEMENTATION 46

processed, and then to query the input node object to receive the next
entity to be processed.

• E nTITy F romS y sTEM; Entities coini)leting their system life are destroyed
with the execution of this event. The execution invokes the owner SINK
object which does the necessary statistical computations.

4.1.15 T he M o v in g E v e n t class

This denotes the events that are executed by CARRIER. To specify the two
nodes of a transportation activity, it adds a pair of attributes to the definition
of SimEv en t .

Attributes
-departurepoint: Stores a pointer to the node from which CARRIER has

departed.
-arrivalpoint: Stores a pointer to the node at which CARRIER is arriving.

Two event classes that are derived from MovingEvent are:

• B eginT raNSPORT: The beginning of a transportation process by a
C arrier is denoted by this event. When the execution of this event
begins, the duration of the transportation is inquired from the owner
carrier object. Then, the ending time of the process is computed and an
event which denotes the stopping of the carrier is scheduled. •

• E ndT r anspo rt: This event denotes the end of a transportation pro­
cess. When such an event occurs, appropriate methods of the owner
carrier object are called to stop the carrier and update the contents.
Depending on the current position of the carrier, the contents can be
unloaded or an empty carrier can be loaded. These processes are car­
ried out by the send/receive mechanism that has been designed for the
communication of objects.

CHAPTER 4. IMPLEMENTATION A1

4.1.16 T he E v e n t L is t class

This designed to keep linked lists of SiMEVENT objects. Since events are
kept in FELs in chronological order, EventList objects maintain such a list.
Instances of this class are used in the FEL of SIMULATION.

Attributes
-owner: Denotes the SIMULATION object which uses the EventList

object as the FEL attribute.
-head: Points to the first SiMEvent object in the list. (This is the next

event to be processed.)

Methods
-EventList: Creates an empty EveNTList object.
-GetHead: Returns the SiM Event object that is pointed by head.
-SetOwner: Sets the value of owner by specifying a SIMULATION object.
-Schedule: Inserts a new event into the list while maintaining the chrono­

logical order.
-GetNext: Returns and removes the SiMEvent object from the head

of the list.
-Exists: Checks whether an event is in the list or not.
-Print: Prints the list of events that are currently in the list.

4.2 C om m unication betw een objects

The principles of OOP do not allow direct access to the attributes of an object
by other objects; this is achieved by methods. Methods are functions returning
the desired values about an object. The use of virtual functions expedite this
ta^k by providing a standardization of the names of the methods.

Methods are mostly used to return the attribute values of the objects.
These attributes can be the names, id’s, or status variables. Other methods
(e.g., those which return an entity from the list of entities) are also used for the
transfer of information. For our study, the traveling of objects among system
objects of different types is the most important task to be performed.

CHAPTER 4. IMPLEMENTATION 48

CanSend CanReceive
Q ueue at least one entity in the queue TRUE
B uffer at least one entity in the buffer capacity not reached
Source not used not used
Server not used status is IDLE
Carrier carrier at uiiloader and not empty carrier at loader and not full
Sink not used TRUE

Table 4.1. Return conditions for CanSend axiA CanReceive

For example, consider a QUEUE which needs to learn whether its output
node can receive any entities. The decision to receive an entity is dependent
on the class type of the next object and is different for BUFFER, SERVER, and
Carrier . Without any information about the class of the receiver, QUEUE
simply calls the CanReceive method of the receiver. This virtual call is pro­
cessed in the correct form with the help of dynamic binding. The result is an
indication whether the output system object is able to receive an entity.

Navigation of objects in the system is carried out by the four virtual meth­
ods that have been defined in SiMOBJECT. These are CanSend, CanReceive,
Request Entity, and ReceiveEntity. The first two methods return TRUE/ FALSE
to denote whether the indicated object can send/receive an object while the
last two perform the necessary operations for the sending and the receiving of
entities. In Table 4.1 we list the conditions that CanSend and CanReceive
return TRUE for different types of system objects.

Now for a detailed description of the communication between objects, we
study .our classical single-queue/single-server example in detail. The phases of
an entity during its travel from to source to sink is illustrated in the following:

1. The execution of an E n t it y In t o System generates the entity. The Ex­
ecute method of this event, after scheduling the next E n t it y In t o Sy s-

TEM, communicates with the output node of SOURCE eis in Figure 4.1.
The outlink of SOURCE has been specified as a QUEUE object by the
SetLinks function. This object is returned by GetOutLink as the next-
.object.

2. Since CanReceive always returns TRUE for QUEUE, ReceiveEntity is called.

CHAPTER 4. IMPLEMENTATION 49

void EntityIntoSystem::Execute0

SimObject *next_object;
double nexttime;

owner->SetPasser(object);
nexttime=time+(owner->GetEntityInterval());
sim->FEL.Schedule(new EntityIntoSystem

(nexttime,owner,new Entity(nexttime)));
if ((next_object=(owner->GetOutLink()))!=NULL)

{
if (next_object->CanReceive())

next_object->ReceiveEntity(sim,time,object);
}

}

Figure 4.1. Execute method of EntityIntoSystem

This method schedules an EntityIntoQueue event to be executed im­
mediately. The Entity to be inserted and Queue are kept in this event
object. The EnTITYIntoQueue event execution handles the necessary
operations to indicate the joining of the entity to the queue (Figure 4.2).
As seen in the code fragment, upon inserting the entity into the queue,
the method checks the next object, in this case a SERVER, to see whether
it can send any entities. Assuming the server is IDLE at that moment,
an EntityFromQueue event is scheduled to be executed immediately.

3. The execution of the E ntiTYFromQ ueUE event sends the ENTITY that
is removed from the head of the QUEUE to the SERVER for processing
(Figure 4.3).

4. The ReceiveEntity method of SERVER, when invoked, schedules an En-
TITYIntoService event for processing. The execution of this event
in turn invokes SERVER to start service and after retrieving the service
time from the DISTRIBUTION object schedules an EntityFromService
event (Figure 4.4).

