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ABSTRACT

COMPUTER AIDED DIAGNOSIS IN RADIOLOGY

Metin Nafi Gürcan
Ph.D. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Enis Çetin 
March 1999

Breast cancer is one of the most deadly diseases for middle-aged women. In this thesis, 
computer-aided diagnosis tools are developed for the detection of breast cancer on 
mammograms. These tools include a detection scheme for microcalcification clusters 
which are an early sign of breast cancer, and a method to detect the boundaries of 
mass lesions. In the first microcalcification detection method we propose, a subband 
decomposition structure is employed. Contrary to the previous work, the detection 
is carried out in the subband domain. The mammogram image is first processed by 
a subband decomposition filter bank. The resulting subimage is analyzed to detect 
microcalcification clusters. In regions corresponding to the healthy breast tissue the 
distribution is almost Gaussian. Since microcalcifications are small, isolated bright 
spots, they produce outliers in the subimages and the distribution of pixels deviates from 
Gaussian. The subimages are divided into overlapping square regions. In each square 
region, skewness and kurtosis values are estimated. As third and fourth order correlation 
parameters, skewness and kurtosis, are measures of the asymmetry and impulsiveness 
of the distribution, they can be used to find the locations of microcalcification clusters. 
If the values of these parameters are higher than experimentally determined thresholds 
then the region is marked as a potential cancer area. Experimental studies indicate that 
this method successfully detects regions containing microcalcifications.

We also propose another microcalcification detection method which uses two- 
dimensional (2-D) adaptive filtering and a higher order statistics based Gaussianity test. 
In this method, statistics of the prediction errors are computed to determine whether the 
samples are from a Gaussian distribution. The prediction error sequence deviates from 
Gaussianity around microcalcification locations because prediction of microcalcification
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pixels is more difficult than prediction of the pixels corresponding to healthy breast 
tissue. Then, we develop a new Gaussianity test which has higher sensitivity to outliers. 
The scheme which uses this test gives better detection performance compared to the 
previously proposed methods. Within the detected regions it is possible to segment 
individual microcalcifications. An outlier labeling and nonlinear subband decomposition 
based microcalcification segmentation method is also investigated.

Two types of lesions, namely mass and stellate lesions, might be indicators of breast 
cancer. Finally, we propose a snake algorithm based scheme to detect the boundaries 
of mass lesions on mammograms. This scheme is compared with a recently developed 
region growing based boundary detection method. It is observed that the snake algorithm 
results in a more smooth boundary which is consistent with the morphological structure 
of mass lesions.

Keywords: Mammography, microcalcification, mass lesion, computer-aided diagnosis, 
Gaussianity tests, higher-order statistics, boundary detection.



ÖZET

RADYOLOJİDE BİLGİSAYAR DESTEKLİ TANI 

Metin Nafi Gürcan
Elektrik ve Elektronik Mühendisliği Doktora 

Tez Yöneticisi: Prof. Dr. A. Enis Çetin 
Mart 1999

Meme kanseri orta yaştaki kadınlar için en ölümcül hastalıklardan birisidir. Bu 
tezde, mammogramlarda meme kanserinin bilgisayar destekli tanısı için yöntem­
ler geliştirilmiştir. Bunlar içerisinde, meme kanserinin erken bir belirtisi olan 
mikrokalsifikasyon topaklanmalarının sezimlenmesi ve kütle lezyonlarmm çevrelerinin 
bulunması için geliştirilmiş yöntemler vardır. Geliştirdiğimiz ilk mikrokalsifikasyon 
sezimleme yönteminde, altbantlara ayrıştırma yapısı kullanılmıştır. Daha önceki yapılmış 
çalışmaların aksine, sezimleme işlemi altbantta gerçekleştirilmiştir. Mammogram resmi 
öncelikle bir altbantlara ayrıştırma süzgeç dizisi ile işlenir. Ortaya çıkan alt-imge 
analiz edilerek, mikrokalsifikasyon topaklanmaları sezimlenir. Sağlıklı göğüs hücrelerine 
karşılık gelen bölgelerde yaklaşık olarak Gauss dağılımı gözlenir. Mikrokalsifikasyonlar 
küçük, ayrışık parlak bölgeler oldukları için, alt-imgelerde aykırı değer oluştururlar 
ve görellerin dağılımı Gauss dağılımından sapar. Alt-imgeler birbiri içine geçmiş kare 
bölgelere bölünür. Her bir kare içerisinde yamukluk ve savrukluk değerleri hesaplanır. 
Üçüncü ve dördüncü dereceden ilinti parametreleri yamukluk ve savrukluk, dağılımın 
bakışımsızlık ve dürtüselliğini gösterdiğinden, mikrokalsifikasyon topaklanmalarının 
yerlerinin bulunmasında kullanılabilir. Eğer bir kare bölgede bu değerler, deneysel 
olarak belirlenmiş eşik değerlerinin üzerinde çıkarlarsa, o bölge potansiyel kanser bölgesi 
olarak işaretlenir. Deneysel çalışmalar göstermiştir ki bu yöntem mikrokalsifikasyon 
topaklanmalarının sezimlenmesinde başarılıdır.

Biz ayrıca iki boyutlu uyarlamalı süzgeçlemeye ve yüksek dereceli istatistiklere 
dayalı Gauss dağılımına uygunluk testlerinden yararlanan bir mikrokalsifikasyon topak­
lanması sezinleme algoritması öneriyoruz. Bu yöntemde, öngörü hatalarının bir 
Gauss dağılımından gelip gelmediği belirlenir. Öngörü hataları mikrokalsifikasyonların
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olduğu bölgelerde Gauss dağılımından sapar çünkü mikrokalsifikasyona karşılık gelen 
görellerin öngörüsü sağlıklı meme hücrelerine karşılık gelen gürellerin öngörüsünden 
daha zordur. Daha sonra, aykırılıklara daha yüksek duyarlılığa sahip bir Gauss 
dağılımına uygunluk testi geliştirilmiştir. Bu testi kullanan yeni bir sezimleme sistemi 
geliştirilmiş ve önceden önerilmiş yöntemlerle karşılaştırıldığında daha iyi bir başarım 
elde edilmiştir. Sezimlenmiş bölgelerde, her bir mikrokalsifîkasyonun bölütlenmesi 
mümkündür. Aykırı değer etiketlemesine ve doğrusal olmayan altbantlara ayrıştırma 
yapıları kullanılan bölütleme yöntemleri incelenmiştir.

Kütle lezyonları ve yıldızsal lezyonlar meme kanserinin göstergeleri olabilir. Son 
olarak, kütle lezyonlarınm çevrelerinin bulunması için yılan algoritmasına dayalı bir 
yöntem geliştirilmiştir. Bu yöntem, bölge büyütmeye dayalı benzer bir algoritma ile 
karşılaştırılmıştır. Yılan algoritmasının daha yumuşak bir çevre oluşturduğu gözlenmiştir 
ve bu da kütle lezyonlarınm morfolojisine daha uygundur.

Anahtar Kelimeler: Mamografi, mikrokalsifikasyon, kütle lezyonu, bilgisayar destekli 
tanı. Gauss dağılımına uygunluk testleri, yüksek dereceli istatistikler, çevre sezimlemesi.
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Chapter 1

INTRODUCTION

Breast cancer is one of the most deadly diseases for middle-aged women. One out of 
eight women is prone to this disease in her lifetime [1]. The success of treatment depends 
on early detection. Therefore, women, especially in their middle ages, must be regularly 
screened [2]. Mammography (X-ray image of breasts) is the commonly used screening 
technique for the early detection and it is recommended by the American Cancer Society 
to asymptomatic women over the age of 40 [2].

Breast cancer detection in mammogram images is currently carried out by radiologists 
who examine mammograms with a magnifying glass to find out tumors such as 
microcalcifications, masses, and stellate lesions [3]. Clustered microcalcifications are 
observed between 30% and 50% of breast cancer cases [4, 5]. Microcalcifications are tiny 
calcium deposits in breast parenchymal tissue structures, which appear as small bright 
spots on mammograms. A cluster is defined as 3 or more microcalcifications within a
1 cm^ area. Microcalcification sizes vary from 0.01 mm^ to 1 mm^. With the current 
50 micron scanning technology, the smallest microcalcification appears as a 2 pixel by
2 pixel bright region in the digital mammogram image. Since microcalcifications are 
small and subtle abnormalities, they may be overlooked by an examining radiologist. 
For instance, in retrospective studies it has been determined that between 10%-30% of 
the undetected breast cancers are actually visible on mammograms [2].

While microcalcifications are regarded as an early sign of breast cancer, two types of 
lesions, namely mass and stellate lesions might be indicators of cancer. A mass appears 
on the mammogram as an almost uniform density elliptical disk. It is brighter than its
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Figure 1.1: Block diagram of a generic CAD system.

surrounding area and its edges are fuzzy. A stellate lesion has a central mass very much 
like a mass. Additionally, it has sharp fine lines (spicules) emanating from the center [3].

1.1 Computer-Aided Diagnosis

Recently, pattern recognition and image processing techniques have been used in the 
analysis of medical images [1, 6]. Resulting systems are called Computer-Aided Diagnosis 
(CAD) systems. In general, a generic CAD system consists of three main tasks as shown 
in Figure 1.1 [13]:

• F eatu re  E x trac tion : Different sets of features are extracted either from the 
original image through some measurements (e.g., size of microcalcifications), or 
from processed images. Image can be processed by the Fourier transform, the 
wavelet transform or nonlinear filter based transforms. For instance, higher 
order correlations, autocorrelation, energy, and entropy are some of the features 
corresponding to a group of pixels in the wavelet domain [12].

• F eatu re  Selection: Extracted features are grouped to achieve maximum 
separability. The aim is to obtain non-overlapping feature classes such that a 
perfect separability is possible. Some popular feature selection methods include 
genetic algorithms, multivariable cluster analysis [7].

• C lassification: The selected set of features are classified using, for instance, linear 
and quadratic classifiers, binary decision trees, standard back-propagation network, 
dynamic neural networks, and K-nearest neighbor rule [5].

A user-friendly interface is also an important part of a CAD system as most radiologists 
may not be familiar with computers.



Radiography is entering a new phase of development after the introduction of 
digital techniques. Now, some of the modalities such as Computed Radiography (CR), 
Digital Subtraction Angiography, Digital Mammography, Computed Tomography(CT), 
and Magnetic Resonance Imaging (MRI) produce digital outputs, directly. For archiving 
purposes, analog radiographs are digitized. Hence, digital image processing techniques 
will be utilized for a wide range of radiological applications. Some examples of the use 
of computer-aided techniques for different modalities are given in [23]. These include 
detection of pulmonary nodules and pneumothorax; detection and characterization of 
interstitial disease; and analysis of heart size in chest radiography. In angiography, 
stenotic lesions are analyzed by computerized methods. In mammography, mass, stellate 
lesions, and microcalcification clusters are detected and classified.

CAD will be an important feature of next generation Picture Archiving and 
Communication Systems (PACS), with which filmless hospitals are envisaged [14]. In 
these systems, radiological pictures are captured, stored and communicated digitally. 
Many hospitals all over the world have these systems.

It is clinically observed that the detection rate increases if the same mammogram 
image is read by two different radiologists. However, employing two radiologists for 
double reading is not always feasible. Currently, CAD systems are intended to act as 
“second readers” rather than to replace radiologists.

In a computerized detection system there are four possible outcomes:

1) There is an abnormality and it is detected (true positive),

2) there is an abnormality and it is missed,

3) there is no abnormality but something is detected (false positive), and

4) there is no abnormality and nothing is detected.

Preliminary studies indicate that CAD systems increase the performance of radiolo­
gists [9]. With the help of CAD systems, radiologists can detect all suspicious regions 
on mammograms (i.e., high sensitivity), while not marking healthy regions as suspicious 
(i.e., high specificity) [8]. High sensitivity means achieving the maximum true positive 
rate while high specificity means having the minimum false negative rate.

Two factors contributed to a recent worldwide increased interest in CAD systems for 
mammography. First, there has been (and will be) a significant increase in the number



of mammograms to be examined due to national screening programs through which all 
women over the age of 40 are advised to undergo regular mammogram exams. The 
second factor is the introduction of digital techniques in radiography, and availability 
and proliferation of digital radiological images. In this thesis, we develop CAD tools for 
the detection and analysis of breast abnormalities on mammogram images.

1.2 Previous Work

A significant part of CAD research for mammography has concentrated on the early 
detection of breast cancer, and in particular the detection of microcalcifications. In one of 
the early works in this field, a difference-image technique is employed [2]. First, the image 
is processed by two filters and their outputs which are called the signal-suppressed image 
and signal-enhanced image, are subtracted from each other. The first filter, the signal 
enhancement filter is a spatial filter approximately matching to the size and contrast 
variations of typical microcalcifications. This filter is designed to increase the peak 
intensity values of microcalcification pixels relative to the background pixels. Different 
forms of filters such as median filters and box-rim filters are used for signal suppression 
filters. The difference image is grey-level thresholded to single out microcalcification 
locations from the noise. The area and the contrast values of the pixels with values 
higher than globally and locally set threshold values are then analyzed. The resultant 
parts of the image are considered to be microcalcifications and these are clustered. This 
CAD system has 87% true-positive cluster detection accuracy at a false-positive detection 
rate of 4 clusters per image in a mammogram database consisting of 60 mammograms [9].

Woods et al. compare different pattern recognition techniques for the detection of 
microcalcifications on mammograms [5]. They employ a multistage detection algorithm. 
The first stage is segmentation. At this stage, a local contrast image is computed by 
subtracting from each pixel the average value of 15 x 15 region surrounding that pixel. 
The maximum value in the local contrast image defines a threshold value. The pixels with 
values higher than this threshold constitute the locally bright spots on the mammogram. 
Some of these local bright spots are eliminated by region growing algorithm (described in 
Chapter 4). A feature vector consisting of 29 components are considered to characterize 
the resultant image. Seven of these features are selected to form a feature vector: area 
of the object, average grey level of the object, gradient strength of the object’s perimeter 
pixels, root mean square (RMS) noise fluctuations in the object, RMS noise fluctuation



in the surrounding background, contrast, a low order moment based shape descriptor. 
Finally, seven different classifiers are used to detect microcalcification clusters: linear 
and quadratic classifiers, binary decision trees, a standard back-propagation network, 2 
dynamic neural networks, and a K-nearest neighbor classifier. Based on the experiments 
performed on a database of 24 images, the authors conclude that the simple Bayesian 
linear classifier performs the best according to the receiver operating characteristics 
(ROC) curve methodology . The results are dependent on the choice of the feature set 
and on finding a good operating point.

Recently, a variety of wavelet transform based schemes has been proposed for 
the computerized detection of microcalcifications [4, 6, 10]. In these schemes, the 
mammogram image is first passed through a subband decomposing filter bank. Then, a 
selected set of subband images are weighted to enhance the microcalcification locations. 
Next, a new image is reconstructed from the weighted sub-images. In the detection step, 
global and local gray-level thresholds are applied to the reconstructed image to extract 
possible microcalcification locations. Finally, these locations are grouped to identify 
microcalcification clusters.

In wavelet based schemes, microcalcification detection is carried out on the 
reconstructed image. These schemes mainly differ in their choice of wavelet filters and 
the selection of subband images used in the reconstruction. For example, Yoshida et al. 
use the Least Asymmetric Daubechies’ wavelet with 8 coefficients (LAD8) [10]. Only 
the second and third scales of the wavelet transform are selected for the reconstruction. 
In their later work [6], they employ seven different scales, only the first three of which 
are given more emphasis by higher weights. Strickland and Hahn use the biorthogonal 
spline wavelet with nine coefficients [11]. In another work, Wei et al. use the Least 
Asymmetric Daubechies’ wavelet with 4 coefficients (LAD4) [12]. They include only the 
first four scales for feature extraction. We show that these wavelet based schemes are 
essentially equivalent to linear filtering followed by thresholding. In Appendix A, we 
demonstrate the equivalence and give equivalent linear filter responses.

Clarke et al. develop a microcalcification detection method based on a tree-structured 
non-linear filter, edge detector, and the wavelet transform [8, 21]. The mammogram 
image is first filtered with multistage, tree-structured nonlinear filters. The major 
filtering blocks are Central-Weighted Median Filters (CWMF). In calculation of the 
CWMF, the current pixel is given more weight by including several copies of it in the



usual median calculation. The purpose of CVVMF filters is to increase the signal-to- 
noise ratio and to suppress the undesired background structures. Next, a quasi-range 
dispersion edge detector enhances the edges. The output of the edge detector is input to 
the wavelet transform. Finally, a linear combination of the wavelet transform coefficients 
is utilized to extract microcalcifications. In their evaluation of nine images, the authors 
detected all the clusters with an average of four false clusters per image.

Segmentation of individual microcalcifications after detecting their locations is the 
next step in diagnosis. In this step, the size and shape information of microcalcifications 
are extracted. This information can be used by radiologists while classifying the 
clusters as malignant or benign. Another important decision factor for the classification 
of clusters is the three-dimensional arrangement of microcalcifications within the 
cluster. For example, ductal carcinoma in situ tend to show linear arrangements while 
microcalcifications caused by cysts are often arranged on the surface of a sphere [17]. 
Müller et al. [18, 19] built a system to reconstruct and visualize the three-dimensional 
arrangement of a cluster from only two different views. The final decision is based on 
breast biopsy.

Dengler et al. employ a nonlinear filtering approach for microcalcification detection 
and segmentation [20]. The first step of this detection scheme is background gray level 
elimination. A broadband highpass filter eliminates the large background structures. The 
resulting image is thresholded. The value of the threshold is 0 because microcalcifications 
are expected to have pixel values greater than 0. Then, the processed mammogram 
image is filtered with two Gaussian filters of different standard deviations, and cr_. 
The standard deviation a+ is proportional to the microcalcification size and the standard 
deviation cr_ is related to the expected distance between microcalcifications. A circularly 
symmetric Gaussian filter in two dimensions is defined as:

g[m, n]
27rcr̂

e 2(T̂ (1.1)

where a is the standard deviation of the filter, (m, n) and 1Z =  [ - N , . . .  , 0 , . . . ,  N] x  
[—N , . . . , 0, . . . , N] .  The difference of two filtered images is thresholded to locate 
suspicious spots. The value of the threshold is determined from the final image as a 
multiple of the standard deviation of the noise in the difference image. Finally, the 
thresholded image is nonlinearly processed by morphological opening and thickening 
operations to extract the original shape and size of microcalcifications. They obtained 
97% sensitivity at 70% specificity for the 24 images they used. Although it is not realized
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by the authors, this method is also based on bandpass filtering as utilized Gaussian filters 
are two low-pass filters and their difference turns out to be a bandpass filter.