5. This EntityFromService event, when executed, invokes the Server
object to stop the service process. Then it performs two checks. First, it

CHAPTER 4. IMPLEMENTATION 50

void EntityIntoQueue::Execute()

SimObject *next_object;

owner->Insert(object,time);
next_object=owner->GetOutLink();
if (next_obj ect!=NULL)

if (next_object->CanReceive())
sim->FEL.Schedule(new EntityFromQueue

(time,owner,NULL));
}

Figure 4.2. Execute method of E n tityIn to Q ueue

void EntityFromQueue::Execute()
{
SimObject *next_object;

owner->SetPasser(owner->Remove(t ime));
next_object=owner->GetOutLink();
if (next_obj ect!=NULL)

if (next_object->CanReceive())
next_obj ect->ReceiveEntity

(sim,time,owner->GetPasser());
>

Figure 4.3. Execute method of E n t it y F romQUEUE

CHAPTER 4. IMPLEMENTATION .51

void EntitylntoService::Execute()

double duration;

owner->BeginService(obj ect.time);
duration=(owner->GetDist 0) ->Generate();
sim->FEL.Schedule(new

EntityFromService(time+duration,owner,object));
}

Figure 4.4. Execute method of E n tityIn to ServicE

queries the output link to send the ENTITY that has been processed. Sec­
ond, it communicates with the input link for further entities to process.
This is illustrated in Figure 4.5.

The input link is the queue object in our case. Upon invocation of Re-
questEntity, QUEUE schedules an En tityF romQ ueue object if there is
at least one entity in the queue waiting for service. The execution con­
tinues from step 3. On the other hand, the outlink node of the SERVER
is the Sink object and with the ReceiveEntity method it schedules an
E ntityF romSystem event.

6. The E ntityF romSystem event invokes Sink to collect the statistics of
the E ntity leaving the system. The destruction of the E ntity is also
performed here (Figure 4.6).

The traveling of the entity from source to sink ends with the destruction
of the entity. Events belonging to the processing of other entites can also be
executed in between. These events are placed in the EEL in chronological order
and the SIMULATION object processes them one by one.

4.3 User-defined behavior

The previous section has described procedures which have been designed to
perform the operations of system objects in a single-queue/single-server system.

CHAPTER 4. IMPLEMENTATION 52

void EntityFromService;:Execute()

SimObject *prev_obj ect,♦next_obj ect;

owner->EndService(object,time);

next_object=owner->GetOutLink();
if (next_obj ect!=NULL)

if (next_object->CaiiReceive())
next_object->ReceiveEntity(sim,time,object);

prev_object=owner->GetInLink();
if (prev_object!=NULL)

if (prev_object->CanSend())
prev_object->RequestEntity(sim,time);

}

Figure 4.5. Execute method of E ntityF romService

void EntityFromSystem::Execute()

owner->TerminateObj ect(obj ect.time);
delete object;
}

Figure 4.6. Execute method of E ntityF romSystem

But for most of the cases, the classes provided by SIMLIB may not be adequate.
In such circumstances, the programmer should define classes or derive new
classes from existing ones. In addition to objects, new event classes may be
necessary to represent the behavior of these new objects.

In defining new classes there are some important points to consider. First,
the place of the new class in the hierarchy should be taken into consideration.
This place should be chosen to reuse most of the existing code and to minimize
the amount of additional code. Rewriting of some methods can also be neces­
sary. For example, the overriding of CanSend, CanReceive, etc. will facilitate
the automatic navigation of entities through the system.

CHAPTER 4. IMPLEMENTATION 53

There are two ways of adding extra behavior to a derived class. The first
is the definition of new methods. Functions to return the value of an attribute
that is defined in the subclass are examples of this. The second method is the
overriding of the existing methods inherited from the superclass. For example,
the programmer can override the StatPrint method of the superclass to output
the statistical data defined for the subclass.

For user-defined event classes, the definition of the Execute method is es­
sential. This method carries out the actions to be performed when the time for
the execution of the event conies. The relationship between the owner object
and the event is to be considered for ease of implementation.

We now illustrate our ideas with an example. Consider the subsystem in
Figure 4.7. Entities generated from the source arrive at the D ecisionN o de .
At this point, the contents of the queues are compared and the entity just
generated is sent to the queue having fewer number of entities. This helps to
balance the load between two branches of the system.

Figure 4.7. A subsystem with a decision node

In this system, the programmer needs to define a new class to represent the
decision point. NODE can be used as the superclass of the new class. Calling
the new class D eciSIONNo de , the class definition of D ecISIONNo DE can be
made (Figure 4.8).

In this definition, the additional attribute totalentities holds the number of
ejitities that have passed through the node, and the queue variables represent
the output links of the node. The methods CanSend, ReceiveEtitity, and Re-
questEntity are overridden to fit the general structure of entity transfer between
objects. There is no need for CanSend because the queues at the output of
D ecisionN ode do not request entities by themselves.

CHAPTER 4. IMPLEMENTATION 54

class DecisionNode:public Node
{
protected:

int totalentities;
Queue *queue_l,*queue_2;

public:
DecisionNodeO ;
int CanReceiveO;
void ReceiveEntity(Simulation*.double,Entity*);
void RequestEntityCSimulation*.double);

>;

Figure 4.8. A possible definition for D ecision NODE

Communication methods CanSend and ReceiveEntity can be written by
imitating the same methods of another system object. In fact, CanReceive
always returns TRUE, because there cannot be a condition to block the passing
of entities through the node. The behaviour of ReceiveEntity differs slightly. At
this point, the contents of the queues are checked and the ENTITY is sent to the
resultant QUEUE. The methods for D ecisionN ode are listed in Figure 4.9.

To denote the arrival of an entity into the decision node, we define a new
event class called E ntityForD ecISION (Figure 4.10). This event is scheduled
with the invocation of the ReceiveEntity method of D ecisionNode by the
Source object.

Upon receiving the entities from the D ecisionN o de , the queues perforin
their standard actions by inserting the received entities. For the input, the
D ecisionN ode is identified as the outlink of the Source with a SetLinks
call. As a result, the entities are transferred from SOURCE to D eciSIONNode
with the ReceiveEntity method and after the decision, they are sent to the
appropriate queue.

CHA PTER 4. IMPLEMENTATION 55

DecisionNode::DecisionNode(Queue* ql,Queue* q2):Node()
{
total_entities=0;
queue.l=ql;
queue_2=q2;
insert.to.objlist(this)
>

DecisionNode::CanReceive()
{
return(TRUE);
}

DecisionNode: .-ReceiveEntity
(Simulation* s,double t,Entity* e)

{
SetPasser(e);
++totalentites;
(s->FEL).Schedule(new EntityForDecision(t,this,e))
}

DecisionNode::RequestEntity(Simulation* s,double t)

int load_l,load_2;

load_l=queue_l->GetCount();
load_2=queue_2->GetCount();

if (load_K=load_2)
queue_l->ReceiveEntity(s,t »passerobject);

else
queue.2->ReceiveEntity(s,t,passerobject);

SetPasser(NULL);
}

Figure 4.9. Method definitions for D ecisionNode

CHAPrER. 4. IMPLEMENTATION 56

class EntityForDecision:public StableEvent

public:
EntityForDecision(){};
EntityForDecision(double,SimObject*,Entity*);
void ExecuteO;

};

EntityForDecision::EntityForDecision
(double t ,SimObject* o,Entity* e)

{
time=t ;
type=eEntityForDecision; //enumerated type
owner=o;
object=e;
}

void EntityForDecision::Execute()

owner->RequestEntity(sim,time);
}

Figure 4.10. Method definitions for event class E ntityForD ecision

4.4 System services

For some operations like initializing the system or displaying the status and
statistics of the objects, a list of all the system objects is necessary. Such a
list, called ObjList, is initialized by the library and the created objects are
inserted to it at the time of their construction. In Figure 4.9, the constructor
of the D ecisionNode includes a call insertJo.objlist. This is used to place
the created instance in ObjList. The address of the instance, denoted by this.,
is parsed as an argument to this function.

At this point, we want to emphasize the notion of default constructors.
Default constructors are methods for a class requiring no parameters as the
values of the attributes of the class and only provide the necessary memory
allocation for the instances created by the program. The base class of the
system objects, SiMOBJECT, has a constructor named SimObjectQ for this

CHAPTER 4. ¡MPLEMENTATION 57

purpose wliich sets the value of the id attribute to -1. This is to prevent the
insertion of unused instances to the system list. Suppose a program declares
an array of QUEUE objects of size 10 and uses, say, only 6 of these objects
depending on the specifications coming from the user at run time. If all of the
10 Q ueue objects are inserted in ObjList, then after the execution the system
will try to output statistical data for the unused 4 objects. Therefore the
default constructor of Q ueu e , inherited from SimObj€ct(), sets the id values
to -1 by the array declaration and objects having their id value eis -1 are
not inserted to ObjList. The insertion is performed by the Assign method of
Q ueue while setting the values for the instances. Assign is the same as the
constructor method except that it does not create the object but sets the values
passed as arguments. Multiple calls to this method for changing the attribute
values do not cause multiple insertions in the system list because there is a
check before the insertion of every object.

The system-maintained list is used mainly for two purposes:

• Initializing the system
At the beginning of the execution of a program, there are normally no
events to process in the event list of the simulation object. To execute
Step, the Init method of the SIMULATION object inserts the initial events.
These events are the E ntityInTOSystem instances for the source ob­
jects. hiit invokes the InitSources function of the library for this task.
This function traces ObjList to retrieve the objects with type ©Source and
schedules E ntityIntoSysTEM events for these objects. After the ini­
tialization the execution of events can begin. It is essential for a program
to call InitSources from the hiit method of its SIMULATION object. The
default Init of SIMULATION performs this task but in case this method
is overridden in a subclass of SIMULATION class, Init should be included
in the overridden form. Another point to remember is the insertion of
the constructed system objects into ObjList. The constructor of every
system object class should include an inserLto-objlist function call. •

• Output of statistics
After the execution of Run, Done is called to output the statistical values
maintained by the system objects. This method displays the status and
stopping time of the simulation and prints statistical information about

CHAPTEIi 4. IMPLEMENTATION 58

each system object. An example outj)ut is presented in Figure 3.9.

Done makes a call to prinLobj.stats to display the data for each ob­
ject. Each system class has a StatPrint method for this purpose. The
prinLobj.stats function iterates on ObjList and calls the StatPrint method
of each system object in the list. The program should define a StatPrint
method for each user-defined system object class.

If the user wants to output a subset of system objects or wants to direct
the output to a file, this done by overriding Done and explicitly calling
the StatPrint methods of the required objects.

C h ap ter 5

Three example system s

In this chapter, we describe the three prototype systems we have developed
35 the experimental components of our study. These systems were first im­
plemented without SIMLIB. While the implementation of the library was in
progress, the re-implementation of these systems was used as a testbed. The re­
sults provided a comparison of the procedural and object-oriented approaches.
The three prototypes were a single-queue/single-server system, a production­
line system, and an elevator system.

5.1 T he single-queue/single-server exam ple

This is the most basic example of queueing systems and can be described as
follows (Figure 5.1):

-Entities arrive at the queue with respect to a statistical distribution.
-The first entity is immediately accepted by the server.
-The server receives entities from the queue and processes them. The du­

ration of service is determined by another statistical distribution.
-Entities are forced to wait in the queue until they are removed by the

server for processing.
-An entity leaving the server completes its system life.

The objects of the system are:

59

CHAPTER 5. THREE EXAMPLE SYSTEMS 60

Figure 5.1. The single-queue/single-server model

• A source where the entities coming to the system are generated with
respect to a statistical distribution of inter-arrival time.

• A queue where entities are forced to wait under a FIFO regime until the
server is ready to provide service.

• A server where entities get processed after leaving the queue.

• A sink where entities leave the system.

The system-defined classes have been declared in the SIMLIB header file
sim lib .h . The user-defined class in the development of such an application
with SIMLIB is a subclass derived from the SIMULATION class. It is necessary
to override the Init method to declare the connections between the system
objects and the ShouldStop method to denote the stopping condition of the
execution. The simulation stops after 10000 entities have been processed by
the server.

Other objects can be directly browsed from SIMLIB by declaring them with
the use of their constructors. These objects are SOURCE, QUEUE, SERVER,
and Sin k , and DISTRIBUTION objects for the generation of inter-arrival time
(for the source) and service time (for the server) distributions. The inter-arrival
distribution is a normal distribution with mean 5 time units and variance 2 time
units. The service time distribution of the server is again a normal distribution
with mean 4 and variance 3. The server is not subject to crashes.