Dhawan et al. propose a scheme for the classification of microcalcifications on 
mammogram images as benign or malignant [7]. The first step of the method is 
the manual extraction of regions of interest on mammograms. These regions contain 
microcalcification clusters. Next, they compute global texture features from second- 
order histogram statistics: entropy, contrast, angular second moment, inverse difference 
moment, correlation, mean, deviation. The image is subband decomposed using the 
Daubechies’ wavelet filters of size 6 and 20. Local texture features, energy and entropy 
are computed on the original image and four subband images (low-low, low-high, high- 
low, high-high). The energy, E  and the entropy, H  iov an M  x N  region are defined 
as

E = E m = l  E n = l X  n]
N  x M

( 1 .2)

^ = - i : i : ^ ^ i o g ( i ^ )  (1.3)
m=ln=l \  ^ /

where S  is the sum of the squares of pixel intensity values, x[m, n\ within the region 
of interest, S  =  Em=i E^=i n]. The global and local texture features are 
combined with another feature set which include features such as the distance between 
microcalcifications and the number of microcalcifications. Among all these extracted 
features, the best set of features is selected by means of multivariate cluster analysis and 
a genetic algorithm-based search method. Finally, back-propagation neural networks and 
parametric statistical classifiers are used to classify the selected features. The authors 
conclude that genetic algorithm-based best feature selection combined with the neural 
network classifier gives the best performance in the classification of “difficult-to-diagnose” 
microcalcifications.

Another branch of computer-aided diagnosis for mammography deals with mass 
detection and stellate lesion detection on mammograms. In [22], it was determined that 
the length of the long axis of the masses varies in size from 6 mm to 26 mm. Compared 
to microcalcifications, these abnormalities are considerably larger but their detection is 
still difficult because they look very much like the surrounding parenchymal tissue and 
their contrast is usually low.



Doi et al. propose a mass detection scheme by taking advantage of the fact that 
normal right and left breasts [23] are symmetrical. If a tumor is developed in one of the 
breasts then this symmetry is disturbed. Hence, a comparison between left and right 
breast mammograms reveals the locations of the masses. The symmetry comparison is 
also a common practice for radiologists in their diagnosis of mass lesions. In computerized 
detection, first, left and right breast images are aligned. After suitable adjustments, the 
left and right breast images are subtracted from each other. The difference image shows 
a discrepancy at locations of mass lesions.

Gulsrud and Kjode propose a linear filter design method for the mass and stellate 
detection [3]. Mammograms are first filtered by a linear filter which is designed according 
to the Fisher criterion is defined in Equation 1.4. This filter is designed to maximally 
separate the local energies of the normal breast tissue and suspicious areas. The output 
of the filter is squared and then low-pass filtered. The operations of squaring and 
smoothing by low-pass filtering make it possible to segment suspicious regions by a 
simple thresholding. The Fisher criterion implies that the filter maximally separates the 
mean values of healthy and abnormal regions, while keeping the variances within these 
regions as low as possible. The objective function is defined as

< ( h ) + < ( h )
where /iui(h) and cTu<(h), i =  1,2 are the mean and standard deviation of normal and 
suspicious regions, respectively, and these are functions of the filter coefficients, h.

The optimization is achieved taking the derivative of Equation 1.4 with respect to 
h and equating it to zero. A simple gradient search gives the solution. However, in 
order to avoid the risk of converging to a local minimum, a close form of the solution 
is obtained. It is assumed that the output of the filter can be modeled as separable 
first order autoregressive processes. Then, the close form solution is used as the initial 
solution for the iterative gradient search method. The mammogram image is filtered 
with the optimal filter. On the output of the filter, a simple thresholding separates mass 
and stellate lesions from the normal breast tissue. The authors use the same scheme for 
the detection of both mass lesions and stellate lesions, observing that they have similar 
characteristics. The false alarms produced by the system are eliminated by checking 
the size and the circularity of the detected regions. The authors conclude that this 
scheme is unable to detect mass and stellate lesions when (i) the lesion is surrounded 
by very dense tissue, (ii) the lesion has low intensity compared to the normal tissue
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in the breast. The gradient search method has high computational costs. However, it 
needs to be computed only once for this problem and the calculation can be off-line (the 
parameters are obtained from a training set and these are used for all other detections).

In [22], mass lesions are detected using textual features derived from Spatial Grey 
Level Dependence (SGLD) matrices. The SGLD matrix S(d,9), for the image, x is defined 
in terms of a distance d and an angle 9. If there are k different grey levels, {m = 
1,.. . ,k)  in a:, then the size of the S(d,e) matrix is A: x A:. For each d and 9, the elements 
of the SDGL matrix, S(d,e) [m, give the number of times the pixels with grey level, Lm 
occur at a distance d and angle 9 relative to the pixels with grey level, (1 < m, n < A:). 
From the SGLD matrix eight features are calculated which are correlation, entropy, 
energy (angular second moment), inertia, inverse difference moment, sum average, sum 
entropy, and difference entropy. SGLD matrices are calculated on mammogram images 
whose backgrounds are removed. Four different angles (0, 45, 90, 135) are considered and 
this produces 32 dimensional feature vector. This vector is averaged at four directions 
and an 8 dimensional feature vector is created. Next, the stepwise feature selection is 
performed to select the most discriminating subset of all available features. Selected 
features are used in linear discriminant analysis to detect masses on mammograms. The 
discriminant function, D, is a linear combination of the N  feature variables, Fi [22]:

N
D  0/0 -l-  ̂ ] aiFi (1.5)

i=l
where Oj are weights calculated from the input data during training. The performance 
of the detection is evaluated using a receiver operating characteristics (ROC) 
methodology [24]. In an ROC curve, true positive rate is plotted versus false positive 
detection rate. ROC curves are obtained for different detection thresholds. The area 
under the ROC curve is a measure of the performance of the scheme with a selected 
threshold value. In another work, the same features are fed into a convolutional neural 
network classifier for classification [24].

A multiresolution framework is also used for the detection of mass lesions in [12] 
and stellate lesions in [25]. In [12], Daubhecies’ filter with four coefficients is used as 
the wavelet filter to obtain low-low subband images up to the fourth scale. In each 
scale SGLD matrices are calculated. Then, linear discriminant methodology described 
in Equation 1.5 is employed to differentiate between regions with tumor and healthy 
breast tissue.



In another multiresolution framework, Liu and Delp use a linear phase non-separable 
wavelet transform whose analysis filter, /i[m, n], is [25]:

/i[m, n] =
0 0.125 0

0.125 0.5 0.125

0 0.125 0

(1.6)

The authors choose this filter because it does not introduce phase distortions or any 
bias in the horizontal and vertical directions. A two-dimensional quincunx subsampling 
is used. Then, at each resolution, four different features are extracted for every pixel: 
mean pixel gray level, standard deviation of pixel gray levels, standard deviation of edge 
histogram, standard deviation of folded edge orientations. For classification purposes a 
binary classification tree is employed. The main advantage of using a multiresolution 
framework is that abnormalities at different sizes can be more efficiently detected.

1.3 Outline of the Thesis

In this thesis. Higher Order Statistical (HOS) methods are developed for microcalcifica­
tion detection on mammograms. In Chapter 2, the microcalcification modeling problem 
is discussed and it is concluded that deterministic microcalcification models introduced 
in [4, 40] are not sufficient to represent all types of microcalcifications as they can 
take different forms. Our modeling approach is statistical rather than deterministic. 
Furthermore, instead of modeling the microcalcifications on the original mammogram 
image, we model them in the bandpass images or in the multiresolution wavelet domain. 
Since microcalcifications are isolated single bright spots they appear as outliers in the 
bandpass images and in the wavelet domain images. Therefore, the problem of detecting 
microcalcification clusters is equivalent to detecting outlier clusters in these images. The 
linear and nonlinear filtering methods used in the first stage of the detection scheme 
are reviewed. Then, skewness and kurtosis based higher order statistical tests of the 
detection are introduced.

In Chapter 3, the regular structure of the mammogram image corresponding to 
the breast is removed by the adaptive filtering in the pre-processing stage. The 
method we propose makes use of two-dimensional (2-D) adaptive filtering and a HOS 
based Gaussianity test recently developed by Ojeda et al. for causal invertible time
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series [54]. After adaptive linear prediction, a statistic of the prediction errors is 
computed to determine whether they are samples from a Gaussian distribution. Since 
microcalcifications are isolated bright spots, the prediction sequence deviates from 
Gaussianity around microcalcification locations. In Chapter 3, a new HOS based 
Gaussianity test is also developed which has a higher sensitivity than Ojeda et al.’s 
test. The concepts of the influence function and sensitivity curves are reviewed in this 
chapter and the sensitivity curves of the higher order statistical tests are derived. Our 
experiments with the mammogram database show that the proposed Gaussianity test 
gives better detection performance.

At the output of the HOS based detection scheme, parts of mammogram image 
with microcalcifications are marked as suspicious regions. Within these marked regions 
(or regions marked by other detection schemes), individual microcalcifications can be 
segmented through further processing. The shape and exact extent of microcalcifications 
can provide valuable information to radiologists in their diagnosis, and classification of 
the abnormalities as benign or malignant. They can also be used in three dimensional 
reconstruction of microcalcifications within the breast structure. In Chapter 4, 
several segmentation methods that use nonlinear and adaptive filtering based ‘subband’ 
decomposition structures, and a statistical outlier method are introduced. After the 
segmentation of individual microcalcifications, they can be superimposed on to the 
original mammogram image to get visually enhanced images. This chapter also describes 
mammogram enhancement operations.

While microcalcifications are regarded as an early sign of breast cancer, two types 
of lesions, namely masses and stellate lesions, are indicators of cancer. An additional 
tool has been developed for the detection of mass lesion boundaries on mammogram 
images. The method is based on active contour models, which are also known as snakes. 
In Chapter 5, the boundary detection method is explained and a comparison is made 
with another, recently developed, boundary detection method which is based on fuzzy- 
set pre-processing and region growing. Finally, conclusions and future work are given in 
Chapter 6.

11



Chapter 2

MICROCALCIFICATION 
DETECTION USING FILTERING 
AND HIGHER ORDER 
STATISTICS

As discussed in Chapter 1 clusters of fine, granular microcalcifications are an early 
sign of breast cancer in 30%-50% of the cases detected by mammography. In this 
chapter, microcalcification detection using filtering followed by Higher Order Statistical 
(HOS) analysis is described. In Sections 2.1 and 2.2, a stochastic characterization 
of microcalcifications is described and the database with which all the experiments 
are carried out is introduced, respectively. The mammogram image is processed 
by either a subband decomposition structure or a linear bandpass filter to enhance 
microcalcifications while suppressing the underlying breast structure. The filtered image 
is divided into overlapping square regions for statistical analysis. It is observed that in 
regions without microcalcifications, the distribution of pixel values is almost Gaussian 
whereas in regions with microcalcifications, the distribution is skewed due to outliers 
caused by microcalcifications. Therefore, skewness and kurtosis are estimated in the 
filtered image to identify suspicious regions. The use of nonlinear subband decomposition 
structures instead of linear subband decomposition as a pre-processing stage is also
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Figure 2.1: Part of a mammogram image containing microcalcification cluster.

investigated.

2.1 Characterization of Micro calcifications

The development of a microcalcification detection system starts with some character­
ization of microcalcifications [40]. Various authors have tried to model their shape, 
dimensions and their appearance on mammogram images. All of these approaches is 
deterministic.

Microcalcifications do not have a particular shape; their shapes vary from granular 
to rod-shaped. Morphologically, they can be classified as dust-like, worm-like, crushed 
stone, etc. [42]. Figure 2.1 shows part of a mammogram image containing a 
microcalcification cluster. Figures 2.2 and 2.3 give the cross sections of parts of two 
different mammogram images. In these figures, the arrows indicate the locations of 
microcalcifications. In these particular cases, microcalcifications are easy to locate due 
to their high contrast relative to the surrounding parenchymal tissues. However, there 
is no lower limit to the contrast difference and in some cases parts of the mammogram 
image can be brighter than microcalcifications in the mammogram image [20]. Therefore, 
a simple thresholding technique is not sufficient for the detection.

Strickland and Hahn model microcalcifications as circularly-symmetric Gaussian 
functions by looking at the average profile of 80 different microcalcifications [4]. 
However, this model cannot satisfactorily represent every type of microcalcification, 
especially those with non-regular shapes. Actually, the resultant profile can be thought
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Cross section of a part of mammogram image with microcalcifications

Figure 2.2: Cross section of a part of a mammogram image with microcalcifications. The 
locations of microcalcifications are indicated by arrows.
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Cross section of a part of mammogram image with microcalcifications

Figure 2.3: Cross section of a part of a mammogram image with microcalcifications. The 
locations of microcalcifications are indicated by arrows.
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of a natural result of the central limit theorem. Since the authors average quite a large 
set of microcalcification profiles, it is natural to expect the average microcalcification to 
have a Gaussian distribution.

In another modeling attempt, Netsch describes microcalcifications as bright, circular 
spots and models them as cylinders of certain height and weight [40]. The following 
equation gives his model of a microcalcification located at (0, 0):

x[Tn,n]  =
C + Co if < -^

Co otherwise
(2 .1)

where, x[m, n] is the intensity of the microcalcification pixels, D is the size, C is the local 
contrast, and Co is the local background intensity. This model can also be criticized for 
being over-simplified and not taking into account various microcalcification shapes.

In our approach, we do not use a deterministic explicit form of a microcalcification 
model. Instead, we have a stochastic approach. This approach is motivated by the fact 
that microcalcifications appear as impulsive outliers in subband decomposed or bandpass 
filtered mammogram images. This observation has been verified by our experiments as 
well as by those of other researchers [4, 6]. Since an outlier is “an observation (or 
subset of observations) which appears to be inconsistent with the remainder of that set 
of data” [44], this information can be used in the detection process. The key idea is to 
model the microcalcification clusters in the subband images as outlier clusters instead of 
modeling them on the original mammogram image, and to use higher order statistics to 
find the locations of outlier clusters in the data.

Due to this modeling approach our detection scheme consists of two stages. In the 
first stage, the image is processed by a filter and in the second stage, the outliers in the 
processed image is detected by using HOS methods. In the next section we describe the 
mammogram image database that we use in our experiments. In Section 2.3 we describe 
the first stage of the detection scheme in which the breast image area is segmented and 
it is bandpass filtered to enhance microcalcifications. HOS based detection, the second 
stage, is described in Section 2.4.
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2.2 Mammogram Database

We have carried out our experiments on mammogram images taken from a set digitized 
by Nico Karssemeijer of University Hospital Nijmegen, The Netherlands^ The database 
is publicly available on the Internet [39] and is used by other researchers in the field [4, 40]. 
The database consists of 40 mammograms of 21 patients. Mediolateral oblique (side) and 
cranio caudal (top-down) views of patients are recorded with a Kodak MIN-R/S0177 
screen/film combination. Both malignant and benign cases are included in the set.

Mammograms were digitized using a Eikonix 1412, 12 bits CCD camera with fixed 
calibration. The sampling aperture is 0.05 mm and the sampling distance is 0.1 mm. 
The size of the digital images is 2048 pixels by 2048 pixels. The images were corrected 
for inhomogeneity of the light source (Gordon planar 1417). Background pixel values 
(those with pixel values less than 15) were all set to a constant value. Each image is 
converted from 12 bits to 8 bits using an adaptive noise equalization technique, in which 
the noise due to film and digitization is equalized over all pixels.

For each mammogram image there is a ground truth file, in which the locations and 
the sizes of microcalcification clusters are marked. Individual microcalcifications are not 
marked in these ground truth images. These markings were recorded by two expert 
radiologists.

2.3 Pre-Processing of Mammogram Images

The aim of filtering the mammogram image is to remove the relatively smooth part of 
the image corresponding to normal breast tissue so that detection of microcalcifications 
is easier and the false-positive rate decreases. The pre-processing can be accomplished 
through either linear filters, adaptive filters or nonlinear filters. We investigate the 
performance of these filters in terms of their detection eflficiency, false alarm rates 
and computational complexity. In Section 2.3.1 we describe a breast boundary 
detection algorithm. By carrying out the processing inside this boundary, computational 
complexity of the detection process is reduced. In Section 2.3.2, the bandpass linear 
filtering structure is explained. The filtered image is used by the statistical detection

Hmages were provided by courtesy of the National Expert and Training Centre for Breast Cancer 
Screening and the Department of Radiology at the University of Nijmegen, the Netherlands.
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Mammogram Image

Figure 2.4: Typical mammogram image (cranio caudal view).

scheme which is explained in Section 2.4. Finally, Section 2.5 explains nonlinear 
‘subband’ decomposition structures for the microcalcification detection.

2.3.1 Segmentation of Breast Region

Breast occupies only a relatively small part of the image area on a typical mammogram 
image. Executing the detection algorithms only within the breast area decreases the 
processing time significantly. Additionally, false positives obtained by the detection 
scheme due to markers in the image (the patient identification labels and letters to 
indicate the type of the view such as R, L, CC) and the sharp edge near the chest side 
are eliminated by the breast area segmentation.

Breast boundary is determined by using the projections which describe the extent of 
the breast area. The horizontal, H[n]^ and vertical, V[m], projections of a mammogram 
image are given as

H[n] =
M

(2 .2)
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Horizontal Profile of the Mammogram Image

Figure 2.5: Horizontal profile of the mammogram image in Figure 2.4.

Vertical Profile of the Mammogram Image

Figure 2.6: Vertical profile of the mammogram image in Figure 2.4.

En=l '̂ ]V[m]
N

(2.3)

where x[m, n] represents the pixel value of the digital mammogram image at the location 
(m, n), and the image size is M  x N  . For example, Figure 2.5 shows the horizontal and 
Figure 2.6 shows the vertical projections of the mammogram image in Figure 2.4 which 
shows cranio caudal (top-down) view of a breast image.
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Applying a simple thresholding on these one-dimensional signals produces the corners 
of a rectangular region enclosing the actual breast area. Within this rectangular area, 
an adaptive iterative thresholding method can be employed to segment the actual breast 
area. As it is explained in the next chapter while discussing adaptive algorithm based 
detection schemes, some of the detection algorithms can work more efficiently, if realized 
within the segmented breast area.