The Init method of the derived Q ueu eSimulation class is implemented
by first calling the inherited method of SIMULATION class. This is necessary
to force the SOURCE object to schedule the first E n tityIn t o System event.
Then the links for the navigation of entities are established by SetLinks.

ShouldStop is coded to return TRUE if the SINK has received 10000 entities.
Another check is made on the SimStatus attribute for preventing programming

CHAPTER 5. THREE EXAMPLE SYSTEMS 61

errors like generating an empty event list during the execution.

Finally the main module is implemented by consecutive calls to the methods
of the Q ueueS imULATION instance QS. These are Init (for the setup), Run
(for the execution), and Done (for displaying the results).

The code of the implementation is shown in Figure 5.2.

5.2 T he production-line exam ple

This is a modified version of the previous example. In this system, the queue-
server pairs (with an additional queue at the output node of each server) are
linked to each other and the transfer of entities is performed by carriers. The
execution of the model is as follows:

-Entities enter the system from the source node and join the first input
queue.

-The first server receives entities from this queue and services them.
-After service, the entities are placed in the output queue of the associated

server.
-The conveyors carry the entities from the output queues to the input queue

of the server in the line. In this way, the entities travel through the servers in
the production line.

-A conveyor waits until it is loaded to full capacity before beginning the
transportation. After unloading its contents at the input queue of a server, it
goes back to the input queue of the preceding server for reloading.

-Entities are transferred to the sink by the last conveyor before they leave
the system.

The model, with two servers, is illustrated in Figure 5.3.

The implementation is quite similar to the single-queue/ single-server case.
The steps are: •

• A subclass of SIMULATION is derived as PLS imulation for defining the
initializations prior to the execution and the stopping condition of the
run. The Init method is replaced by the Setup method which takes the

CHAPTER 5. THREE EXAMPLE SYSTEMS 62

#include "simlib.h"

class Queuesimulation : public Simulation
{
public :

Queues imulat ion 0 : Simulât ion (){)·;
void InitO; //override for user-defined events
int ShouldStopO ;

};

Distribution dist_arrival(dNormal,5.0,2.0);
Distribution dist_service(dNormal,4.0,3.0);
Source S0("Source",0,dist_arrival);
Queue QU("Queue",0);
Server SE("Server",0,dist_service); //no crashes
Sink SI("Sink",0);
Queuesimulation QS;

void QueueSimulation::Init()
{
Simulation: : InitO
SO.SetLinks(SO.QU)
QU. SetLinks(SO,SE)
SE.SetLinks(QU,SI)
}

int QueueSimulation: : ShouldStopO
<
if ((SI.total_entities>=10000) I I (SimStatus!=SIM_OK))

return(TRUE);
else

return(FALSE);
}

int mainO
{
QS.InitO ;
QS.Run();
QS.DoneO ;
}

Figure 5.2. The code of the single-queue/single-server example

CHAPTER 5. THREE EXAMPLE SYSTEMS 63

Source InQl Servi -*OutQl Convl InQ2 Serv2 OutQ2 Conv2 Sink

Figure 5.3. The production-line model with two servers

number of servers in the system as a parameter. This parameter can also
be received from the user during the execution of the program.

• Next, the system objects and the distributions are declared. There are
multiple instances of QUEUE, CARRIER, and SERVER so they are defined
as arrays of objects. Their attribute values are not set until the Assign
method is used.

• Setup first calls Init (of SIMULATION) for triggering the first E ntity-
InTo Sy st eM event. The next task is the setting of the values for the
attributes of QUEUE, CARRIER, and SERVER which have been defined as
arrays. The Assign method is used in a loop for this purpose. The final
task is the connection of the system objects with SetLinks calls. This is
also handled with the use of a loop iterating on the indices of the object
arrays.

• In our example, ShouldStop is designed to stop the execution after 1000
time units.

• In the main body. Setup, Run, and Done methods of PL S imulation are
invoked.

The code of a production-line system simulation with three servers is listed
in Figure 5.4.

5.3 T h e elevator exam ple

The elevator prototype simulates the working of an elevator that meets the
requests coming from a number of different floors. A description of the model
is as follows:

-Entities arrive at a floor with their destination known. Both the arrival

CHAPTER 5. THREE EXAMPLE SYSTEMS 64

#include "simlib.h"
#include <stdio.h>

«define MAXSYS 10

class PLSimulation : public Simulation
{
public:

void SetUp(int);
int ShouldStopO ;

};

Distribution dist_arrival(dExponential,6.0);
Distribution dist_service(dNormal,5.0,3.0);
Source SO("Source",0,dist_arrival);
Queue QU[2*MAXSYS+l];
Carrier CR[MAXSYS+1];
Server SE[MAXSYS];
Sink SI("Sink",0);
PLSimulation PL;

void PLSimulation::Setup(int length)
{
int cnt;
char najne [20] ;

Simulation::Init();
for (cnt=0 ; cnt<length ; ++cnt)

{
sprintf(name,"Server-Xd",cnt) ;
SE[cnt] .Assign(n<une,cnt ,dist_service);
}

for (cnt=0 ; cnt<(2*length+l) ; ++cnt)

sprintf (name, "Queue-*/,d",cnt) ;
QU[cnt].Assign(name,cnt);
}

Figure 5.4. The code of the production-line example

CHAPTER 5. THREE EXAMPLE SYSTEMS 65

for (cnt=0 ; cnt<(length+l) ; ++cnt)

sprintf (name, "Carrier-*/,d",cnt) ;
CR[cnt].Assign(name,cnt,3,20,4);
}

S0.SetLinks(S0,qU[O]);
QU[0].SetLinks(S0,CR[0]);
for (cnt=0 ; cnt<length ; ++cnt)

QU[2*cnt+l].SetLinks(CR[cnt],SE[cnt]);
QU[2*cnt+2].SetLinks(SE[cnt],CR[cnt+l]);
SE[cnt].SetLinks(QU[2*cnt+l],QU[2*cnt+2]) ;
CR[cnt].SetLinks(QU[2*cnt],QU[2*cnt+l]);
}

CR[length].SetLinks(QU[2*length],SI);
}

int PLSimulation::ShouldStop()

if ((SimClock>=1000) I I (SimStatus!=SIM.0K))
return(TRUE);

else
return(FALSE);

}

int mainO

PL.Setup(2);
PL.RunO;
PL.Done0;
}

Figure 5.4. The code of the production-line example (cont’d)

CHAPTER 5. THREE EXAMPLE SYSTEMS 66

Figure 5.5. Model of the elevator system

floor and destination floor are random.
-There are two queues at each floor, one for entities that are waiting for the

elevator to take them UP and one for those waiting to go DOWN. Depending
on the values of the arrival and destination floors, an arriving entity joins the
proper queue.

-The elevator is initially at the first floor. The first request is answered
immediately. Other requests are handled by a decision manager. This decision
manager orders the requests for optimum performance and determines the path
of the elevator.

-When the elevator arrives at a floor to fulfil a request, it loads the entities
that are in the queue associated with the current direction of the elevator.

-The route of the elevator is updated according to the destinations of the
loaded entities. Each entity is transferred to its destination and leaves the
system. During these operations, other requests coming from the floors are
organized by the decision manager.

The system is illustrated in Figure 5.5.

The implementation requires some data structures that are not available in
SIMLIB. Below we give a description of these: •

• E levEn tity : The entities traveling between the floors of the system are
represented by this class. Derived from ENTITY, this class has additional

CHAPTER .5. THREE EXAMPLE SYSTEMS 67

attributes for the arrival and destination floor values of the entity under
consideration.

• E levator: This represents the elevator object that transfers the E lev-
E ntity objects. It inherits from CARRIER and has extra attributes for
the current floor of the elevator, the time point that the elevator heis
most recently been at a floor, and the time units required to cover the
distance between consecutive floors.

• D ecisionMakeR: The overall behavior of the ELEVATOR is governed
by this. Two lists are kept for requests coming from the entites that wish
to travel in UP and DOWN directions. These requests can be answered
in two ways. If the elevator is currently in the same direction with a
request, the request is processed immediately and the source floor of
the request is taken into the route. Otherwise, the request is kept in
the list and processed when the elevator completes the transfers in the
current direction. The purpose of D ecisionMaker is to maintain lists of
incoming requests and determine the route of the elevator for maximum
efficiency.

In addition to the system classes, the programmer needs to define new event
classes to represent the state changes. E n tityIntoSy st eM generates objects
of type E n tity . On the other hand, the elevator system needs E levE ntity
objects. Therefore, a new class N ew E n tityT o E levator is derived.

The events caused by the movement of ELEVATOR necessitate the derivation
of class E levE vent , a subclass of S imEv e n t . This class has an additional
attribute to denote the floor where the event occurs. E le vE vent is the parent
class of the three other classes that actually represent the events of the system:

-E levSt a RTSerVICE: Denotes the start of service for entities that are
waiting at a floor. With the execution of this event, these entities are loaded
into the elevator and their destination floors are added to the route.

-E levE n dS ervice: Denotes the end of service for the entities in the ele­
vator that have destinations as the current floor of the elevator. The execution
of this event sends these entities to the SINK of the current floor.

-E levAt F loor: This denotes that the elevator is at the floor denoted by
the where attribute of ElevEVENT. It is used to keep track of the elevator.

CHAPTER .5. THREE EXAMPLE SYSTEMS 68

Similar to the preceding examples, a class E levS imulaTION is derived
from S imulation to control the execution. This clгıss has a SctUp method
which constructs the model with a parameter denoting the number of floors.

The basic execution of the implementation can now be stated:

1. SetUp forces the scheduling of the first N ew E n t it y T o E levator event
for each floor.

2. The execution of this event places the generated entity in the proper
queue of the floor and a request is sent to DECISION MAKER if necessary.

3. Upon receiving the request, D ecisIONMaker examines the status of
the elevator and determines whether the request can be answered during
the current tour of the elevator. If so, the necessary E levAt F loor
and E levSt a RTServicE events are scheduled. Otherwise, the request
is inserted to the list of waiting requests.

4. The execution of a E levStartService loads the waiting entities from
the queues into the COLLECTION object of the ELEVATOR. Using the
destination floors of these entities, the corresponding E levE n dS ervice
events are scheduled. The E levE n dS ervice events unload the entities
when the destination floor is reached. These entities leave the system
after the gathering of necessary statistical data.

5. If the elevator runs out of E levEvent events, it asks the DECISION­
MAKER to provide the new route by processing the waiting requests. At
this moment, it switches direction to answer these requests.

The code is rather long (about 1300 lines) to include here. So we only
present the Execute methods of ElevE n dS ervice and N e w E n tityT o E l-
EVATOR to give an idea of the extra behavior defined by the programmer
(Figures 5.6 and 5.7).

CHAPTER 5. THREE EXAMPLE SYSTEMS 69

void ElevEndService::Execute()

Entity* temp;
Collection TC;

((Elevator*)owner)->currentfloor=where;
((Elevator*)owner)->lasttime=time;

while ((temp=((Elevator*)owner)->
GetContents()->Remove())!=NULL)

{
if (((ElevEntity*)temp) ->t2irgetfloor==where)

s im->FEL.Schedule(new Ent ityFromSystem
(time,&Sinks[where],temp));

// terminate the entities who have
// reached their destination

else
TC.Insert(temp); // store others in a temporary list

>

// now restore the contents
while ((temp=TC.Remove())!=NULL)

((Elevator*)owner)->GetContents()->Insert(temp);

if (nonextfloorO) //get the new route
DM.askO ;

}

Figure 5.6. The Execute method of E levE n d S ervice

CHA PTER 5. THREE EX A MPL E S YSTEMS 70

void NewEntityToElevator::Execute()
{
double nexttime;
int so,ta;
ElevEntity* elevobject;

owner->SetPasser(object);
elevobject=((ElevEntity*)object);
if (Elev.GetStatus()==IDLE)

Elev.lasttime=time;

// analyze the floors and generate
// the request

if ((elevobject->sourcefloor) > (elevobject->targetfloor))

sim->FEL.schedule
(new EntityIntoQueue

(time,&DownQueues[owner->GetId()] .object)) ;
if (DownQueues[owner->GetId()] .IsEmptyO)

DM. request (time, elevobj ect->sourcef loor, DOWN) ;
}

else
{
sim->FEL.schedule(new EntityIntoQueue

(time.&UpQueues[owner->GetId()].object)) ;
if (UpQueues[owner->GetId()] .IsEmptyO)

DM. request (time, elevobj ect->sourcef loor .UP) ;
}

// schedule the next event with
// ramdom floors

nextt ime=time+(owner->GetEntityinterval()) ;
so=owner->GetId();
ta=(int) (myramdO+floorcount);
while (so==ta)

ta=(int)(myrand()*floorcount);
sim->FEL.schedule(new NewEntityToElevator

(nexttime.owner.new ElevEntity(nexttime,so.ta))) ;
}

Figure 5.7. The Execute method of N ew E ntityT o Elevator

C h a p ter 6

Conclusion

OOP, relying on the concept of “objects,” provides the system designer with
techniques emphasizing the abstraction of program modules. These modules
are mapped to data structures that encapsulate attributes and behavior of
system objects.