In the adaptive iterative thresholding method, initially a threshold value is 
determined as the mid-value between the minimum pixel and the maximum pixel values. 
The choice of the middle value is not critical. Any value in between these extremes 
will do, however, such a choice may only affect the convergence speed of the algorithm 
depending on the values of the image pixels. For the mammogram images, one or two 
iterations are usually enough because the background region has an almost uniform low 
intensity (black).

Figure 2.7 shows the flowchart of the adaptive iterative thresholding algorithm. The 
image pixel values are divided into two regions by the initial threshold. One of the regions 
(say, black region) includes those pixels with values higher than the initial threshold and 
the other one (white region) contains all the other pixel values. The means of these 
black and white regions, m.u,,mb are calculated separately. The average of these two 
mean values constitutes the new threshold value, T{k) for the algorithm. The iterative 
algorithm continues in this manner until the difference between two successive threshold 
values, T{k) — T{k — 1) is less than a pre-determined number, A. As an example. 
Figure 2.8 shows the segmented breast area of the mammogram image in Figure 2.4, 
obtained by using the described adaptive iterative thresholding scheme.

Breast segmentation is not only useful for the detection schemes but also for the 
compression of mammogram images. For each patient, 4 mammogram images are 
recorded (mediolateral oblique and cranio caudal views of right and left breasts). Each 
mammogram image approximately occupies 6 Megabytes («  2048 x 2048 pixels x 
12 bits/pixel). Such a boundary delineation and breast segmentation can bring in 
significant storage savings even without using a further compression scheme, if only 
the segmented breast area is stored instead of the whole digital mammogram image.
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STOP

Figure 2.7: The adaptive iterative thresholding algorithm.
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Breast Area Segmented

Figure 2.8: Segmented breast area of the mammogram image in Figure 2.4. 

2.3.2 Linear Processing of Mammogram Images

In Chapter 1, while discussing the wavelet based multiresolution microcalcification 
detection schemes, we mention that these schemes are essentially equivalent to linear 
bandpass filtering. In Appendix A we show this equivalence. Instead of going through 
a subband decomposition and reconstruction stage, it is easier and much faster to 
implement the pre-processing using only linear filters. In our first experiments we 
examined the effectiveness of bandpass filtering in extracting microcalcifications while 
suppressing the background breast structure in mammogram images.

Our experiments with different mammogram images lead to the conclusion that a 
zero-phase bandpass filter with passband |^||, is eflfective for our detection scheme. 
A bandpass filter, h that approximates this constraint has the filter coefficients given in 
Table 2.3.2. This filter is designed by Parks-McClellan algorithm [41]. The frequency 
response of the filter is shown in Figure 2.9.

The two-dimensional filter with the passband [ | f , ^  x [ | f , x  is constructed in a 
separable manner. This filter can be implemented in a multiresolution framework but the 
computational cost is not heavy, therefore there is not a pressing need for multiresolution 
processing.
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n h
0 0.6953

±  1 0.0681
±  2 -0.2334
±  3 0.0106
±  4 -0.1025
±  5 -0.0462
±  6 -0.0314
±  7 -0.0144
±  8 -0.0002
±  9 0.0013

±  10 -0.0002
±  11 0.0006

Table 2.1: Filter Coefficients

Magnitude response of the overall filter

Figure 2.9: The magnitude response of the overall bandpass filter.

The choice of the bandpass filter has also an intuitive explanation. By blocking the 
low frequency components, the regions corresponding to the smooth breast tissue are 
eliminated, and the effect of noise is reduced by blocking the high frequency components.
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2.4 Statistical Detection Method

As we pointed out earlier, detection of microcalcifications is carried out over the filtered 
mammogram image [30]. The bandpass filtered subimage is divided into overlapping 
square regions as shown in Figure 2.10. Figures 2.11-2.12 show the distribution of pixel 
values after linear bandpass filtering in regions with and without microcalcifications, 
respectively. The sizes of the regions are 100 pixel by 100 pixel. It is observed that the 
histograms of the bandpass filtered subimages are very close to the Gaussian distribution 
as shown in Figure 2.12.

If a region contains microcalcifications then due to the impulsive nature of 
microcalcifications the symmetry of the distribution of bandpass subimage coefficients 
is destroyed as shown in Figure 2.11. It is also evident that the tails of the distribution 
are heavier. Skewness and kurtosis are Higher Order Statistical (HOS) measures of the 
asj^mmetry and impulsiveness of the distribution [45]. The skewness and kurtosis values 
for Gaussian distributed random variables is zero. In the following section, these HOS 
based measures are reviewed. Therefore, a statistical test based on skewness and kurtosis 
is effective in finding regions with asymmetrical and heavier tailed distributions.

In our detection scheme, these HOS parameters are estimated in each square region. 
If a region has high positive skewness and kurtosis then it is marked as a region of 
interest. For instance, the skewness and kurtosis estimates of the distributions plotted 
in Figures 2.11 and 2.12 are shown in Table 2.2. Both the skewness and the kurtosis 
assume very small values in the healthy breast region, while they have high values in 
the region containing microcalcifications. The microcalcification detection scheme using 
these HOS based measures is described in Section 2.4.2.

Skewness Kurtosis
Microcalcifications (Linear Processing) 1.4716 6.0538
No microcalcification (Linear Processing) 0.1173 0.0854

Table 2.2: Skewness, 73, and kurtosis, 74 estimates of the data plotted in Figures 2.11 
and 2.12.
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Figure 2.10: Skewness and Kurtosis are estimated in overlapping square regions.

100x100 Region with microcalcifications, distribution after linear processing

-1 0  - 5 0 5 10 15

Magnified view of the tail

Figure 2.11: 100x100 region with microcalcifications, distribution after linear processing 
and magnified view of the tail.
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450
100x100 Region with no microcalcification, distribution after linear processing

Figure 2.12: 
processing

100x100 region with no microcalcification, distribution after linear

2.4.1 HOS Measures: Skewness and Kurtosis

Skewness and kurtosis are third and fourth order HOS measures, respectively. For a 
random variable x, the skewness is defined as [46],

E [(x -E [x |)^ l
(E[(x -  E[xI)2))3/2  ̂ ■ ’

and it is a measure of the symmetry of the distribution. An estimate of the skewness is 
given by:

-  - ( i v '-  i j i ’ '

where ¡1 and a are the estimates of the mean and standard deviation over N  observations 
Xi {i = l , . . . , N ) .

Similarly, for a random variable x the kurtosis is defined as

E[(x -  E[x])^l ,
“  (E((x -  E[x) W
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and it is a measure of the heaviness of the tails in a distribution. An estimate of the 
kurtosis is given by:

( ¿ V - 1)S*
where /i and a are defined as before.

For the Gaussian distribution 73 and 74 are equal to zero:

E[(x-E[x])3] =  E[x3 -  3x2/i +  3x/i2 -/¿3]

=  0

as E[x^] =  /i  ̂+

The numerator of Equation 2.7 can be expressed as :

E[(x -  E[x)V] -  3(E[(x -  E[x])72 = E(x<-4x=‘M +  6 x V - 4 x / l5 + / i1

=  0

as E[x^] = ¡x̂  + +  3d^.

2.4.2 HOS Based Detection

(2.7)

(2.8)

3(7̂

(2.9)

The detection problem can be posed as an hypothesis testing problem in which the null 
hypothesis, Hq, corresponds to the case of no microcalcifications against the alternative 
Hv

• Hq : I73I < Ti or I74I < T2

• Hi : I73I > Ti and 74 > T2

where T\ and T2 are experimentally determined thresholds.

In our first experiments, skewness and kurtosis values were estimated in original, 
bandpass and highpass filtered mammogram images. The aim was to determine the 
lower and upper bounds on these values in regions with and without microcalcifications

27



on mammograms. In this way, the threshold values of the hypothesis testing, T2 can 
be determined by analyzing a set of training images.

Tables 2.3-2.5 give the statistics of skewness and kurtosis estimates on original, 
bandpass, and highpass filtered images. These estimates are made from 100 blocks 
of size 30 pixels x 30 pixels with microcalcifications and 100 blocks of the same size 
without microcalcifications on a total of five images. This constitutes our training set. By 
examining Tables 2.3-2.5 one can conclude that skewness and kurtosis parameters are not

Estimate Mean Minimum value Maximum value
Skewness 0.7179 -0.7598 3.2354
Kurtosis 1.3759 -1.1269 14.122

(a)

Estimate Mean Minimum value Maximum value
Skewness 0.3044 -0.7118 1.5806
Kurtosis 0.1650 -1.2262 4.5514

(b)

Table 2.3: Skewness and Kurtosis estimates on the original image, (a) regions with 
microcalcifications, (b) regions without microcalcifications.

Estimate Mean Minimum value Maximum value
Skewness 1.5824 0.5507 3.4023
Kurtosis 5.6282 0.9906 18.5437

(a)

Estimate Mean Minimum value Maximum value
Skewness 0.0767 -0.2655 0.5195
Kurtosis 0.0773 -0.3968 0.8561

(b)

Table 2.4: Skewness and Kurtosis estimates on the bandpass filtered image, (a) regions 
with microcalcifications, (b) regions without microcalcifications.
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Estimates Mean Minimum value Maximum value
Skewness 1.3993 0.4385 2.8970
Kurtosis 4.5934 0.8216 17.864

(a)

Estimates Mean Minimum value Maximum value
Skewness 0.0800 -0.2203 0.4823
Kurtosis 0.0550 -0.3227 0.9218

(b)

Table 2.5: Skewness and Kurtosis estimates on the highpass filtered image, (a) regions 
v/ith microcalcifications, (b) regions without microcalcifications

Figure 2.13: Detection scheme output, (a) part of a mammogram image, (b) regions 
with microcalcifications as indicated by the detection scheme.
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indicative of microcalcifications on original images whereas they are most discriminating 
in the detection for bandpass filtered images. For the bandpass images neither skewness 
nor kurtosis estimates had an overlapping region under hypotheses Hq and Hi in this 
data set.

Since, the HOS parameters show the best discriminating power in the bandpass 
filtered images, only these images are utilized in the first stage of the detection scheme. 
The thresholds, Ti, T2 for skewness 73 and kurtosis 74 are determined to be 0.51 and 
0.85, respectively. These threshold levels are chosen slightly below the maxima of the 
skewness and kurtosis values of the no microcalcification case so that none of the regions 
with microcalcifications is missed.

Our detection scheme detected all the 105 microcalcification clusters with an average 
of 3.3 false alarms per mammogram image in all mammogram images in the Nijmegen 
database. In the standard practice, the training and the test cases must be separate. 
However, in this thesis, as the estimations are done over a relatively very small area on 
the mammogram image, we prefer to include all the images in our detection performance 
tests. This false alarm rate is better than the microcalcification detection scheme in [4] 
in which a wavelet based subband decomposition and thresholding are used on the same 
database to get 8 false alarms per image. However, our false alarm rate can be further 
reduced by introducing other HOS based statistical measures and adaptive prediction 
which does a better job of removing the effect of healthy regions corresponding to the 
breast tissue. In Figure 2.13(a) a part of a mammogram image which contains a cluster 
of microcalcifications is shown. Figure 2.13 (b) illustrates the result of our detection 
algorithm; the black squares indicates suspicious regions.

2.5 Nonlinear Subband Decomposition Structures

Nonlinear filters such as median type filters have been previously used for the detection 
of microcalcifications by Chan et.al. [2]. In this work, the effects of linear and nonlinear 
filters and their region of support on the detection and enhancement of microcalcifications 
are investigated through ROC studies. A median filter with a 9x9 support is found to be 
most effective on mammogram images with simulated microcalcifications in [2]. However, 
such a median filter cannot be effective in eliminating all of the microcalcifications on 
the mammogram images of Nijmegen database as we discuss later in this section.
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Analysis 
Filter Bank

Synthesis 
Filter Bank

Figure 2.14: Nonlinear Subband Decomposition Structure.

We also investigated the use of nonlinear filters and filterbanks in the analysis 
of mammogram images for microcalcifications detection. Recently, the ‘subband’ 
decomposition using nonlinear filters have been proposed and used in image coding [33]- 
[36]. We will use this filterbank structure in both detection and enhancement of 
microcalcifications in mammogram images.

In Figure 2.14, the block diagram of the nonlinear subband decomposition structure 
used by Hampson and Pesquet is shown [36]. This structure is based on the lifting 
scheme of Sweldens [37]. It is obtained by replacing linear filters of the lifting filter bank 
by nonlinear operators H  and G. The approximate signal ya, and the detail signal yd 
are obtained from the input signal x[n] as follows [36]:

!/.W = ll["]+G(Vd)W 
Vd[n\ =  12W -  H(xi)[n\

(2.10)
(2 .11)

where xi[n] =  a;[2n -  1], X2[n] =  x[2n] which are the odd and even samples of the input 
x[n], respectively.

The corresponding synthesis equations are:

a^'iN =  ya[n] -  G{yd)[n] 

=  yd[n] +H{x[)[n]

(2 .12)
(2.13)

In this structure, perfect reconstruction is achieved as x[[n] =  Xi[n] + G{yd)[n]-G{yd)[n] 
and x'2[n] turn out to be odd and even samples of the original signal, x[n], respectively.
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In the mammogram image analysis, H  is chosen as a median filter. The output of 
the median filter is the middle value of the ordered set of pixel values within a window. 
A median filter with a proper Region of Support (ROS) eliminates all impulsive type 
structures in an image. As microcalcifications exhibit impulsive character, a median 
filter with suitable ROS can eliminate these abnormalities from the mammogram image. 
The detail signal, yd[n\ in Equation 2.10 is obtained by subtracting the median filtered 
image from the original image. Therefore, we expect that mainly microcalcifications 
are observed in yd[n\· The choice and characteristics of the nonlinear G filter will 
be explained in Section 4.2.2 while discussing the segmentation and enhancement of 
microcalcifications.

Figure 2.15 shows the outputs at different stages of the nonlinear processing. 
Figure 2.15 (a) illustrates an original line of mammogram image which contains a 
microcalcification. Figure 2.15 (b) illustrates the same line of image after median type 
nonlinear filtering. As can be observed in this figure, the output of the median filter 
mainly represents the relatively smooth part of the mammogram image corresponding 
to the normal breast tissue. Figure 2.15 (c) displays the difference between the original 
line of image and the median filter output. HOS based microcalcification detection is 
carried out in the detail signal, yd[n].

In the subband decomposition structure, the signal is downsampled. However, 
downsampling operation can eliminate some of the rhicrocalcifications if the resolution 
of the scanner is not high enough. For example, the smallest microcalcification with 
0.1mm X 0.1mm dimensions will appear as a Ipixel x Ipixel region on the digital 
mammogram image if the resolution the scanner is 100/im. Therefore, either the 
resolution of the scanner must be increased or downsampling operation should not be 
carried out. The advantage of downsampling in the multirate processing is the reduced 
computational complexity.

The nonlinear subband decomposition structure illustrated in Figure 2.14 can be 
extended to two dimensions in a straightforward manner [33, 34]. In two dimensions, 
the detail image, yd[m, n] can be obtained by simply subtracting the median filtered 
image from the original image. In this detail image microcalcification detection can be 
carried out. The image, 2/d[m, n] is divided into overlapping square regions as explained 
in Section 2.4, and in each square region skewness and kurtosis values are estimated. 
Figures 2.16 and 2.17 show the distributions of the detail image pixel values. As in the 
linear filtering case, the presence of microcalcifications disturbs the Gaussian nature of
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Figure 2.15: Median filter based nonlinear processing (a) A line extracted from the 
mammogram image (b) the median filter output (c) the difference between the signals 
in (a) and (b).

the distribution. Table 2.6 shows the skewness and kurtosis estimates of the distributions 
in Figures 2.16 and 2.17.

Table 2.7 gives the statistics of skewness and kurtosis estimates on the detail images, 
^¿[m, n], in nonlinear decomposition structure. The nonlinear filter, H  is chosen as a 
median filter with an 21 x 21 square ROS. Parameters are estimated from a data set 
consisting of 100 blocks of size 30 pixels x 30 pixels with microcalcifications and from 
100 blocks of the image data with the same size without microcalcifications on a total 
of five images. Estimated skewness and kurtosis values in Tables 2.4 and 2.7 are very 
similar. These estimates as well as our other experiments with different mammograms 
indicate that similar results can be obtained both in linear and nonlinear processing 
cases. Therefore, a HOS based detection is also possible after the nonlinear processing.

Skewness Kurtosis
Microcalcifications (Nonlinear Processing) 1.5476 5.8609
No microcalcification (Nonlinear Processing) 0.0968 -0.0983

Table 2.6: Skewness and Kurtosis estimates of the distributions in Figures 2.16 and 2.17.
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100x100 Region with microcalcifications, distribution after nonlinear processing

Figure 2.16: 100x100 region with microcalcifications, distribution after nonlinear
processing and magnified view of the tail.

100x100 Region with no microcalcification, distribution after nonlinear processing

Figure 2.17: 100x100 region with no microcalcification, distribution after nonlinear 
processing
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Estimate Mean Minimum value Maximum value
Skewness 1.7255 1.1446 2.1574
Kurtosis 4.9720 2.0837 19.1673

(a)

Estimate Mean Minimum value Maximum value
Skewness 0.0520 -0.4485 0.5432
Kurtosis -0.0330 -0.5285 0.6725

(b)

Table 2.7: Skewness and Kurtosis Estimates on the detail image after nonlinear 
subband decomposition, (a) regions with microcalcifications, (b) regions without 
microcalcifications.

The ROS of the median filter should be determined in such a way that the median 
filtered image should not contain any microcalcification as shown in Figure 2.15 (b). 
In order to achieve this, the image scanning rate and the sizes of microcalcifications 
should be taken into account. In general, in order to eliminate all impulsive structures 
of maximum width w, the width of the median filter should be chosen as 2 x w -I-1. The 
maximum size of a microcalcification in our database can be 10 pixels x 10 pixels (10 =  
1 mm /  lOO/U m). The median filter is designed to eliminate all these abnormalities while 
retaining the regular breast structure. Therefore, in our application, H  in Equation 2.10 
is chosen as a median filter with an 21 x 21 square ROS in accordance with the dimensions 
of the microcalcifications (21 =  2 x 10 -1-1). The 9 x 9  choice suggested in [2] will not 
be effective in the Nijmegen database. Only some of the microcalcifications will be 
completely removed. Furthermore, the simple thresholding of the difference image will 
produce omissions of some of the microcalcifications due to the partial removal of the 
microcalcifications.