OOP is useful in the development of simulation software. A model of any
complexity can be divided into components which can be represented as objects
with clearly defined interfaces. Based on this idea, a library that provides the
general data structures of a simulation program allows the development of
reusable code. Such a library significantly reduces coding time.

The research presented in this thesis has investigated the use of the object-
oriented paradigm in the area of simulation code development. A prototype
library, SIMLIB, has been designed and coded. SIMLIB provides a set of
system objects that can be used to represent the physical components of a
model, and a set of event objects to describe the state changes in the system.
Using SIMLIB, one can define new system objects and event classes with a
small amount of code. With proper declarations for a particular system, the
simulation process executes the events one-by-one in chronological order to
reflect the state of the system.

The classes defined in SIMLIB have been devised from three “classical”
discrete event simulation examples developed prior to the design of the library.
These examples have been studied to extract the basic execution principles

71

CHAPTER 6. CONCLUSION 72

and data structures of a simulation application. Later these systems have been
re-implemented with SIM LIB, for an overall evaluation of our approach.

The essence of a class library lies in the definition of its classes and their
methods. In the design of the overall system, an important point is the com­
munication between the objects of an application. A clear protocol defined in
terms of messages (methods) is used for inter-object communication.

The development of simulation software with SIMLIB consists mainly of
the declaration of system objects and events of the model at hand. Whether
system-defined or user-defined, these objects provide the mapping of the model
to code. Physical links for the navigation of entities through the system are
also defined. Execution of the model is handled by control classes. Once the
components of the model are defined, other tasks like initializing the system
with entity-generation events and statistical data collection are performed by
the built-in functions of the library.

A comparison of the amount of code written for the three prototypes is
given in Table 6.1. Clearly, the single-queue/single-server and the production
line examples have been reduced to very small programs with the use of SIM­
LIB. Basically, these systems do not need extra data structures and all the
components of their models can be represented by the classes browsed from
SIMLIB. This argument does not entirely hold for the elevator example as this
requires a number of user-defined classes for the representation of the system.
A great portion of the code for this example is the implementation of the de­
cision maker module which is responsible for keeping track of the requests and
routing the elevator.

Straightforward
implementation

SIMLIB
implementation

Reduction
(%)

single-queue/single-server 170 40 0.76
production-line 1280 70 0.95
elevator 1300 700 0.46

Table 6.1. Comparison of code length (number of lines) of the three prototypes
implemented with and without SIMLIB

CHAPTER 6. CONCLUSION 73

The results indicate that SIMLIB does reduce the amount of code for sys­
tems that employ standard system objects like queues, servers, etc. but cannot
achieve the same effect for more complex models. In fact, SIMLIB is a very
small library supporting a minimal set of simulation objects. The main idea is
the representation of a model with objects mapped to the components of the
model. Once the general principles for the execution of a model are provided
by this philosophy, a more adequate set of objects can be defined and included
in SIMLIB.

Although we have chosen to focus on the development of classical network
classes, it is clear that a wide range of classes could be designed to facilitate
the development of simulation models for specific system types. For example,
it would be relatively easy to design classes to represent the components of a
communication system. We again emphasize the fact that SIMLIB allows the
programmer to choose model components from an expanding library of already
defined classes or construct his/her own model components, possibly derived
from the library classes. The OOP philosophy encourages an evolutionary
model building process in which code is reused and continuously upgraded.

SIMLIB promises a simulation methodology worthy of serious consideration
for the future of computer simulation. The library is compatible with one of
the most popular languages available today, C, and a language with growing
popularity, C-I-+.

Finally, we state three potential research areas related to our study:

• V isual m odeling: OOP is seen to be a promising software methodology
with its facilities to allow the simulation programmer to build applica­
tions in a graphical environment. The framework, when equipped with
the user friendly interface and animations, might enhance the quality of
a program while reducing the efforts for model building. Basic results
of the simulation can be extracted by animation and after the execution
output reports provide a convenient way of representing the data as useful
information. Such environments have also facilities for the management
of the large number of classes presented in them. •

• In teg ra tion of different techniques: Various methods have been used

CHAPTER 6. CONCLUSION 74

for the computer representation of a simulation model. There is an in­
creasing use of AI techniques for modeling knowledge representation.
Problem solving methods allow the application of different AI techniques
for solving modeling and simulation tasks. For example, consider a sys­
tem which keeps all the models developed by the users for future use.
This model base may be designed to reduce the model development time
with its capabilities for storing and retrieving the models. To select a
model for an application, a rule-based system which analyzes the stored
models can help. •

• Parallel sim ulation: Object-oriented simulations can be executed in
parallel on a multiprocessor which allows greater processing and memory
resources to be applied to a given problem in a cost-effective manner.
Object-oriented simulations are naturally suited to running on multipro­
cessors because the components of a model represent logically distinct
threads of execution on a separate processor. Simulation class libraries
can be enhanced by features that support parallel simulation like dis­
tributed I/O facilities, performance analysis tools, and run-time mapping
of entities to processors.

A p p en d ix A

Class declarations in SIMLIB

SIMLIB library can be found in /h o m e /u s r3 /is ik li/te z /s im lib /so u rc e .
The library comprises four source files: sim_simul.c, sim _co llec t. c, sim-
-o b je c t.c , and sim .event.c.

The three prototypes described in Chapter 5 are also in this directory. The
filenames are qs.c for the single-queue/single-server example, pl.c for the
production-line example, and elev. c for the elevator example.

The clcisses provided by SIMLIB are declared in simlib.h which should
be included by every application that uses the library. In the following, we
present the listing of this header file.

// simlib.h, April 93
#include "fstreaun.h"
// constant declarations
«define TRUE 1
«define FALSE 0
«define IDLE 0
«define BUSY 1
«define SIM.OK 0
«define SIM.FEL.EMPTY 1
«define eEntityIntoSystem 0
«define eEntityIntoQueue 1
«define eEntityFromQueue 2

75

APPENDIX A. CLASS DECLARATIONS IN SIMLIB 76

#define eEntityIntoService 3
#define eEntityFromService 4
#define eEntityFromSystem 5
#define eBeginTransport 6
#define eEndTransport 7
// distribution and object type enumerations
enum Dtype {dConstant,dNormal,dExponential};
enum Otype {oNode,oSink,oQueue,oServer,oBujffer,oSource,oCarrier};
void insert_to_objlist(SimObiect*);
void print_obj_list(ostream&;;
void InitSources(Simulation*);
void print_obj_stats(ostreaun&,double);
double myrandO ;
class SimEvent;
class Simulation;
class Distribution;
class Node;
class EventList;
class Collection;
class Entity
public:

double entrytime;
double totalwaittime;
double lastwait;
Entity* next;
Entity();
Entity(double);
void BeginWaiting(double);
double EndWaiting(double);
virtual void Print();

};

class SimObject
protected:

Otype type;
char* name;
int status;
int id;
SimObject *next;
SimObject *iniink;
SimObject* outlink;
friend SimEvent;
friend StableEvent;
friend MovingEvent;

APPENDIX A. CLASS DECLARAriONS IN SIMLIB 77

public:
SimObj ect();
int GetStatusO;
void SetStatus(int);
int GetIdO;
Otype GetTypeO;
void SetNext(SimObject*) ;
SimObject* GetNextO;
char* GetNameO;
SimObject* GetInLinkO;
SimObject* GetOutLink();
virtual void SetLinks(SimObject&,SimObject&);
virtual void IncTotalWait(double){};
virtual void SetPasser(Entity*){};
virtual Entity* GetPasserO{return(NULL);}
virtual double GetEntityInterval(){return(0.0)
virtual Distribution* GetDist(){return(NULL)
virtual void Insert(Entity*,double){3·;
virtual Entity* Remove(double){return(NULL);}
virtual void Insert(Entity*){};
virtual Entity* Remove(){return(NULL);}
virtual void BeginService(Entity*,double){};
virtual void EndService(Entity*,double){};
virtual void TerminateObject(Entity*,double){};
virtual void ReceiveEntity(Simulation*,double,Entity*){};
virtual void RequestEntity(Simulation*,double){};
virtual int CauiSend(){return(0);}
virtual int CaaiReceive(){return(0);}
void Print (ostreami:);
virtual void StatPrint(ostreamft,double){};
virtual double Move(double,SimObject*,Sim0bject*){return(0.0) ;}
virtual void Stop(double,SimObject*){};

>;

class Carrier:public SimObject
protected:

Collection* contents;
int capacity;
int entitiescarried;
double distance;
double speed;
double totalwaittime;
double lastwait;
SimObject* from;
SimObject* to;

public:
Carrier(){};
Carrier(char*,int,int.double.double);
void Assign(char*,int,int,double,double);
Collection* GetContentsO;
int CainReceiveO;
int CanSendO;

APPENDIX A. CLASS DECLARATIONS IN SIM LIB 78

};

void ReceiveEntityCSimulation*.double,Entity*);
void RequestEntity(Simulation*.double) ;
void BeginWaiting(double);
void EndWaiting(double) ;
double Move(double.SimObject*.SimObject*);
void StopCdouble,SimObject*);
void SetLinks(SimObject&,SimObiect&);
void StatPrint(ostreajn&,double);

class Node¡public SimObject
protected:

Entity* passerobject;
public:

NodeO;
void SetPasser(Entity*);
Entity* GetPasserO ;

} 9

class Collectionrpublic Node
{
protected:

Entity* head;
int count;
int totalentries;
int maxentries;
double totalwait;

public:
CollectionO;
void Insert(Entity*,double);
Entity* Remove(double);
void Insert(Entity*);
Entity* RemoveO;
int IsEmptyO;
int GetCount();
void Print 0;
double GetTotalWait();
void BeginWaiting(double);
void EndWaiting(double);
void IncTotalWait(double);
void UpdateTotalWait(double);

};

class Queue¡public Collection
{
public:

Queue(){};
Queue(char*,int);
void Assign(char*,int);
Entity* Remove(double);
void ReceiveEntity(Simulation*,double,Entity*) ;
void RequestEntity (Simulation*,double) ;

APPENDIX A. CLASS DECLARATIONS IN SIM LIB 79

};

int CanSendO ;
int CanReceiveO ;
void StatPrint(ostreajn&,double);

class Bufferrpublic Queue
int buffersize;

public:
Buffer(int);
void Assign(int);
void Insert(Entity*,double):

>;

class Distribution
{

Dtype type;
double meaui;
double deviation;

public:
DistributionO;
Distribution(Dtype,double);
Distribution(Dtype,double,double);
double Generate();
void Print (ostreaunA s) ;

};

class Sourcetpublic Node
Distribution *distgeneration;
int totalentities;

public:
Source(){};
Source(char*,int,Distribution&);
void Assign(char*,int »Distribution*);
Distribution* GetDistOi*
double GetEntityIntervalO;
void SetPasser(Entity*);
void StatPrint(ostream&,double);

};

class Serverrpublic Node
int totalentities;
double totalidletime;
double lastwait;

public:
Distribution *distservice;
Distribution *distrepair;
double probcrash;

APPENDIX A. CLASS DECLARATIONS IN SIM LIB 80

>;

Server(){};
Server(char*,int,Distribution&,Distributionft,double) ;
Server(char*,int.Distribution*);
void Assign(char*,int.Distribution*,Distribution*,double);
void Assign(char+,int.Distribution*);
void BeginService(Entity*,double);
void EndService(Entity*.double);
int IsIdleO;
Distribution* GetDistO;
int CanReceiveO ;
void ReceiveEntityCSimulation*,double,Entity*);
void StatPrint(ostreajn*,double);

class Sink:public Node
public;

int totalentities;
double totalwaittime;
double totalsystemtime;
Sink(){};
Sink(char*,int);
void Assign(char*,int);
void TerminateObject(Entity*,double);
int CanReceiveO ;
void ReceiveEntity(Simulation*,double,Entity*);
void StatPrint(ostream*,double);