The median filter with a support region containing N samples requires ‘2N 
comparisons’ to produce an output sample. On the other hand, a linear phase FIR 
filter requires N/4 multiplications. We found out that implementing the median filter 
is relatively slower than linear filtering in a general purpose computer. Therefore, only 
linear filtering is performed in the pre-processing stage. However, the nonlinear filtering 
structure can be effectively used in microcalcification segmentation and mammogram
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image enhancement as will be explained in Chapter 4. As the processing is only over 
detected regions and not the entire image, the computational costs do not present a 
problem.

Our HOS based microcalcification detection algorithm drastically reduces the false 
alarm rate compared to simple thresholding based methods. This is due to our statistical 
modeling approach. Some pixels may accidentally exceed the simple threshold in regions 
corresponding to healthy breast tissue and this may cause false alarms in the previous 
approaches [4]. On the other hand, Gaussian modeling can accommodate such outliers 
in the tails of the distribution. Whenever the number of outliers increases in a region, 
the tails of the distribution become heavier and this means that the distribution deviates 
from Gaussian, thus microcalcifications may be present in the region.
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Chapter 3

MICROCALCIFICATION 
DETECTION USING ADAPTIVE 
FILTERING AND HIGHER 
ORDER STATISTICAL TESTS

Linear and nonlinear subband decomposition structures combined with higher order 
statistical measures, skewness and kurtosis, constitute an effective framework for the 
microcalcification detection problem. In this chapter, this problem is investigated within 
a different framework which involves adaptive filtering. The adaptive filter is used to 
predict the breast tissue structure in the mammogram image. It is assumed that regular 
breast tissue can be effectively predicted by an adaptive predictor and unpredictable 
pixels correspond to the microcalcifications which are physically different from the breast 
tissue. Therefore, it is expected that the microcalcifications produce outliers in the 
prediction error image.

Recently, Ojeda et. al. use a Gaussianity test based on HOS to detect model changes 
of stationary time series [54]. This test uses the second and third order parameters. We 
also investigated the use of this test in this chapter instead of skewness and kurtosis. We 
analyzed the Ojeda’s test using influence function approach and based on this approach 
we developed another statistical test which has higher sensitivity to outliers. This is

37



achieved by designing the new test using second and fourth order statistical parameters.

3.1 2-D Adaptive Prediction based Tests for Micro­
calcification Detection

The linear and nonlinear filtering based methods discussed in Chapter 2 are in a way ad 
hoc methods. The idea of using a fixed linear or a nonlinear filter on the entire image may 
not be as efficient as an adaptive filter which can update itself to changing conditions 
on the mammogram image. We also experimentally observed that adaptive filtering 
based Gaussianity tests provide a more robust framework for the microcalcification 
detection [31, 32]. The method we propose makes use of two-dimensional (2-D) adaptive 
filtering and a Gaussianity test recently developed by Ojeda, Cardoso and Moulines 
for causal invertible time series [54] (this test will be called the OCM test in short, 
hereafter). Similar to the methods described in Chapter 2, the image is analyzed 
block by block. After adaptive linear prediction, a statistic of the prediction errors 
is estimated in the current block to determine whether the samples correspond to a 
Gaussian distribution. The prediction error sequence exhibits Gaussian behavior in the 
normal breast tissue. Since microcalcifications are isolated bright spots, the prediction 
sequence deviates from Gaussianity around microcalcification locations. As before, the 
regions with high deviations are marked as suspicious regions.

In Section 3.1.1, the adaptive filtering concept is reviewed. The extension of 
the one dimensional adaptive filtering structure to two dimensions is explained in in 
Section 3.1.2. The OCM Gaussianity test is introduced in Section 3.1.3. Experimental 
results obtained by utilizing the two dimensional adaptive filtering and the OCM test is 
given in Section 3.1.4.

3.1.1 Adaptive Filtering

In many signal processing applications, the signal is processed without utilizing any 
feedback information. The matched filter is an example. The frequency response or 
the transfer function of adaptive filters, on the other hand, is updated according to the 
nature of the input signal [56]. Adaptive filtering has found many applications in various
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areas of signal processing and communication since 1960s, after Lucky designed a zero­
forcing equalizer to compensate for distortion in data transmission systems [57]. In this 
section, we review the basic adaptive filtering concepts and introduce our notation.

The adaptive filter adjusts its coefficients according to the input statistics. The 
structure of a typical adaptive filter is illustrated in Figure 3.1. The output of the 
linear finite impulse response (FIR) filter can be written as the convolution of the input 
sequence x and the impulse response of the adaptive filter h.

N - l

y W =  h[i]x[n -  i]
i=Q

(3.1)

or in the matrix form

y =  h^x (3.2)

where h =  [/i[0] /i[l] . . .  /i[Â  — Ij] and x =  [a:[n] a;[n — 1] . . .  /i[n — iV-I-1]].

The error signal, e[n], is the difference between the estimated output, y[n] and the 
desired signal, y[n].

e[n] = y[n] -  y[n]

The mean square error (MSE) is defined as

(3.3)

e[n] = E[e^]

Substituting Equations 3.2 and 3.3 into the MSE equation yields
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e[n] = E[y‘̂ [n\] + -  2ĥ 4>,x y (3.5)

where and (¡)xy are the autocorrelation and cross correlation matrices, respectively. 
The MSE can be minimized to get the optimum h filter, hopt·

h o p t  —  4^xx 0 :xy (3.6)

In the least mean squares (LMS) algorithm [56], instead of calculating (j>xx and (p̂ y, 
an iterative procedure is followed:

hjk+i =  hfc +  /j,Xke[k]

where fj, is the adaptation constant.

(3.7)

3.1.2 2-D Adaptive Filtering

For the microcalcification detection problem, we use a 2-D Least Mean Square (LMS) 
adaptive filter in the prediction step. Recently, Ffrench et. al. independently 
proposed the use of 2-D adaptive filters for enhancement of mammogram images so that 
microcalcification locations are brighter than the regular breast tissue [50]. Figure 3.2 
illustrates the adaptive filtering scheme in two dimensions. The adaptive filter predicts 
an image pixel x[m, n] at location (m, n) as a weighted average of pixels in its region of 
support.

The region of support, 1Z, of the filter is chosen as the pixels surrounding the pixel 
to be predicted as shown in Figure 3.3. The predicted value x[m, n] is given as

ni T l2

X [m, n]= Y  w^rn,n)[k,l]x[m- k , n - 1],

k = —Hi I =  —U2

( k , l ) ^  (0.0)

m = 0, . . . ,  Al — 1, n = 0, . . . ,  N2 — I (3.8)

where x is the input image of size N 1 x N2, ŵ m,n) are the weight values at (m,n), and 
(2ni -I-1) X (2n2 +  1) is the size of the region of support, Tl of the adaptive filter.

The prediction error at pixel location (m, n) is computed as

e[m, n] =  x[m, n] -  x[m, n] (3.9)
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Figure 3.2: 2-D adaptive filter structure.

At each iteration the weights 1] are adapted using a two-dimensional LMS-type
adaptation algorithm:

'a (̂m+i,n)[ )̂ ~  X e[m, Ti] x x[k,l] (3.10)

where {k, 1) 6 TZ, the region of support, and /i is the adaptation constant. The filter 
weights are adapted using this equation while processing the image in the horizontal 
direction. In the vertical direction, the weight is used instead of the
weight W(m+i,n)[ )̂ ]̂· Figure 3.4 (a) shows part of a mammogram image containing a 
microcalcification cluster. This image is filtered by a two dimensional adaptive filter. 
Figure 3.4 (b) displays the error image, e[m, n] obtained after the adaptive filtering. The 
detection is performed over this error image.

o 0 o
o • o
o o 0

Pixels in the region of support

Pixel to be predicted

Figure 3.3: Region of support (ROS) of the adaptive filter. ROS is “anticausal.”
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Figure 3.4: (a) Part of a mammogram image containing a microcalcification cluster (b) 
The error image obtained after the 2-D adaptive filtering
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(a) Causal (b) Semicausal

Pixels in the region of support

(c) Anticausal

o
Pixel to be predicted

Figure 3.5: Causal, semicausal and noncausal finite prediction windows.

The chosen region of support, IZ, is anticausal. Figure 3.5 illustrates causal, 
semicausal and anticausal finite prediction windows for adaptive filtering and linear- 
predictions in two dimensions. Our experimental studies show that the best detection 
results are obtained by using anticausal regions of support similar to the fixed nonlinear- 
filters. The region of support size should be chosen in accordance with the dimensions 
of microcalcifications on the mammogram. As we discuss in Section 2.5, the extent of 
the ROS is determined by the resolution of the scanner.

In our work, the original mammogram image is processed row by row as shown in 
Figure 3.6. This type of zig-zag scanning prevents false jumps in the error values, that 
may occur at the end of the rows. Therefore, there is a smooth transition and the 
convergence problem is not encountered.
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Instead of the two-dimensional LMS-type adaptation, a normalized LMS-type 
(NLMS) adaptation can also be applied. The NLMS is defined by the following 
equation [51]:

—  ^ ( m , n ) [ ^ )  i ]  "H / i  X  e [77T., 7z] X
x[k, 1]

(3.11)

where the normalization factor El/ x[k, l]'̂  provides assumed convergence, if the update 
parameter satisfies, 0 < // < 2.

3.1.3 Gaussianity Test

It is experimentally observed that in regions with no microcalcifications the Gaussian 
distribution is a good model for e[m, nj. In regions with microcalcifications, on 
the other hand, the distribution is non-Gaussian because of the impulsive nature 
of microcalcifications. Therefore, a Gaussianity test can be used to detect regions 
containing microcalcifications in mammograms.

We use the OCM Gaussianity test based on the sample estimates of the first three 
moments I i , l 2, h  of the prediction errors [55]. Estimates of the moments are given by:

M  N

h  =
m = l  n = l

(3.12)

Figure 3.6: Scanning directions in adaptive filtering.
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2̂ =  -77----T? £  e^[m, n]M  X N  ^m=l  n=l

h  =
1

M  X  AT

M N
£  ¿ e ^ [m ,n ]

(3.13)

(3.14)
m = l n = l

where, e[m, n]’s (m =  1 , . . . ,  M, n =  1 , . . . ,  N) are individual error values at the location 
(m, n) as calculated in Equation 3.9 and M  x N  is the total number of error image 
pixels in the square region (M =  A/’ =  30 in our experiments). The parameters, A, / 2, /3  

converge to the following values as M, N  go to infinity under the ergodicity assumption:

Ii H

/2 ->■ <7̂ +

3̂ ->■ + 3cr /̂i

(3.15)

(3.16)

(3.17)

where n and cr̂  denote the mean and the variance of the error image e, respectively. 
With these limit values, the test statistic

is equal to zero (in the limit) for Gaussian distributed sequences:

h{Ii, I2, Iz) — — 3fi{cr  ̂+ ¡jL̂ — ¡^) —

=  0

(3.18)

(3.19)

The statistical test is based on this observation. If h{Ii , l2,Iz) deviates from 0, then 
it is concluded that the data is not Gaussian.

Figure 3.7 depicts the prediction error histograms of 30 x 30 regions with and without 
microcalcifications. Figure 3.7-(a) is obtained from a region with no microcalcification. 
The distribution can be modeled as Gaussian. In a region with microcalcifications the 
distribution is skewed as shown in Figure 3.7-(b). Figure 3.7-(c) is the enlarged view of 
the tail of the distribution, which extends far to the right mainly due to the presence of 
microcalcifications. The test statistic, /i(/i, A, / 3) reflects this change in the distribution. 
It is -0.1163 for the region with no microcalcifications and it is 40.4343 for the region 
containing microcalcifications.
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Figure 3.7; Error value distributions in regions (a) without microcalcifications, and (b) 
with microcalcifications, (c) shows the an enlarged view of the tail of the distribution in 
(b).

Mean Minimum Maximum
M /1, / 2, / 3) 65.4993 9.9348 392.9478

Table 3.1: Statistics of h in regions with microcalcifications.

Mean Minimum Maximum
h ( h , h . h ) 0.3819 -2.2578 2.3128

Table 3.2: Statistics of h in regions no microcalcification.

3.1.4 Experimental Results

We tested the above detection method in our training set consisting of 100 different 30 x 
30 regions with and without microcalcifications taken from five different mammogram 
images. The results of the Gaussianity test are shown in Tables 3.1 and 3.2. These 
statistics confirm the assumption that in regions with microcalcifications, the test 
statistic, /i(/i, / 2, / 3) assumes values which are greater than zero while in regions without 
microcalcifications this statistic is almost equal to zero.

The detection method then can be stated as a hypothesis testing problem in which
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the null hypothesis Hq corresponds to the no microcalcification case and Hi corresponds 
to the presence of microcalcifications case:

.  H, ■ . \ h { I i , h J z ) \ < n  

* Hi : \h{I i , l2, h ) \ > n

where T* is an experimentally determined threshold. Based on the above experimental 
data, Tfi can be chosen as 5 (approximately the midpoint value of [2.31 and 9.93]). The 
regions with the test statistic value greater than 5 are marked as suspicious regions.

We experimented with the Nijmegen mammogram image database. Using the 
experimentally determined threshold value, the above detection scheme detected all 
of the 105 microcalcification clusters with an average 2.3 false detected regions per 
image (isolated microcalcifications which are not part of a microcalcification cluster are 
considered to be neutral because they are not early signs of breast cancer). This rate is 
better than nonadaptive processing.

3.2 A Gaussianity Test Using Fourth Order Param­
eters

The test statistic, h{Ii, / 2, / 3) depends on second and third order statistics and produces 
better results than the third order skewness and the fourth order kurtosis in mammogram 
image analysis. False alarm ratio is reduced from 3.3 false alarms per image to 2.3 false 
alarms per image. By developing a new test statistic based on the second and fourth order 
parameters we may further improve the performance of the microcalcification detection 
scheme. A consequence of this is that the range between the minimum value of the test 
statistic h{Ii , l2,Iz) in regions with microcalcifications and the maximum value of the 
test statistic in regions with no microcalcification can be made larger and if the threshold 
is set in a wider range, more false positive regions can be eliminated.

In this section, we develop a new Gaussianity test and prove that it is more sensitive 
to outliers, hence exhibiting a better microcalcification detection performance. The proof 
is by means of the sensitivity curve, which is a discrete form of the influence function. 
In Section 3.2.1, the concept of the Influence Function [65] is reviewed. In Section 3.2.2,
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the sensitivity curve of the OCM test is derived. Section 3.2.3 describes the design of a 
new Gaussianity test which use the first, second and the fourth moments.

3.2.1 The Influence Function

The Influence Function (IF) of an estimator T for the cumulative distribution F  is given 
by [65]:

IF{u] T, F) = lim T { { l - t ) F  + 5 u ) - T { F )
(3.20)

where Su is the probability measure which puts mass 1 at point u. The influence function 
describes the effect of an infinitesimal contamination at the point u on the estimate.

In order to illustrate the use of influence function concept, let us compute the influence 
function for the sample mean, T„ for a Gaussian distributed sequence. The sample mean 
function, Tn, for the Gaussian distributed data set, Xi,i = 1 , . . . ,  n is

1 ”
Tn = - Y ^ X i (3.21)

The underlying probability density function (pdf) is f{x) = and the
cumulative density function (cdf) is F{u) — f{x)dx.  The corresponding functional 
for the sample mean function in terms of cdf is

T{F) =  J udF{u) (3.22)

The influence function for the sample mean function, T„, for the zero-mean Gaussian 
distributed sequences can be calculated by substituting Equation 3.22 into the influence 
function definition given by Equation 3.20:

IF(u-,T,F)  = limt—̂0

lim
t—̂0
,. tu lim —

/ xd[{l — t)F  -f· t6u]{x) — f  xdF{x)

(1 —t) J xdF(x) + t f  x5{u — x)dx — J xdF{x)

=  u (3.23)
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noting that the mean of the Gaussian is /  udF{u) =  0

The definition in Equation 3.20 is entirely asymptotic in that functionals with the 
asymptotic value of the estimator is used. Tukey derived a simple finite-sample version 
of Equation 3.20 [66]:

5„(a;) =  n[T„(a;i,.. . ,Xn-i,x)  -  (3.24)

This is called the sensitivity curve which basically examines the effect of an additional 
term, X  as an outlier on the overall estimator. Therefore, first the estimator value, 
T n-i(x i,. · ·, Xn-i) forn — 1 terms is calculated. Next, the outlier term, x  is added to the 
sequence and the estimator is again calculated for the n terms, Tn(xi,. . . ,  Xn-i,x)· The 
difference of these two estimator values exhibits the effect of the outlier on the estimator. 
The sensitivity curve, <Sn(x) can be plotted against values of the outlier, x to visualize 
the effect of different values of outliers on the the overall sensitivity of the estimator.

Sn{x) for the simple mean estimation is:

S n ( x )  —  'Tl^FfiiXii . . . 1 Xn—\i T ) i _ i ( X i ,  . . . ,

' XI +X2 + . . .  + Xn-l +X X \ + X 2 + ■. .+ Xn-\= n
n n -  1

=  X  +  ( x i  - b  . . . - f  X n - l ) (3.25)

For large n,
’̂ n(x)  ̂X (3.26)

which is consistent with the result obtained in Equation 3.23 using the definition of the 
influence function IF.

3.2.2 The Sensitivity Curve of the OCM Test

The OCM Gaussianity test is based on the expression

/ i ( / i , / 2 , / 3 ) = / 3 - 3 / i ( / 2 - / i ' ) - / ? (3.27)
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This test can be simplified and put in the following form after some algebraic 
manipulations:

h { I u h , h )  = h - 2, h h  + 2l l (3.28)

The sensitivity curve, Sn(x) =  n[T„(xi,. . . ,  x) -  T n-i(x i,. . . ,  Xn-i)], of this 
Gaussianity test can be calculated by first obtaining sensitivity curves for / 3 ,  / 1/2, 
and then combining these to get the overall sensitivity curve for the statistic h(Ii, / 2, / 3 ) .

The estimator, T „(xi,. . .  ,Xn-i,x) for /3 is

'^n (^11 · · · ) ^n—1)
+  0:2 + . . . +  Xn-i +

n

Therefore, the sensitivity curve, <SW (x) is

(3.29)

n
xl + x\ + +  x^ xf +  +  . . .  + n—1

n n -  1

x ' +
n — 1

x? +  . . . +x ^ _ i ) (3.30)

For large n, <S„(x) -)· x^.

The estimator, Tn(xi, · · ·, Xn-i,x) for / 1/2 is

(x i +  X2 +  .. . +  Xn-1 +  x) (xf +  x j +  . ■ ■ +  4 -1  +  .oqiN
Tji\X\4 · · · Ч Хп—\ч _ „ (o.oljn n

Therefore, the sensitivity curve, «5̂ 0 (x), for I J 2 is

=  n '{xi +  2̂2 +  ■ ■ ■ +  â n-1 +  (^1 +X2 +  ■ ■ ■ +  ^n-L
n n

( x i  +  X2 +  ■ · · +  X n - l )  (X i +  X2 +  · · · +  x j - l )  

n -  1 n -  1
n 

2n
—  [ x (X l  +  . . .  +  x ^ _ i )  +  x x ^  +  ( x i  +  . . .  +  X n - l ) { X l  +  · · · +  X n - l )
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+ x^{xi +  . . .  +  a;„_i) -  (xi +  . . .  +  Xn-i){xl +  · · · +  x^_i)] 

=  +  x^{xi +  . . .  +  Xn-i) +  x{xl +  . . .  +  xl,-i)\n

in the second line it is assumed that =  (n — 1)  ̂ as we will let n —)■ oo. 

The estimator, Tn{x\, · · ·, Xn-i,x) for I \  is

. , _  /rci +  xa + . . .  +  Xn-i + xN ^
Tji (x 1, · · · ) Xn— 1) x)  ̂ ^ J

Therefore, the sensitivity curve, Sj ”̂^^(x) for I f  is

(3.32)

(3.33)

= n +X2 +  . . . +  ^n-1 + X \ ^  f X i + X 2 + . - . + Xn-]
n n -  1

=  —  +  3x^{x\  +  X2 +  · · · +  ^ n - l )  +  2^x{x\ +  ^2 +  · · · +  ^ n - l ) ^ ] ( 3 .3 4 )

So, the overall sensitivity curve is:

S„(x) =  5»(x) + 5f»(x) + 5<“‘'(i)
=  3̂® +  ( - J ^ ^ y )  (^i + ■■■+  ^n-l)

+  +  x^(xi +  . . . +  Xn-l) + x(xl  +  . . .  +  xl-i)]
n

+ ^  [x  ̂+  3x^(xi +  X2 + · ■ . +  Xn-l) +  3x(xi +  X2 + . . . +  Xn-xf 
··

=  x ^ -----[x  ̂+  x^(rci +  . . .  +  Xn-l) +  x{x\ +  . . .  +  a^n-i)]
no

+  — [x  ̂+  3x^(xi+X2 +  · · . +  a :„_i )+3x(xi+X2 + . . . +  Xn-i)^ (3.35)L

Simplified expressions for the sensitivity curves can be obtained by defining <pn-i and 
Cln-i as follows:

^n-l

fin-1

Xi +  . . .  +  Xn-i,

x\ + . + Xn-1 (3.36)

Then,
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S n { x )  =  --------+  x ^ ^ n - \  +  2; f i n - i ]  +  ^  +  3 x ^ ^ n _ i  +  3 a;(/?^_jj

For large values of n

^n-l , f^n-1 . /  2 , 2\-------)■ / i , --------- >■ ilX̂  +  CT̂)
n nAi, (3.38)

where // is the mean and a is the standard deviation. Substituting these values into 
Equation 3.37, we get

5„(i) =  i = ( l - 5  +  ^ ) + i V ( 3 + ^ )

+  X  ( - 3 (^^ +  (7^) + (3.39)

For Gaussian sequences with mean, ^  =  0 and standard deviation, a = 1, 
Equation 3.39 simplifies to:

>„(x) =  X® [ l  -  -  +  -
\  n n^J

3x (3.40)

For large values of n (i.e. n —>· oo).

Sn{x) = x^ — 3x (3.41)

If (a:i,. . . ,  Xn-i) is a series of 900 random, Gaussian distributed numbers with mean, 
fjL = 0 and standard deviation, cr =  1 then the sensitivity curve in Figure 3.8 is obtained. 
This curve closely fits to the curve y = x^ — 3x as can be expected from Equation 3.39. 
The sensitivity curve of the mean estimator is also plotted in the same figure.

3.2.3 New Gaussianity Test Using Fourth Order Moment

Traditionally, both third and fourth order statistical parameters are used in Gaussianity 
detection. For example, Giannakis and Tsatsanis developed a time-domain Gaussianity
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Sensitivity curves

F'igure 3.8: Sensitivity curves for mean estimator (dashed lines) and for the OCM 
Gaussianity test in Equation 3.28 (solid line).

test based on statistics formed from third and fourth order cumulants [16]. In the OCM 
test, parameters up to the third order are used. By introducing the fourth order, the 
sensitivity of the statistical test to outliers can be improved. Since microcalcifications 
will produce outliers in the error image and tests with higher sensitivities can detect 
the outliers better, the higher the sensitivity of the Gaussianity test, the better its 
microcalcification detection performance is.

The fourth order moment is derived from the moment generating function of the 
Gaussian distribution [58], Mx{t):

Mx{t) = (3.42)

The order moment of distribution, Ik, is defined in terms of the moment generating
function as follows

h  = £ (x ‘ ) =  §aMx{t)\,=o (3.43)

The first derivative is given by
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and Ii = /j, =1 ^Mx{t)\t=o· The second derivative is given by

^ M x { t )  = [ij? +  2na^t +  +  cr'‘i2]e‘'‘+<̂ '‘V2

Similar to the mean, /2 =  /i  ̂+  cr̂ .

The third derivative is given by

(3.44)

(3.45)

^ M x { t )  =  [fj,̂  + Zna^ +  ¿(3cr  ̂+  3/i^cг )̂ +  i^3/zcr̂  + t /̂2 (3.46)

The OCM test is essentially based on Equation 3.46.

Of particular interest here is the fourth moment which is obtained using the following 
relation:

- ^ M x { t )  =  +  3cr̂  +  6//^cr  ̂+  i(12)ucr  ̂+  4//^cr )̂

+  í̂ (6(7® + 6/zV)+íЗ(^^6_^з^^6)^¿4^8jgtм+<^2tV2 3̂ 47̂

In the limit, when the value of t is taken as zero, only the first three terms remain in 
the above expression and these constitute the fourth moment, / 4 .  Hence,

/ 4  = E { x ‘̂ ) =  IT  +  S/rcr^ + 3cr' (3.48)

In designing the test, we want to establish a function such that it will assume the 
value of zero for Gaussian distributed sequences. First, a term is needed to eliminate the 
/i“* term. In the limit, the moment /1 approaches to the value of fx, therefore, the fourth 
power of this moment can be subtracted from the fourth moment term, / 4 .  In the limit, 
(/2 -  If)  approaches to which can then be used to eliminate the second and third 
terms of the moment expression. Therefore, the statistic for the Gaussianity test turns 
out to be:
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2 \ 2/ / ( / l ,  h , / 4 )  =  /4  -  I t  -  6 / 2 ( / 2  -  / 2 )  -  3 ( / 2  -  / f )  

which can be then simplified by eliminating the repetitive terms to get;

(3.49)

H{IU I2, / 4) =  /4 +  2/f -  3/; (3.50)

Substituting the limit values of / 4 ,  / 1 ,  /2  into the above expression ensures that
this test produces zero for Gaussian distributed sequences:

H { Iu l2 ,h )  = fг̂  + 6̂ i ĉr̂  + Sa^ + 2 ı̂‘̂ -г{^J,^ + a У  

= 0 (3.51)

As a natural extension, one may consider designing other Gaussianity tests which 
include moments higher than the fourth order moment. However, these moments 
converge very slowly to the normal distributions. So, they should not be used unless 
very large samples are processed [55].

Let us obtain the sensitivity curve for our Gaussianity test. The estimator, 
Tn{xi, . . . , X n - l , x )  for /4 is

Tn(x i , . . . ,Xn- l ,x )  =
x f + x ^  + . . .  + X^_i +  x^

n

Therefore, the sensitivity curve, <S  ̂( x )  for /4  is

(3.52)

SP(x)  = n
xf  +X^ + . .. + xt^_ı + 

n
X1+X2 + ■ · ■ + Xn-\

n — 1

(3.53)

For large n, -)■ 0, hence Sn{x) —>■ x' ·̂

The estimator, Tn{x\, · · ·, x) for I t  is
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rr ^ _  f X i + X 2 +■■■ + Xn-1+ X ^ ‘̂
n  ( ^ 1  j · · · ) ^ n —l  j ^  j  (V n

(3̂ 54)

Therefore, the sensitivity curve, Sl ‘̂ (x) for is

5 f ‘)(4:) =  n
+  0:2 +  · · · +  Xn-1 +  x'^'^ ^Xi +  X2 +  . . . +  X n - l ^  ^

n — 1

=  +  4x^(xi  +  X2 +  . . .  +  Xn - i )  +  4x^(xi +  X2 +  . . .  +  X n - i fn·̂
+ 2x[xi -j- X2 -\- · · · -\- (3.55)

The estimator, Tn{xi, . . . ,  Xn-i,x) for / |  is

Tn{x\, . . . , Xji—li x') —
' x l + X 2 + ■■■ + X^_i +  \  ^

n
(3.56)

Therefore, the sensitivity curve, S ^ ^ x )  for / |  is

<Si-)(x) = n
' x l + x j  + . . . + x l _ i  +X^ V 'x\  + xl  + . . .  +  a:^_iy  

n - 1  /

-[x^ +  2x^{x\ 4-x\ 4 - . . . Xn-i)^] 
n

(3.57)

As a result, the overall sensitivity curve is:

S„(x) = 5®(i) + 5 f W  + 5<“ >(i)

+  + X2 +  · · · +  ^n-l) + 4x^(xi +  X2 + · · · +  ^n-l)

+  2x{xi +  ^2 + · · · +  ^n-l)^]

+ + X2 · · · -l· Xn-i)^]
n

=  + 4xV n-i +  4xV L i +  2a;¥?i-i] ~ + 2a:^i^n-i]n
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Sensitivity curves

Figure 3.9: Sensitivity curves for the Gaussianity test in Equation 3.28 (solid line) and 
for the Gaussianity test in Equation 3.50 (dashed line).

=  X

(3.58)

where cpn-i and and are as defined in Equation 3.36.

For large values of n, —)· {cr̂  +  /¿ )̂. Equation 3.58 becomes:

Sn{x) =  x ‘̂ +

which boils down to the following relation for Gaussian signals with mean, fj, ■ 
standard deviation, cr =  1:

(3.59) 

0 and

Sn{x) = x ‘̂ -  6x^ (3.60)

When the new Gaussianity test is used with the adaptive filtering scheme, the 
statistics in Tables 3.3 and 3.4 are obtained. These test statistics are obtained from 
100 different 30 x 30 regions on 5 different mammogram images.
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Mean Minimum Maximum
H { h j 2, h ) 406.8 52.4 3712.3

Table 3.3: Test statistics in regions with microcalcifications.

Mean Minimum Maximum
1.25 -4.4 11.1

Table 3.4; Test statistics in regions with no microcalcification.

In Figure 3.9, the sensitivity curves of the OCM Gaussianity test and our Gaussianity 
test are plotted. As can be observed from this figure, the sensitivity of our Gaussianity 
test is higher than that of the OCM test especially at large values. Therefore, the 
new Gaussianity test emphasizes outliers more. Since the microcalcifications appear as 
outliers, their detection gets easier with the new test. Actually, the statistics of the 
newly developed test in Equation 3.50 reflect this change: while the mean values in 
regions with no microcalciflcations remain close to zero, the Gaussianity test produces 
high mean values in regions with microcalcifications.

As skewness and kurtosis are third and fourth order statistical tests, respectively, it 
might be relevant to compare their sensitivities with the sensitivities of the OCM test 
and our Gaussianity test. Figure 3.10 compares the sensitivity curve of the skewness 
with the sensitivity OCM test. A similar comparison is made in Figure 3.11 for kurtosis 
and our Gaussianity test. These figures indicate that the OCM test and our Gaussianity 
test show more sensitivity to outliers especially those with high values.

We also examined the effect of the OCM test and the new Gaussianity test when 
the fixed bandpass filter described in Chapter 2 is used instead of the adaptive filter. 
Tables 3.5 and 3.6 show the statistics of the OCM test and our Gaussianity test in 
regions with and without microcalcifications in the training set, respectively. If these 
tables are compared with the Table 2.4, it can be observed that the OCM test and our 
Gaussianity test provide better discrimination than skewness and kurtosis based tests 
for the bandpass filtered images. When combined with adaptive filtering the new tests 
further improve the discriminating range.

The new Gaussianity test can be combined with the OCM Gaussianity test in order
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Figure 3.10: Sensitivity curves for skewness (dashed line) and the OCM Gaussianity test 
(solid line).

Figure 3,11: Sensitivity curves for kurtosis (dashed line) and our Gaussianity test (solid 
line).
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Mean Minimum Maximum
h ( I u h , h ) 2.8662 1.2780 5.3926
H ( h , l 2,U) 13.0044 4.0553 26.1569

Table 3.5: Test statistics obtained from bandpass filtered images in regions with 
microcalcifications: the OCM test h{I i , l2, h )  and our Gaussianity test / 2 , / 4 ) .

Mean Minimum Maximum
h j l u h J z ) 0.0320 -0.2470 0.4433
H ( I u l 2, h ) 0.1495 -0.1720 2.0034

Table 3.6: Test statistics obtained from bandpass filtered images in regions with no 
microcalcification: the OCM test h ( / i , / 2, / 3) and our Gaussianity test H(Ii,  12, 14).

to get a better performance. Because in the combined test, both the third order and 
the fourth order parameters are used. As the range between the maximum value of the 
test statistic in region with no microcalcifications and the minimum value of the test 
statistic in regions with microcalcifications gets larger, it is easier to set the threshold at 
a higher level. The higher threshold provides the flexibility to eliminate some additional 
false alarm (or single-bright spot) regions.

In our experiments with the mammogram database containing 40 images, the 
false alarm rate decreased from 2.3 per image to 1.125 per image. This justifies the 
effectiveness of the new Gaussianity test for the microcalcification detection. The 
obtained false alarm rate is much lower than that of Strickland and Hahn who use a 
wavelet based scheme and utilize the same database [4]. They get 8 false alarms per 
image when all the clusters in the database are detected.
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Chapter 4

MICROCALCIFICATION 
SEGMENTATION and 
MAMMOGRAM 
ENHANCEMENT

Chapters 2 and 3 describe microcalcification detection schemes. In these schemes, parts 
of mammogram image with microcalcifications are marked as suspicious regions as shown 
in Figure 2.13. Within these marked regions (or regions marked by other detection 
schemes), individual microcalcifications can be segmented through further processing. 
The shape and exact extent of segmented microcalcifications can provide valuable 
information to radiologists in their diagnosis, and classification of the abnormalities 
as benign or malignant. They can also be used in three dimensional reconstruction of 
microcalcifications within the breast structure.

Individual microcalcifications can be segmented in a two-stage process. The first 
stage is removal of the breast structure corresponding to the healthy tissues. The 
second stage is a statistical outlier detection. Bandpass filtering, nonlinear ‘subband’ 
decomposition, adaptive filtering, and adaptive filtering based subband decomposition 
can be used to remove underlying the breast structure from mammogram images. 
Bandpass filtering, nonlinear subband decomposition, and adaptive filtering concepts
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based subband 
decomposition

Figure 4.1: Microcalcification segmentation structure.

are reviewed in Chapters 2 and 3 while discussing HOS based detection schemes. A 
recently developed adaptive filtering based subband decomposition structure is reviewed 
in Section 4.1.1.

After the underlying breast structure is removed, the remaining detail image mainly 
contains microcalcifications as well as some additional noise. As we discuss in Chapters 
2 and 3, microcalcifications will produces outliers in this detail image. Therefore, an 
outlier detection method can single out these abnormalities. In Section 4.1.2 boxplot 
labeling, which is a statistical outlier detection method, is reviewed.

After the segmentation of individual microcalcifications, they can be combined 
with the original mammogram image to get visually enhanced mammogram images. 
In Section 4.2 we propose superposition, magnification and nonlinear subband 
decomposition based mammogram image enhancement methods.

Ffrench et al. observe that adaptive filtering enhances the mammogram images 
by predicting the breast tissue and leaving the small microcalcifications in the error 
image [50]. However, they do not specify an enhancement or detection scheme. They 
just suggest that further research needs to be done.

In the segmentation and enhancement processes, nonlinear operations with relatively 
high computational costs can be used while keeping the overall computational complexity 
of the system low. Because, rather than processing the entire image for segmentation 
and enhancement, only suspicious regions are considered.
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x[n] x^[n]

X‘/i"J
Figure 4.2: Adaptive Structure Analysis Stage in [52].

4.1 Segmentation of Microcalcifications

Once the regions containing microcalcifications are detected, individual microcalcifica­
tions can be segmented within detected regions, using further processing [28, 29]. We 
propose a two-stage microcalcification segmentation scheme as shown in Figure 4.1. The 
first stage is breast structure removal. We have seen that bandpass filters, nonlinear 
subband decomposition structures and adaptive filters are effective in removing the breast 
structure. In Section 4.1.1, we also consider the use of adaptive filtering based subband 
decomposition structures for the same purpose.

A detail image is produced after the breast structure is removed. This detail image 
is utilized by the HOS based detection schemes as described in Chapters 2 and 3. 
Within the detected regions, the statistical outlier detection scheme segments individual 
microcalcifications using the detail image. In Section 4.2.2, an outlier detection scheme 
is introduced to segment individual microcalcifications.

4.1.1 Adaptive Filtering based Subband Decomposition

The lifting scheme of Sweldens [37] can be implemented with adaptive filters in the lifting 
stage [52]. The resulting structure still has the perfect reconstruction property and was 
utilized in image compression applications [52]. Figures 4.2 and 4.3 illustrate the analysis 
and the synthesis stages of the subband decomposition structure. Both the analysis side 
and the synthesis side have the same adaptive filter structures.
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Xj[n]

Xj[n] x[n]

Figure 4.3: Adaptive Structure Synthesis Stage in [52].

In Figure 4.2, the odd indexed pixels constitute the signal xi while even indexed 
pixels constitute the signal X2- The finite impulse response estimator predicts the signal 
X2 from the signal xi  in the Linear Minimum Mean Square Sense (LMMS):

N N

^2[n]  =  X )  Wn,kXi[n -  ^] =  X  Wn,kx[2n -  2k]
k=0 k=0

(4.1)

where Wn,k are the filter coefficients.

The detail signal, Xh contains, mainly the highly varying components including the 
microcalcifications and is given by:

a;/i[n] =  X2[n] -  X2[n]

The filter coefficients are updated using an LMS-type adaptive algorithm:

(4.2)

'^n+\,k — '^n,k "h (4-3)

where // is the adaptation constant. Experimentally, the value of the step size /z is set 
to be 10“®. In the prediction, the number of filter coefficients is set to 10 which is 
the maximum microcalcification width on our mammogram database. The initial filter 
coefficients have the same weight.

The synthesis stage can perfectly reconstruct the signal original signal, Xn given 
only the signals xi and Xh without any side information. It should be noted that the 
adaptation parameters for updating the prediction filters in the analysis stage must be 
readily available in the synthesis stage, as well.
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Adaptive filtering based decomposition

Figure 4.4: Adaptive filtering based subband decomposition for microcalcification 
segmentation.

Figure 4.4 shows the results of applying an adaptive filtering based subband 
decomposition structure for the breast structure removal. In this figure, x[n] is a line 
of a part of a mammogram image containing 3 microcalcifications. In the detail image 
these microcalcifications are more apparent.

Figure 4.5 shows the effect of using different breast structure removal methods. 
Figure 4.5 (a) shows the a line of mammogram image. All the other images are the detail 
images which are obtained by bandpass filtering in Figure 4.5 (b), adaptive filtering in 
Figure 4.5 (c), nonlinear subband decomposition in Figure 4.5 (d) and adaptive filtering 
based subband decomposition in Figure 4.5 (e). It can be observed from these figures 
that the detail images are similar and they produce high values at the locations of 
microcalcifications. The number of samples in the detail image Figure 4.5 (e) is half of 
those of the other detail images because of downsampling operation in the decomposition 
structure.

The resultant detail image is the input for the statistical outlier detection method of 
the microcalcification segmentation scheme which will be discussed in the next section.
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Figure 4.5: Comparison of detail images produced by different breast structure removal 
operations, (a) Original line of mammogram image, (b) bandpass filtering, (c) adaptive 
filtering, (d) nonlinear subband decomposition (e) adaptive filtering based subband 
decomposition
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4.1.2 Boxplot Outlier Labeling Method

An outlier is “an observation (or subset of observations) which appears to be inconsistent 
with the remainder of that set of data.” [44]. Therefore, the microcalcification 
segmentation problem is equivalent to outlier detection in the detail subimage. Generally, 
due to the random nature of data, identifying and handling individual outliers is not an 
easy task. Nevertheless, there are numerous techniques available to detect and handle 
outlier locations [38].

In this work, we used the boxplot outlier labeling method [38] which is available in 
most of the statistical software packages. In this method data, x, is first rank ordered,
X =  (a;[i],X[2], .. · ,iC[n]}· Next, the lower quartile, Qi and the upper quartile Q3 values 
are determined through the following formulae in Equations 4.4-4.6.

/  =  

Qi = 

Qz =

[(n  -I- 1)/2J -I-1 
2

^[/]
^[n+l“/l

(4.4)

(4.5)

(4.6)

where [(n +  1)/2J represents the greatest integer less than or equal to (n -l-1)/2. The 
interquartile range Rp is defined to be Q z ~  Qi-

The boxplot method determines the outliers to be the part of data which is outside 
the range (Qi -  kRp, Qz +  ^Rp). The parameter k is determined for the data set under 
consideration in a statistical manner and is usually taken to be 1.5 or 3.0 [38]. Figure 4.6 
illustrates the definition of the boxplot outlier labeling method.

Figure 4.7 (a) shows a horizontal line of mammogram image which is known to 
contain a microcalcification. Figure 4.7 (b) depicts the difference between the original

QjkRp Q] MEDIAN Q + kR 
3 F

* OUTLIERS

Figure 4.6: Illustration of the outlier detection by the boxplot outlier labeling method 
described in Section 4.1.2.
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350

Figure 4.7: Microcalcification segmentation using outlier detection: (a) A horizontal line 
of the mammogram image which is known to contain a microcalcification, (b) high-band 
sub-signal Xh, (c) output of the outlier detection method.

signal and its median filtered version. This difference plot corresponds to the high- 
subband of the nonlinear decomposition structure. The boxplot outlier labeling method 
is applied to the high subband signal. Figure 4.7 (c) illustrates the output of the outlier 
detection scheme. Similar results are obtained in two dimensions. For instance, Figure 
4.8 (a) shows a part of a mammogram image with a cluster of microcalcifications. In 
Figure 4.8 (b), the output of the microcalcification segmentation scheme is shown. This 
segmentation scheme employs a median filter based nonlinear subband decomposition as 
well as boxplot outlier labeling.

The output of the boxplot outlier detection method produce the segmented 
microcalcifications. These microcalcifications can either be used in the three-dimensional 
reconstruction [18, 19] or in mammogram image enhancement which is discussed in the 
next section.
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Figure 4.8: (a) A region of a mammogram image containing microcalcifications, (b) 
output of the segmentation.
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Figure 4.9: Mammogram image enhancement.

4.2 Mammogram Image Enhancement

It is desired that segmented microcalcifications be readily noticeable in an enhanced ver­
sion of the original mammogram image. Therefore, the output of the microcalcification 
segmentation can be combined with the original mammogram image to get an enhanced 
version of the mammogram. We propose three different approaches: superposition, 
amplification and nonlinear subband decomposition based enhancement. Figure 4.9 
illustrates the enhancement operation. In Section 4.2.1 superposition and amplification 
based enhancement schemes are discussed. Section 4.2.2 explains the use of nonlinear 
subband decomposition structures in mammogram image enhancement.
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4.2.1 Superposition and Amplification Based Enhancement

In the superposition approach, segmented microcalcifications are superimposed to the 
original mammogram image at the locations of microcalcifications. In the amplification 
based approach, the original mammogram image pixel values are weighted by a fixed 
weight, again at the locations of microcalcifications. We will first observe the effects of 
these operations on one dimensional signals extracted from mammogram images. Then, 
the results will be examined in mammogram images.

Figure 4.10 illustrates the steps of superposition based mammogram image 
enhancement on a horizontal line of a mammogram image. In particular. Figure 4.10
(a) depicts the original line of a mammogram image which is known to contain three 
microcalcifications. The diflFerence between the original signal and its median filtered 
version is shown in Figure 4.10 (b). This difference plot corresponds to the detail-signal, 
yd[n], of the nonlinear decomposition structure. Figure 4.10 (c) illustrates the output of 
the outlier detection scheme. Three microcalcifications are successfully segmented. The 
microcalcifications are enhanced in Figure 4.10 (d). Similarly, the mammogram image 
enhancement by amplification is shown in Figure 4.11. The amplification weight it 20%. 
Figure 4.12 gives a comparison of the enhancement result obtained by two different 
results. Both methods enhance the signal at locations of microcalcifications successfully.

Previous segmentation and enhancement operations are all performed over one 
dimensional signals that are extracted from mammogram images with microcalcification 
clusters. Actually, the results can be generalized to two dimensions. For instance. Figure 
4.13 illustrates the enhanced images for the mammogram image in Figure 4.8 (a) using 
two approaches: superposition and magnification.

In case enhancement of the tissue around the microcalcification regions is also desired, 
the final image can be displayed after scaling so that the full dynamic range of the display 
device is employed. This operation is called contrast stretching [53]. For the image, 
x[m,n] the contrast stretching operation produces the output, xcsfm, nj:

xcs[m,n\ -
{x[m, n] -  Xmin)

X  255 (4.7)
^max ^min

where Xmax a'Hd Xmin are the maximum and minimum pixel intensities of the image, 
x[m,n], respectively. 255 represents the maximum intensity value for the 8 bit images 
(so, 2 ^ - 1 ,  should be used instead for B  bit images). Figure 4.14 shows the results of
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Figure 4.10: Superposition based mammogram image enhancement: (a) A horizontal line 
of the mammogram image, (b) the detail signal, yd[n] obtained by nonlinear subband 
decomposition, (c) output of the outlier detection method, (d) microcalcifications are 
enhanced by superposition.
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Figure 4.11: Amplification based mammogram image enhancement: (a) A horizontal line 
of the mammogram image, (b) the detail signal, j/d[n] obtained by nonlinear subband 
decomposition, (c) output of the outlier detection method, (d) microcalcifications are 
enhanced by amplification.
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Figure 4.12: Comparison of mammogram image enhancement schemes: (a) A horizontal 
line of the mammogram image, (b) mammogram image enhancement by superposition, 
(c) mammogram image enhancement by amplification.

Figure 4.13: Enhanced Images (a) Microcalcifications are superimposed on the mammo­
gram image, (b) Mammogram image is magnified at the locations of microcalcifications.
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Figure 4.14: (a) Enhanced and (b) contrast stretched images for the mammogram image 
in Figure 4.8 (a).
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Synthesis 
Filter Bank

Figure 4.15: Nonlinear Subband Decomposition Structure, 

such a contrast stretching algorithm applied to an enhanced mammogram image.

4.2.2 Nonlinear Subband Decomposition Based Enhancement

In the nonlinear subband decomposition structure shown in Figure 4.15, the H  filter is 
chosen as a median filter with a ROS of 21 x 21, as we discuss in Section 2.5. Only the 
detail image, is utilized for detection purposes. Equation 2.10 shows that the
image yalrn, n] is obtained by superimposing the original with a nonlinear filtered version 
of the detail-image G{yd[m,n]). The image j/a[m,n] can be considered as an enhanced 
image for an appropriate selection of the nonlinear function G. In this application, G 
is chosen as the closing filter [43] with a square ROS of 10 x 10 at the 100//m scanning 
rate. The ROS of the closing filter is chosen in such a way that mainly microcalcifications 
remain after this nonlinear filtering operation.

Closing filter is a morphological, nonlinear filtering operation. It is defined in
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terms of other nonlinear operations erosion, © and dilation, ©. Let x[m,n] be the 
image to be filtered and 5'[m, n] be the region of support of the filter (also called the 
structural element). Erosion and dilation of x[m,n] in S[m,n] are defined as below, 
respectively [47] :

5[m, n] 0  x[m, n] — min x[m -  k , n -  1] for every {k, 1) e S  (4.8)

S[m, n] © x[m, n] =  max x[m -  k , n -  1] for every {k, 1) e S  (4.9)

After these definitions, for the image x  and the structural element, S  the closing, x^  
is defined as

Xq — S Q (<S © x) (4.10)

Similarly, for the image x  and the structural element, S  the opening is defined as

x$ = s ® ( s e x ) (4.11)

The effects of median and closing type nonlinear operations can be observed in 
Figures 4.16 and 4.17. Figure 4.16 illustrates a line of mammogram image containing 
a rather visible microcalcification. After the median filtering, this microcalcification is 
eliminated. The output of the median filter represents the mammogram background 
structure corresponding to the ordinary breast tissue. Most of the noise as well as 
microcalcifications are not present in the output. In the difference image, which is 
obtained by subtracting the median filtered image from the original mammogram image, 
mainly the microcalcification is observed.

Figure 4.17 illustrates the effects of the closing operation on the difference image. The 
input to the dilation filter is the difference image. The dilation filter in Equation 4.9 
eliminates the noise but the microcalcification is made larger than its normal size. Next, 
the erosion filter in Equation 4.8 with a rectangular structure element of length 10, 
approximately resumes the actual size of the microcalcification. Therefore, the closing 
filter is effective in singling out microcalcifications on the mammogram. Almost all of the 
small ripples due to noise are eliminated while the microcalcification is retained similar 
to the previous cases.
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4.16: Median filter based nonlinear subband decomposition. 

Steps of nonlinear decomposition

Figure 4.17: Microcalcification segmentation using the closing filtering on the difference 
image.
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A horizantal line of mammogram image

Figure 4.18: Enhancement of the mammogram image by nonlinear subband decomposi­
tion.
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Figure 4.19: Enhancement of mammogram image by nonlinear subband decomposition: 
(a) A region of a mammogram image containing microcalcifications, (b) output of the 
segmentation (c) enhanced mammogram image.

Figure 4.18 illustrates the output of of the enhancement operation in one dimension 
using the nonlinear subband decomposition structure. The H filter is chosen as the 
median filter and G filter is the closing filter. The lengths of these one dimensional 
filters are 21 and 10, respectively. In Figure 4.19, the result of the mammogram image 
enhancement is illustrated in two dimensions. The output of the microcalcification 
segmentation is also included in this figure.
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As an overall structure, we can combine the microcalcification detection and 
segmentation schemes with the mammogram image enhancement process. Figure 4.20 
illustrates an example overall structure. In this structure it is assumed that adaptive 
filtering based HOS microcalcification detection is used.

Figure 4.21 further illustrates the effects of the two different enhancement operations 
on part of a mammogram image shown in Figure 4.21 (a). In the previous examples, 
the images were taken from parts the mammogram with microcalcification clusters. 
Therefore, the entire image was processed by the enhancement operation. In Figure 4.21, 
the enhancement operation is carried out only in the detected regions. In Figure 4.21
(b) the contrast stretching operation is applied on the original image. In this picture 
both the microcalcifications and the background structure is enhanced. Therefore, the 
visibility of the microcalcifications is slightly better. In Figure 4.21 (c) superposition 
based enhancement and Figure 4.21 (d) magnification based enhancement operations 
are applied. In both figures the visibility of microcalcifications is significantly enhanced.
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Figure 4.21: Results of mammogram image enhancement: (a) Part of a mammogram 
image to be enhanced (b) Output of the contrast stretching operation (c) Superposition 
based enhancement (d) Magnification based enhancement.
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Chapter 5

DETECTION OF MASS LESION 
BOUNDARIES USING THE 
SNAKE ALGORITHM

While microcalcifications are regarded as an early sign of breast cancer, two types of 
lesions, namely mass and stellate lesions, are indicators of cancer. In this chapter, the 
detection of mass lesion boundaries using the snake algorithm is discussed. Detection of 
boundaries of mass lesions play an important role in the classification of these tumors as 
malignant or benign. Additionally, the growth of tumor size in time can be monitored 
more accurately on mammograms taken at different times. In this chapter, we first 
introduce a recently developed boundary detection scheme. This scheme detects the 
boundary of the lesion by region growing on fuzzy set pre-processed mammogram 
images. In our scheme, we use histogram equalization as the pre-processing stage. This 
stage enhances the mass lesions which usually have a brighter appearance than their 
surrounding pixels. In the enhanced image, the snake algorithm is used to detect the 
boundary of the lesion.
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Part of a mammogram image with circumscribed mass

100 200 300 400 500

Figure 5.1: Part of a mammogram image with a circumscribed mass lesion.

5.1 Mass Lesion

A mass lesion appears on the mammogram as an almost uniform density, roughly 
elliptical disk. It is brighter than its surrounding area and its edges are fuzzy. Figure 5.1 
shows a region of mammograms containing a mass lesion. The lesion is located at the 
center of the image. The circle around the mass indicate the extent of the malignancy. 
The size and shape of the masses differ from one case to another. In most cases, however, 
masses look very much like the normal breast parenchymal tissue. Hence, their detection 
is not easy for radiologists since they may examine many mammograms each day and 
only a tiny fraction of them contain abnormalities such as mass lesions.

Figures 5.2 and 5.3 show the horizontal and vertical cross sections of the mammogram 
image in Figure 5.1. The cross sections are taken at the location of the mass lesion and
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A horizontal cross section o f the mammogram image

Figure 5.2: Cross section of the mammogram image in horizontal direction.

A vertical cross section of the mammogram image

Figure 5.3: Cross section of the mammogram image in vertical direction.

the mass is located in the middle of these plots. These figures indicate that the region 
with the mass has a high contrast in both directions. However, this does not have to be 
the case, in general.

After detecting the masses, a lesion classification is carried out according to the shape 
of the mass. The important factor in the classification are shape-based features such the 
circularity, the variation of the radial length, and so on. Well-circumscribed, compact 
and roughly elliptical tumors are usually benign. A tumor, on the other hand, with 
blurred boundary, irregular shape and with spicules radiating from the center (stellate) 
are usually malignant.
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We propose an algorithm for the accurate delineation of the boundaries of the mass 
lesions. This algorithm can be utilized both in the mass lesion detection and temporal 
examinations of mammograms with a mass lesion. In Section 5.2, a recently developed 
breast boundary detection by fuzzy set pre-processing and region growing is reviewed [59]. 
Our boundary detection scheme is based on the snake algorithm [61, 62]. The snake 
algorithm is reviewed in Section 5.3. Our mass lesion boundary detection algorithm is 
described in Section 5.4.

5.2 Breast Boundary Detection by Fuzzy Set Pre­
processing and Region Growing

In a recent related work, breast tumor boundary is detected by fuzzy set based pre­
processing and region growing [59]. The fuzzy set based pre-processing aims at increasing 
the pixel values within the mammogram image with values in the range similar those of 
the mass lesion. This produces an enhanced image, on which a region growing algorithm 
is applied. In Section 5.2.1 the fuzzy set based pre-processing is introduced. Section 5.2.2 
reviews the region growing algorithm and gives a boundary detection example.

5.2.1 Fuzzy Set Pre-processing

In traditional set theory, an object is either a member of a set or not. For fuzzy sets there 
are flexible membership functions. The membership function, F, takes the elements in 
the set and assigns them values between 0 and 1 [60].

In [59], the region of interest (ROI) containing the mass lesion is enhanced by means 
of an appropriate membership function, F. This function evaluates the similarity between 
the seed pixel (chosen inside the mass lesion) and other pixels inside the ROI.

The membership function used in [59] is

F[m, n] =
1 (5.1)

1 + P\x[m,n] -  5]
where x[m, n] represents the pixel value of the mammogram image at location (m, n) 
and S  represents the seed value. The constant, /? defines the opening of the membership
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Fuzzy Set Membership Function for two different vaiues of Beta

Figure 5.4: Membership functions for two different values of /?. P = 0.007 (Solid line), 
P =  0.07 (Broken line).

function. The smaller the value of P, the wider the opening of the function. Figure 5.4 
illustrates the membership functions for two different P values. In this plot it is assumed 
that the seed pixel value S  is equal to 200. In [59], P is chosen as 0.007.

The image shown in Figure 5.5(a) is processed by the fuzzy-set based pre-processing. 
The output of the processed image is given in Figure 5.5(b). The pre-processed image 
is then linearly converted to a grey-level image whose pixel values range between 0 and 
255. The pre-processed image is then input to the region growing algorithm which will 
be reviewed in the next section.

5.2.2 Region Growing Algorithm

The region growing algorithm is applied on the fuzzy-set pre-processed image to find 
the boundaries of the breast tumor. The algorithm works in a recursive manner. The 
inputs to the algorithm are the mammogram image, a location (a seed pixel) within 
the boundaries of the mass lesion and a threshold, T. The output of the algorithm is a 
binary image in which the extent of the mass lesion is displayed.

The main parameters in the region growing algorithm are m  (mean), t (total), and c
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Figure 5.5: (a) Part of a mammogram image containing a mass lesion (b) Fuzzy Set 
based pre-processing of (a).

(count). The parameter m  is the mean value of the marked pixel values, the parameter 
t is the sum of the pixel values in the marked region, and the parameter c is the count 
of the number of pixel values in the marked region. Initially, the parameters m  and t 
are equal to the value of the seed pixel, and the parameter c is equal to 1.

The region growing algorithm runs over all pixels within the image. At each iteration, 
first the current pixel value in the output image is checked. If it is equal to zero, this 
indicates that either (i) this pixel has not been visited yet, or (ii) it has been visited but 
the absolute value of the difference between the pixel value and the current m (given by 
t/c) is greater than the threshold, T. If the absolute difference is less than a set threshold, 
this pixel value is included in the marked region and the corresponding location in the 
output image is set to 1. Then, the parameters t and c are updated using the included 
pixel value. Next, the algorithm runs in four directions (north, south, east, and west) in 
a recursive manner. Figure 5.6 illustrates the output of the region growing algorithm for 
the input image given in Figure 5.5(a). In the next section, we propose an alternative 
snake based boundary detection scheme.

5.3 The Snake Algorithm

Snakes are deformable contour models increasingly used in image segmentation [61, 62]. 
They are planar curves. The shape and location of the curve is determined according to
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Figure 5.6; Output of the region growing algorithm for the detection of the mass lesion 
boundaries.

an objective function. Snakes are influenced by image structure and pulled toward the 
edges and lines on the image. The energy of a snake is defined in a way that its total 
energy becomes minimum when the snake lies around the region of interest. The total 
energy of the snake around a closed contour v(s) is defined as:

F;(v(s)) =  j{Eint{s) +  Eext{s))ds (5.2)

where Eint and Eout represent the internal and external energies of the snake, respectively.

The internal energy, Eint is determined according to the length and bending of the 
snake and defined as

„  , , dv ^d?v
E iA s)  - a - + 0 ^ (5.3)

where the first term denotes the length energy, Eiength and the second term denotes the 
bending energy, Ebending- The weights, a. and ¡3 control the relative importance of these 
energy terms in the total energy.

In digital implementation, the length energy is computed simply as the sum of the 
distances between snaxels which are the control points of the snake curve. The curve is 
determined by the snaxel points and the pixels on the lines connecting the snaxels. In 
this study the number of snaxels is experimentally determined and a first order (linear) 
interpolation is used to draw the entire snake curve encircling regions of interest which 
are mass lesions.
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If snaxels on the image, Sj are located at (m*, n*), ior i = 1, . . . ,  N  then the length 
energy, El is computed as

El =  E  \/K *  -  +  (^i -  ^i+i)^ (5.4)
z=l

where =  m*, =  n\ as the snake is a closed contour.

The bending energy, Eb controls the smoothness of the snake curve. A suitable 
measure for the smoothness is the second derivative along the contour. The bending 
energy can be approximated in digital implementation as

N  ____________________________________________________________________

Eb =  ( ^ i - 1  -  2 m |  +  +  ( n | _ i  -  2 n |  +  n * + i)2
1=1

where m%^i = m*, — nj, tUq =  nj =  ny.

(5.5)

The external energy, Egxt, represents the energy created by the image structure 
depending on the location of the snake on the image and it is defined as

E g x t  —  ^ n E f i  " t "  W g E g (5.6)

where the first term, En defines the line energy, the second term. Eg defines the edge 
energy, and the weights Wn, Wg determine the contribution of line and edge energies to the 
total energy, respectively. The line energy is computed simply by adding pixel intensity 
values, x[m, n] on the snake curve.

M
En = Y ,  x[mj, Tij]

j = l

where the index j  runs over all the M  pixels along the snake curve.

(5.7)

The second external energy component, Eg is basically the gradient approximation 
of the underlying image along the snake curve.

M
Ee =  Y ^  [ { ^ [ m j + u  rij] -  x [m j . i , T i j ] ) ^  +  { x [m j ,  n^+i] -  x [m j ,  nj_i])^J (5.8)

j = l

where the index j  runs over all the M  pixels along the snake curve. This is not the only 
form of gradient approximation, however for our purposes it is satisfactory.
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to ta l ·

1. Get the image x[m, n].
2. Get the initial position of the snaxels, u[i] =  [m[i], n[z]], i = I , . . . ,  N  (number of snaxels).
3. Calculate the total energy of the snake curve, Etotai-
4. The total energy, Etotau is assigned the minimum energy, Emin, i-e. Emin -
5. For each snaxel v[i], i -.1 N,

5.1 Emin ~  Eioinl·
5.2 For M  pixels in the neighborhood of each snaxel, j  : 1 -> M,

5.2.1 Calculate the length energy, Ei as in Equation 5.4.
5.2.2 Calculate the bending energy, Et, as in Equation 5.5.
5.2.3 Calculate the line energy, En as in Equation 5.7.
5.2.4 Calculate the edge energy. Eg as in Equation 5.8.
5.2.5 E[j] = Ei -jr Eb + En +  Eg.
5.2.5 If E[j]<Emin,

5.2.5.1 The minimum energy is replaced by the new value Emin =  E[j].
5.2.5.2 The snaxel point is replaced by the image pixel, j  =  jmin-
5.2.5.3 Move the snaxel Vj to

5.3 Calculate the angle, 0 between two lines connecting three snaxels,
^  = angle(z — + 1).

5.4 l i  (j>< 90°,
5.4.1 The snaxel Vi is moved to in between Vi-i,Vi^i 

until the angle becomes a wide angle.
5.5 Calculate the distance, d between snaxel pairs d =  distance(ui,t;i+i).
5.6 If d < T(threshold),

5.6.1 A new snaxel v¡ is added in between the snaxels Vi,Vi+i.

Table 5.1: The snake algorithm.

Our application is based on the fast greedy snake algorithm described in [64]. The 
snake algorithm is summarized in Table 5.1. In our algorithm, the important parameters 
that affect the convergence of the algorithm are the energy coefficients, the search 
radius and the number of snaxels which are the control points of the snake curve. The 
parameters a , /?, Wn, Wg in energy equations are set in such a way that the energy 
should be minimum on the region of interest.
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Input Image Lesion Boundary

Figure 5.7: The mass lesion boundary detection algorithm.

Figure 5.8: (a) Part of a mammogram image containing a mass lesion, (b) after histogram 
equalization.

5.4 Detection of Mass Lesion Boundaries using the 
Snake Algorithm

The boundary detection scheme follows the steps given in Figure 5.7. In the pre­
processing stage, the image is enhanced through histogram equalization [53]. The mass 
lesions usually have higher contrast relative to the surrounding pixel values. If this 
contrast is increased, then a better boundary detection performance can be achieved. 
One way of increasing the contrast is through histogram equalization. Figure 5.8 
illustrates the effect of histogram equalization on part of a mammogram image. As 
it can be observed from this figure, the contrast of the mass lesion is increased.

The next step in the boundary detection is the snake algorithm. The initial positions 
of the snaxels are supplied by the user. In our application, the fast greedy algorithm is

8 8



Figure 5.9: (a) Part of a mammogram image (b) Initial position of the snake, (c), (d), 
(e), (f) The position of the snake at each iteration.

modified for the boundary detection problem. These modifications are summarized in 
the steps, 5.3 and 5.5 of the algorithm shown in Table 5.1. The first modification is that 
the angle between the two lines connecting neighboring three snaxels is always kept as a 
wide angle. At each iteration, these angles are computed and when they are less than 90 
degrees, the current snaxel is moved until the angle becomes a wide angle. The second 
modification concerns the number of snaxels. If the distance between two snaxels exceed 
a preset distance value, a new snaxel is created in between. These two modifications 
result in a smooth snake. The values of the constants needed for the snake algorithm are 
experimentally determined to be a  =  0.1, /? =  0.4, Wg — —1, Wn =  0.2. The width of 
the search window size is set to 8 pixels.

Figures 5.9 and 5.10 indicate that the boundary detection algorithm successfully 
detects the boundaries of mass lesions [67]. In Figure 5.9, though the snake is initially 
placed quite outside the mass lesion, the snake encircles the mass region approximately 
even after the first iteration. Figure 5.10 shows the mass region indicated by the 
radiologist and the output produced by the snake algorithm.
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Figure 5.10: (a) Original image (b) Region marked by the radiologist (c) Output of the 
snake algorithm.

Region growing based algorithm and the snake algorithm based algorithm can be 
compared through Figures 5.6 and 5.9 (f). It can be observed from these figures that 
though similar results are obtained by these two methods, the method we propose 
produces a more smooth curve for the boundary. On the other hand, the region growing 
based algorithm results in a boundary with sharp angles and rectangular structures. 
However, a soft boundary is more consistent with the morphological structure of the 
mass lesions because these abnormalities appear as circular or oval blobs with smooth 
edges on mammograms [42].

The computational complexity of the dynamic programming based snake algorithm 
is 0 {N  X  M^) at each iteration, where N  is the number of snaxels in the image and 
M  is number of pixels in the search window [63]. The computational complexity of our 
application based on the fast greedy algorithm is, on the other hand, only 0 {N  x M) [64]. 
This brings in significant computational savings. Furthermore, the algorithm can be 
implemented faster in a multiresolutional framework as described in Appendix C. The 
region growing algorithm uses a breadth-first search algorithm, i.e., four neighboring 
pixels are searched in order to grow the search. Therefore, the computational complexity 
of this algorithm is 0 (P ), where P  is the number of pixels within the boundaries of the 
mass lesion.

In [68] we use the snake algorithm for the identification of relative protein bands 
in polyacrylamide gel electrophoresis (PAGE) images which are frequently used in 
protein research. The snake algorithm was applied in a multiresolutional framework. 
Experimental studies have shown that the results are more accurate and the method 
involves less computational complexity if the snake algorithm is applied in this
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framework. Appendix C gives a detailed explanation of this framework and the detection 
results.
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Chapter 6

CONCLUSIONS

In this thesis, we propose computer-aided diagnosis methods for the detection and 
analysis of microcalcification clusters and for the detection of boundaries of mass lesions 
in mammogram images. Studies indicate that CAD systems increase the performance 
of radiologists [9], and they will be an important feature of the next generation Picture 
Archiving and Communication Systems (PACS).

We initially analyzed existing microcalcification detection schemes and we showed 
that most of these methods first employ a simple bandpass filter to process the mammo­
gram image. Afterwards, they use a simple threshold to detect the microcalcifications 
which appear as outliers. Instead of simple thresholding, we introduced higher order 
statistical tests for microcalcification cluster detection. In our algorithm, the image 
is first bandpass filtered, then the resultant filtered image is divided into overlapping 
square regions. It is experimentally observed that in regions with no microcalcifications 
the Gaussian distribution is a good model for the filtered image. In regions with 
microcalcifications, on the other hand, the distribution is non-Gaussian because of the 
impulsive nature of microcalcifications. In each square region third and fourth order 
statistics, skewness and kurtosis values are estimated. Since microcalcifications make 
the distribution skewed, the tails of the distribution is heavier, and hence these statistics 
produce high values. Regions with skewness and kurtosis values higher than those 
thresholds are marked as suspicious regions. Threshold values for skewness and kurtosis 
are estimated from a training set. In our experiments using this method all of the 105 
microcalcification clusters in the Nijmegen mammogram image database are detected

92



with an average of 3.3 false alarms per mammogram image.

Instead of simple bandpass filtering, adaptive filtering can be used to pre-process 
the mammogram images. We observed that adaptive prediction is effective to remove 
the regular breast tissue and the error image contains outliers corresponding to 
microcalcifications. In our method we use a two-dimensional (2-D) adaptive predictor 
and a Gaussianity test (OCM) recently developed by Ojeda et al. for causal invertible 
time series. Similar to the previous approach, we divide the image into overlapping 
square regions and the OCM test statistic of the prediction errors is computed to 
determine whether the current region contains samples from a Gaussian distribution. 
Since microcalcifications are isolated bright spots, the prediction sequence deviates from 
Gaussianity around microcalcification locations. The OCM test is based on the second 
and third order statistics. The false detection rate of this scheme is 2.3 per image for 
the same mammogram database. We also analyzed the OCM test using the influence 
function and sensitivity curve concepts and found out that the OCM test has high 
sensitivity to outliers.

For our purposes we require a Gaussianity test with high sensitivity so that it can 
detect microcalcifications which demonstrate outlier characteristics in a better way. 
Fourth order statistical parameters are also widely used in Gaussianity tests. We 
designed a test statistic using the second and fourth order moments. The sensitivity 
analysis shows that the new test statistic has higher sensitivity to outliers than the 
OCM test. Experimental studies have also shown that this test has better detection 
performance when combined with the OCM test. It reduces the false alarm rate and 
the number of single bright spots. In our experiments with the mammogram database 
containing 40 images, the false alarm rate decreased from 2.3 per image to 1.125 per 
image. This experimentally justifies the effectiveness of the new Gaussianity test for the 
microcalcification detection. This result is expected as both the third and the fourth 
order moments are involved in the detection process. A wavelet decomposition based 
scheme which uses the same database in the experiments detects all the clusters correctly 
with an average of 8 false alarms per image. When compared to this scheme, our scheme 
produces significantly better detection results.

In our microcalcification detection algorithms, the detection is always carried out 
in overlapping square regions. The benefits of this approach are manifold. First, it 
enables the use of parallel algorithms for detection purposes. Computations in each 
region are independent from each other. Another advantage is that within the detected
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square regions (instead of the entire image), computationally expensive nonlinear 
filtering operations and outlier labeling methods can be used in order to segment and 
obtain individual microcalcification locations. Additionally, mammogram images can 
be enhanced by superimposing detected abnormalities onto the original mammogram 
image. We have shown examples of detection and enhancement methods.

Another indication of cancer on mammogram images is the mass lesion. The 
shape and exact extent of mass lesions can be obtained by snake algorithms. When 
approximately placed around a mass lesion, the snake iteratively converges to and finally 
encloses the boundary of the mass lesion. This boundary detection scheme can be 
combined with another mass detection algorithm which is designed to find only the 
location but not the extent of the mass lesions. A comparison of the automatically 
detected mass lesion boundaries on mammograms taken at different time periods can 
also provide valuable information to radiologists in their diagnosis.

As future work, the adaptive filtering methodology can be adopted to the problem 
of mass and stellate lesion detection. The mass lesions (and the central part of stellate 
lesions) are usually smoother regions relative to the surrounding pixel values. Therefore, 
the output of the adaptive filter is expected to produce small prediction error values in 
these regions. A suitable set of features can be derived from these error values and these 
features can be used to detect and segment these abnormalities.

The classification of detected microcalcifications as benign or malignant can be 
another follow-up work. The classification is usually based on the shape of individual 
microcalcifications as well as their orientation, shape and intensity variations on the 
original mammogram image. Another classification scheme can be designed which 
will classify the abnormalities using the features extracted from subband images or 
adaptive filter prediction errors. A set of rules needs to be derived in collaboration with 
radiologists. These rules must be combined and correlated with the computer extracted 
features to develop a classification tool.
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Appendix A

Bandpass Filter Equivalents of 
Subband Decomposition Structures

Wavelet based subband decomposition has been used in several computer-aided diagnosis 
methods [6],[10]-[12]. In these methods, first the mammogram image is wavelet 
transformed. A set of subband images are selected and weighted to enhance the 
abnormalities. Next, the reconstructed image is thresholded to extract the abnormalities. 
Figure A.l illustrates a two-level subband decomposition structure. In this appendix, 
we show that weighting selected subband images followed by reconstruction is essentially 
equivalent to bandpass filtering.

Yoshida et al. have investigated the effect of different Least Asymmetric Daubhecies’ 
filters with different filter lengths [10]. They conclude that an 8-tap Least Asymmetric 
Daubhecies’ (LADS) filter gives the best detection results, evaluated using the ROC 
methodology. The filter coefficients are given in Table A.l. The mammogram image is 
decomposed up to the third level and ten subimages at various resolutions are obtained. 
Finally, the second and the third level images are used in the reconstruction. This 
covers the frequency range [|,7r] if the frequency domain is divided in an ideal manner. 
Therefore, Yoshida’s subband decomposition is basically highpass filtering with passband 
[ | , 7rj. Figure A.2 illustrates the amplitude response of the equivalent filter.

In [6], again the same filter (LADS) is used. The mammogram image is decomposed 
to seven levels, and each level is weighted by a number. The weights are determined by
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Figure A.l: Binary tree structured 2-level subband decomposition and weighting. The 
subsignal X q contains [0, |] ,  X i  contains [ |,  |] ,  X 2 contains X 3 contains [ |,
frequency ranges of the original signal, X{n).

W a ve le t: LAD8

Figure A.2: The overall filter amplitude response using the LADS wavelet. Only the the 
2nd and 3rd scales are included in the final image [10].
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h[0] h[l] h[2] h[3] h[4] h[5] h[6] h[7]
-0.1071 -0.0419 0.7037 1.1367 0.4212 -0.1403 -0.0178 0.0456

Table A.l: 8-tap Least Asymmetric Daubhecies’ filter coefficients.

Wi W2 ^3 Wi W5 Wq Wj
-6.5 9.2 8.8 0.8 0.2 -0.3 0.4

Table A.2: Optimized weights of the wavelet scales.

1 1 .5
Frequency

Figure A.3: The ideal filter amplitude response obtained using the weights in Table A.2.

an optimization procedure which uses the Powell’s conjugate gradient method for the 
minimization. The optimal weights are given in Table A.2. Figure A.4 illustrates the 
equivalent bandpass filter for the subband decomposition structure. Figure A.3 shows 
the ideal frequency response that would be obtained if the subband decomposing wavelet 
filters could divide the frequency axis equally. This figure is obtained using the weight 
functions in Table A.2. The frequency response plotted in Figure A.4 approximates the 
ideal response shown in Figure A.3.

Strickland and Hahn use the biorthogonal spline wavelet with a filter of length 
nine [11]. The coefficients of this filter are shown in Table A.3. In another work, Wei 
et al. uses the Least Asymmetric Daubechies’ wavelet with 4 coefficients (LAD4) [12].
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h[0] h[±l] h[±2] h[±3| h(d=4]
0.6029 0.2669 -0.0782 -0.0169 0.0267

Table A.3; 9-tap Biorthogonal spline wavelets.

h[0] h[l] h[2] h[3]
0.4830 0.8365 0.2241 -0.1294

Table A.4: 4-tap Least Asymmetric Daubhecies’ filter coefficients.

Figures A.5 and A.6 illustrate the equivalent filters for these two detection schemes. 
Notice that FIR bandpass filters with similar frequency responses can be designed using 
ordinary filter design methods [15] and computationally more efficient methods can be 
obtained as the wavelet based methods [6, 11, 12] are implemented using LAD8, 9-tap 
biorthogonal spline, LAD4 linear filters, respectively.

In dealing with wavelet decomposition schemes, one should be careful about the 
choice of subband orders. We have also shown that the frequency bands of the subband 
signals have a counter-intuitive order after such a decomposition. An example can be 
observed in Figure A.l. In Appendix B, the correct frequency order of the subband 
signals is described and an efficient method to calculate the order for a tree-structured 
subband filter bank with arbitrary number of stages is given.
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W a ve le t: LADS -  Modified

Figure A.4: The overall filter amplitude response using the LADS wavelet: Weighted 
scales [6].

W a ve le t; Biorthogonal Spline

Figure A.5: The overall filter amplitude response using the Biorthogonal Spline wavelet 
and including the 2nd and 3rd scales [11].
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W a ve le t: LAD4

Figure A.6: The overall filter amplitude response using the LAD4 wavelet and including 
the first 4 scales [12].
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Appendix B

Frequency Band Characteristics of 
Tree-Structured Filter Banks

A subband decomposition filter bank can be recursively used in a tree structure to 
divide the frequency domain into various subfrequency bands. The frequency bands 
of the subband signals have a counter intuitive order in such a decomposition. In this 
appendix, the correct frequency order of the subband signals is described and an efficient 
method to calculate the order for a tree-structured subband filter bank with arbitrary 
number of stages is given. It is also shown that the relation between the frequency 
content and the index of a subband signal can be expressed by an extension of the Gray 
code [69].

Subband decomposition is widely used in signal analysis and coding [70] - [74]. A large 
order multi-channel filter bank can be constructed by cascading filter banks with smaller 
orders. For example, the tree-structured 4-channel filter bank shown in Figure B.l(a) 
is constructed from two-channel filter banks in two stages. A tree can be formed from 
binary (two-channel) or m-ary Perfect Reconstruction (PR) filter banks. The frequency 
contents of the resultant subband signals do not have a natural increasing order for tree 
structured subband decomposition. The counter intuitive ordering is not emphasized in 
most of the books on this subject. There are even incorrect band partitioning illustrations 
in the literature [70] - [72].
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Figure B.l: Binary tree-structured 2-level subband decomposition.

B.l Binary Tree-structured Subband Filtering

In the 4-channel filter bank structure of Figure B.l(a), Hq{u ) and Hi{u) stands for the 
low pass and the high pass filters, respectively. An equivalent structure is shown in 
Figure B.l(b). The two-stage operation in Figure B.l (a) is equivalent to a single stage 
operation consisting of filtering x[n] by the convolution of filters on the signal path and 
down-sampling the filtered signal by 2̂  =  4. The frequency response of the equivalent 
filter in the first branch is given by

F^(u) = Ho(uj)Ho{2u) (B.l)

In general the frequency response of /^[n] in an N  stage partition is given by

F'^iu) = k = 0 , l , . . . , N - l  (B.2)

where k =  2^~ îo + 2^~‘̂ ii -f ... -I- and ij =  0,1.

In Figure B.l and B.2, the third branch filter F ‘̂{u) covers the frequency range 
7t] whereas the fourth branch filter F^{u) covers the frequency range [ |  ^ ] . The output 
signals X q{uj) —X 3{u>) split the frequency band into four regions, but the index ordering 
from the lowest frequency to the highest frequency is : 0,1, 3, 2. This sequence represents 
the Gray code (or minimum change code) ordering [75] where only one bit in the binary
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Figure B.2: 4-channel decomposition of a signal.

representation of the number changes between two consecutive numbers. This rule is 
also valid for higher levels of decomposition.

Consider the generation of binary Gray code in 3 digits. We start with a binary pair 
in a column [0 1 ]^. Next, we construct the second digit column by inserting zeros and 
ones as many times as the number of digits on the right column, i.e. two zeros and two 
ones. After this stage, the rest of the right column is constructed by warping around 
the first elements, i.e. the digits are written in the reverse order. The leftmost column 
is now generated by inserting zeros and ones as many times as the number of digits on 
the right columns, i.e. four zeros and four ones. At the last stage, the right columns are
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filled by periodically warping around the already filled columns :

0 0 0 0 0 0 0
0 0 1 0 0 1 1

0 0 0 0 0 0 1 1 0 1 1 3
0 1

---- Vy
0 1 1 0 1 0 0 1 0 2

1 1 1 3 1 1 1 0 6

1 1 0 2 1 1 1 1 7

1 1 0 1 5
1 1 0 0 4

(B.3)

Notice that the resultant sequence of numbers correspond to the frequency regions of 
the subband signals (Figure B.2).

B.2 Arbitrary Tree-Structured Subband Filtering

A PR subband tree can have different number of branches at each stage. In the case of 
trees with m-ary branches, the frequency contents of the subsignals can be determined 
by an extension of the Gray code. In this case, the m-ary minimum change code can be 
constructed by changing only one digit in the m-ary representation of the number.

In the construction of the minimum change codes, the sequence of the right digits in 
the m-ary representation gets periodically warped. This indicates that the ordering gets 
shuffled after two stages in the tree. In a tree-structured subband decomposition, the 
same frequency warping can be observed (Figure B.2).

In the most general case, the hybrid minimum change codes should be used. These 
codes are constructed by changing only one digit of the hybrid m-ary representation of 
the number. For instance, if the first stage is binary and the second stage is ternary, 
then the new code is generated by one digit changes of mod-2 in the most significant 
digit and one digit changes of mod-3 in the least significant digit. This algorithm can 
be visualized in a tree-structured manner as in Figure B.3. In this figure, the tree is 
generated by recursively attaching ternary branches. When a node is labeled with an 
“R”, that means the labels of the branch which is emitted from that node is in reverse 
order. The final index is determined by tracing the digits starting from the top to the
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Figure B.3: Tree structure generation of a ternary Gray code, 

bottom of the tree.

If the subband tree is composed of layers of m-ary and n-ary branches, the codeword 
generation works in a similar way. Each digit for the codeword is in modulo-m for the 
layer corresponding to the m-ary branch and it is in modulo-n for the layer corresponding 
to the n-ary branch. Suppose the first branch is ternary, and it is followed by binary 
branches at each node. This time, the code generation is as follows :

0 0

0 1

1

1

2

2

0 0

0 1

1 1

1 0

2 0

2 1

(B.4)

Visually, this corresponds to the tree in Figure B.4. When different number of branches
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Figure B.4; A hybrid tree structure.

exist at the same layer in the decomposition, the calculation of the frequency order is 
carried out separately for each branch.
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Appendix C

Identification of Relative Protein 
Bands in Polyacrylamide Gel 
Electrophoresis (PAGE) Using 
Multiresolution Snake Algorithm

Polyacrylamide Gel Electrophoresis (PAGE) is one of the most widely used techniques 
in molecular biology [76]. Denaturing Sodium Dodecyl Sulfate Polyacrylamide Gel 
Electrophoresis (SDS-PAGE) is an important method used for the separation of proteins 
based on the migration of negatively charged proteins depending on their molecular 
weight in an electrical field. Its advantage is that proteins can be visualized as well as 
separated. The SDS-PAGE technique provides information about the degree of purity of 
a particular protein in a protein mixture applied on a certain lane of the PAGE during 
protein purification process. Each band in the SDS-PAGE image represents a different 
protein.

In the protein purification process, it is important to determine the efficiency of each 
purification step in terms of percentage of protein of interest found in the protein mixture. 
This appendix provides a rapid and reliable way to determine the percentage. Generally, 
the percentage is determined by eye and the results are quite subjective. In the currently 
available computer-assisted gel analysis systems, the analysis is usually based on the one
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dimensional profile of manually (by computer mouse) extracted lanes. The band of the 
protein of interest is determined from the peak points in the horizontal profile and the 
areas of the rectangular regions are measured. Finally, these measurements are used for 
purification efficiency calculation. However, rectangular approximations are not accurate 
representations of the ellipse like protein regions.

In our scheme, the region of interest containing the significant protein is detected 
using the snake algorithm [61]. A snake is loosely placed around the protein band as 
an ellipse. Then, the snake shrinks itself until it closely encircles and fits around the 
protein band. The final position of the snake determines the extent of the protein. The 
iterative snake algorithm is implemented in a multiresolutional framework. The snake 
is initialized on a low resolution image. Then, the final position of the snake at the low 
resolution is used as the initial position in the higher resolution image. The area of the 
protein is estimated as the area enclosed by the final position of the snake.

C.l Methods

Figure C.l (a) shows a typical SDS-PAGE gel image. The vertical lines containing several 
protein bands in this gel image are called lanes and one of them is shown in Figure C.l(b). 
The SDS-PAGE image is composed of three parts. The background does not carry any 
useful information. The second part corresponding to the images of protein bands have 
darker appearance. The proteins of interest appear as dark bands and constitute the 
third part. The ratio of total area of the purified protein band region to the total area 
of other proteins demonstrates the efficiency of each purification step. The histograms 
of the three regions corresponding to the significant protein, other proteins and the 
background on a typical lane are given in Figure C.2. The histograms of the regions are 
obtained by manually segmenting the SDS-PAGE image.

The regions containing protein of interest are nearly ellipse like regions which have 
the smallest gray level on the image. Thus, the boundary of such a region is an ellipse 
like closed contour having small total intensity and high gradient. Our application is 
again based on the fast greedy snake algorithm described in [64]. Initially six snaxels 
are placed evenly around a circle determined by the peaks of the one-dimensional profile.
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Figure C.l: (a) Denaturing PAGE image, (b) a lane of the denaturing PAGE image.
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Figure C.2: Histograms of three different regions of a PAGE image.
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C.2 Results

The snake algorithm is implemented in a multiresolution framework or in the wavelet 
transform domain [79]. The original SDS-PAGE image is first processed by the filter 
banks described in [74, 78] and low resolution quarter size sub-images, xa, xih, Xhi, ^hh 
are obtained (The indices, I and h represent, ‘low’ and ‘high’ subband, respectively). 
The snakes are initialized on the low-low sub-image, xu. The initial form of the snakes 
are circles centered at the peak points of the 1-D profile of the lane image. Another 
initialization is based on the xih,XhhXhh sub-images which contain the edge information 
about the original SDS-PAGE image. Therefore, the edges of the protein band region 
can be detected from these sub-images and used as the initial positions of the snakes.

After the initialization on the low resolution image, the snake adapts itself to the 
contour around the protein band in an iterative manner. The final snake obtained on 
the low resolution image is used as the initial estimate on a finer resolution SDS-PAGE 
image. This process is repeated until the snake has closely covered the protein band 
region in the original full-resolution SDS-PAGE image.

The behavior of the different energy components and the total energy of a snake 
at several iterations at different resolutions are given in Figure C.3 for the SDS-PAGE 
image shown in Figure G.l. At the beginning of the convergence process, the slope of 
the total energy of the snake in the low resolution image, Eiow is higher than that of the 
snake in the high resolution image, Ehigh as shown in Figure 0.3(d). In other words,

(C.l)> ^highlk +  l]
^high[^]

This means that the snake converges faster on the low resolution image. This observation 
verifies the validity of the multiresolutional approach. In our simulation studies we use 
only one level of sub-band decomposition but this methodology can be considered in 
multiple resolution levels as well.

The energy weights {a, ¡5, Wn, Wg) must be adapted to the energy level changes in 
different resolutions. In the multiresolutional scheme, at the final iteration of the low 
resolution image, a, p  and Wn values are halved and the iterations are continued in the 
higher resolution image. At the low resolution these values are a  =  4, /3 = 4, Wn —
0.2, Wg = - 0.1.

Figure G.4 shows an original lane of the image as well as the final positions of different 
snakes obtained using different methodologies. The result in Figure C.4(c) is obtained
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Figure C.3: Change of different energy components. Solid lines indicate the energy 
changes in the high-resolution image and dashed lines show the energy changes in the 
lower-resolution image.
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(a) (b) (c) (d)

Figure C.4: Protein of interest is enclosed within the snake : (a) Original lane image (b) 
Snake obtained using only the low-resolution image (c) Snake obtained using only the 
high-resolution image (d) Snake obtained using the multiresolutional approach.

after six iterations of the snake algorithm on the original image. Figure C.4(d) shows the 
result of the multiresolutional approach. The snake obtained at the low resolution after 
two iterations (shown in Figure C.4(b)) is used as the initial position of the snake in the 
high resolution image. Another three iterations in the high resolution image result in 
Figure C.4(d). The comparison of Figures C.4(c) and (d) indicates that the final snake 
converges better to the boundary of the protein area if a multiresolutional approach 
is used. Additionally, the number of computations required in the multiresolutional 
approach is smaller.

Figure C.5 shows the results of the initialization procedure based on the edge 
information extracted from xih·, Xhh Xhh sub-images. Figure C.5(A) depicts the initial 
position of the snake at the sub-image xu. The six snaxels are located on the extracted 
edges of the protein region. This snake takes the form shown in Figure C.5(b) after 
only one iteration. This form is very close to the final position of the snake on the 
low-resolution image obtained with the other initialization procedure based on the 1-D 
profile of the lane image. Figure C.5(c) shows the final position of the snake on the 
high resolution image after two iterations. There is no significant difference between 
this result and the result shown in Figure C.4(d) obtained with the other initialization 
procedure. Edge information based initialization procedure produce similar results with 
less number of iterations. However, this initialization procedure requires the extraction 
of edges from the sub-images.

The ratio of the amount of protein of interest to the amount of insignificant proteins
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(a) (b) (c)

Figure C.5: Results of the initialization process : (a) Initial position of the snake located 
on the extracted edge (b) The snake in (a) after one iteration on low-resolution image 
(c) Snake obtained using the multiresolutional approach with the initial snake in (c).

is estimated by the formula
100 X  4 ^  

At
(C.2)

where As is the area of the region enclosed by the snake, that is the region of protein 
of interest; At is the total area of the protein band images. The area, At is estimated 
by counting the number of pixels representing all protein band regions which have gray 
level values smaller than a threshold value. The threshold is calculated using the one­
dimensional vertical profile of lanes. The profile is calculated by taking the average 
of pixel intensity values along the horizontal direction and the threshold is determined 
according to the maximum gray level in the profile. The effect of noise in the image is 
reduced by the averaging operation. Once the peak values are determined according to 
the initial threshold, the snake algorithm determines the boundaries automatically.

Using this methodology, the percentage of protein of interest is estimated in the 
examples shown in Figure C.6 (a), (b), (c). In all three images, the snake closely encircles 
the band of protein of interest. The percentages are found to be 82.73%, 80.72%, 22.35%, 
for the lanes in Figure C.6 (a), (b), (c), respectively. The percentages are estimated as 
90%, 80%, 20% by eye, respectively. These are tabulated in in Figure C.6 (d). In the first 
example (Figure C.6 (a)) our software provides more accurate concentration estimates 
of protein of interest.

Our method outperforms a commercially available software program which deter­
mines the bands by thresholding and rectangular approximation. In an additional 
experiment, we compared the protein band ratios using our algorithm and the commercial
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(a) (b) (c)

LA NE OUTPUT OF OUR  
PROGRAM(%)

EYE ESTIM ATE (%)

(a) 82.73 90
(b) 80.72 80
(c) 22.35 20

(d)

Figure C.6: Different regions of interest for percentage calculations shown in (a) , (b),
(c) Percentage calculations of our program are compared with the eye estimate of a 
molecular biologist.
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(a)

Lane Actual protein ratio (%) Our program (%) Commercial software (%)
1 17.95 20.83 24.41
2 33.33 27.33 27.77
3 12.82 11.43 18.17
4 35.90 40.40 29.64

(b)

Figure C.7; (a) Known amounts of protein bands determined by Bradford pi'otein assay, 
(b) Comparisons of percentage calculations of our software and a commercial software.

software for known amounts of protein determined by Bradford protein assay [77] for 
each protein band separately. The results are shown and tabulated in Figure C.7. The 
actual percentages are 17.95%, 33.33%, 12.82%, 35.90%. Our software estimates them 
as 20.83%, 27.33%, 11.43%, 40.40%, compared to 24.41%, 27.77%, 18.17%, 29.64% as 
estimated by the commercial software. The squared values of the differences between 
the actual percentages, and the results of our program and the commercial program are 
66.47 and 140.45, respectively. This indicates that our software provides better results 
than the commercially available software.
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Resolution Edge Line Length Bending
High 3517 3517 648 324
Low 756 756 132 66

C.3

Table C.l: Number of computations for high and low resolution

Discussion

The advantage of this multiresolutional approach is three-fold: i) The snake algorithm 
converges better, ii) it brings robustness to the process, i.e., it is not easily affected by 
the scanning artifacts in the original SDS-PAGE image, and iii) computational cost is 
less as smaller images are processed in lower resolutions.

The computational complexity of our application based on the fast greedy algorithm 
is only 0{NM)  where N is the number of snaxels in the image and M is number of pixels 
in the search window [64]. Table C.l shows the number of times each energy component 
is computed on high and low resolution images at the last iteration. The total number of 
energy component computations in the low resolution image is reduced to approximately 
jth of that in the high resolution image.

The multiresolutional snake framework may also find applications in other elec­
trophoretic techniques that require comparative band image quantifications.
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