>;

class SimEvent
public:

double time;
int type;
SimObject* owner;
SimEvent* next;
Simulation* sim;
friend EventList;
friend Simulation;
virtual void Print(ostream*){};
virtual void ExecuteOO;
virtual void SetSim(Simulation*);
double GetTimeO;

>;

class StableEvent:public SimEvent
protected:

Entity *object;
friend EventList;

APPENDIX A. CLASS DECLARATIONS IN SIMLID 81

public:
void Print(ostreamft);

};

class MovingEvent:public SimEvent
protected:

SimObject *departurepoint;
SimObject *arrivalpoint;

public:
void Print(ostreamft);

};

class BeginTransport .-public MovingEvent
public:

BeginTransport(double,SimObj ect*,SimObj ect*,SimObj ect*) ;
void ExecuteO;

};

class EndTransport:public MovingEvent
public:

EndTransport(double,S imObj ect *,S imObj ect*,S imObj ect ♦) ;
void ExecuteO;

};

class EntityIntoSystem:public StableEvent
public:

EntitylntoSystem(double,SimObj ect*,Entity*);
void ExecuteO;

>;

class EntityIntoQueue:public StableEvent
public:

EntityIntoQueue(double,SimObj ect*,Entity*);
void ExecuteO;

};

class EntityFromQueue:public StableEvent
public:

EntityFromQueue(double,SimObj ect*,Entity*);
void ExecuteO;

};

class EntityIntoService:public StableEvent
public:

EntityIntoService(double,SimObject*,Entity*);

APPENDIX A. CLASS DECLARATIONS IN SIMLIB 82

};
void ExecuteO;

class EntityFromService:public StableEvent
public:

EntityFromService(double,SimObject*,Entity*);
void ExecuteO,·

};

class EntityFromSystemrpublic StableEvent
public:

EntityFromSystem(double,SimObject*,Entity*);
void ExecuteO;

};

class EventList
{

Simulation* owner;
SimEvent* head;

public:
EventList0;
SimEvent* GetHeadO;
void SetOwner(Simulation*);
void Schedule(SimEvent*);
SimEvent* GetNextO;
void Print(ostreamft);
int Exists(SimEvent*);

} ;
class Simulation
public:

double SimClock;
EventList FEL;
int SimStatus;

};

friend SimEvent;
SimulationO;
virtual void Init();
virtual void StepO;
virtual void Run();
virtual void Done();
virtual int ShouldStopO;

References

[1] J. Banks and J.S. Carson. Discrete-Event System Simulation. Prentice-
Hall, 1984.

[2] R. Belanger. MODSIM II, a modular, object-oriented language. In
0 . Balcı, R.E. Sadowski, and R.E. Nance, editors. Proceedings of the 1990
Winter Simulation Conference, pages 118-122, 1990.

[.3] J. Bezivin. Some experiments in object-oriented simulation. In OOPSLA
Proceedings, pages 394-405, 1987.

[4] E.L. Blair and S. Selvaraj. DISC-H-: a C-f-t- based library for object-
oriented simulation. In E.A. MacNair, K.J. Musselman, and P. Heidel­
berger, editors. Proceedings of the 1989 Winter Simulation Conference,
pages 301-307, 1989.

[5] B. Cox. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley, 1986.

[6] D.L. Eldredge, .J.D. McGregor, and M.K. Summers. Applying the object-
oriented paradigm to discrete-event simulations using the C-H- language.
Simulation, 54(2):83-91, 1990.

[7] C.B. Basnet et al. Experiences in developing an object-oriented modeling
environment for manufacturing systems. In 0 . Balcı, R.E. Sadowski, and
R. E. Nance, editors. Proceedings of the 1990 Winter Simulation Confer­
ence, pages 477-481, 1990.

[8] A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-
Wesley, 1989.

83

BIBLIOGRAPHY 84

[9] A.R. Kaylan. A simulation environment based on object-oriented tech­
nology. In A.R. Kaylan and T. Ören, editors, Proceedings of Advances in
Simulation '92 Symposium, pa,ges 163-174, 1992.

[10] G. Lomow and D. Baezner. A tutorial introduction to object-oriented
simulation and SIM-I-+. In O. Balcı, R.E. Sadowski, and R.E. Nance,
editors. Proceedings of the 1990 Winter Simulation Conference, pages 149-
153, 1990.

[11] J.M. Mellichamp and A.F.A. Wahab. An expert system for FMS design.
Simulation, 48(5):201-209, 1987.

[12] B. Meyer. Reusability: The case for object-oriented design. IEEE Soft­
ware, 4(2):50-64, 1987.

[13] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

[14] J.G. Moser. Integration of artificial intelligence and simulation in a com­
prehensive decision-support system. Simulation, 47(6):223-229, 1986.

[15] R. O’Keefe. Simulation and expert systems—A taxonomy and some ex­
amples. Simulation, 46(1).TO-16, 1986.

[16] T.I. Ören and B.P. Zeigler. Artificial intelligence in modeling and simula­
tion: Directions to explore. Simulation, 48(4):131-134, 1987.

[17] C.D. Pegden. Introduction to SIMAN. Systems Modeling Corporation,
1982.

[18] R.I. Phelps. Artificial intelligence—An overview of similarities with OR.
Journal of the Operations Research Society, 37(1): 13-20, 1987.

[19] M. Pidd, editor. Computer Modeling for Discrete Simulation. John Wiley,
1989.

[20] A.B.B. Pritsker. The GASP Simulation Language. John Wiley, 1974.

[21] A.B.B. Pritsker and C.D. Pegden. Introduction to Simulation and SLAM
II. John Wiley, 1986.

[22] E.C. Russell. Building Simulation Models with SIMSCRIPT II.5. CACI
Products Company, 1983.

BIBLIOGRAPHY 85

[23] T.J. Schriber. Simulation Using GPSS. John Wiley, 1974.

[24] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[25] B.P. Zeigler. Hierarchical, modular discrete-event modeling in an object-
oriented environment. Simulation, 49(5):219-230, 1987.

