
Slicing Based Code Parallelization for Minimizing
Inter-processor Communication

Mahmut Kandemir
Yuanrui Zhang

Sai Prasanth Muralidhara
Department of Computer
Science and Engineering
The Pennsylvania State

University
kandemir@cse.psu.edu,
{yuz123,sxm526}@psu.edu

Ozcan Ozturk
Department of Computer

Engineering
Bilkent University

ozturk@cs.bilkent.edu.tr

Sri Hari Krishna
Narayanan

∗

Department of Computer
Science and Engineering
The Pennsylvania State

University
snarayan@cse.psu.edu

ABSTRACT
One of the critical problems in distributed memory multi-
core architectures is scalable parallelization that minimizes
inter-processor communication. Using the concept of itera-
tion space slicing, this paper presents a new code paralleliza-
tion scheme for data-intensive applications. This scheme
targets distributed memory multi-core architectures, and
formulates the problem of data-computation distribution (par-
titioning) across parallel processors using slicing such that,
starting with the partitioning of the output arrays, it iter-
atively determines the partitions of other arrays as well as
iteration spaces of the loop nests in the application code.
The goal is to minimize inter-processor data communica-
tions. Based on this iteration space slicing based formula-
tion of the problem, we also propose a solution scheme. The
proposed data-computation scheme is evaluated using six
data-intensive benchmark programs. In our experimental
evaluation, we also compare this scheme against three al-
ternate data-computation distribution schemes. The results
obtained are very encouraging, indicating around 10% bet-
ter speedup, with 16 processors, over the next-best scheme
when averaged over all benchmark codes we tested.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers

General Terms
Performance

∗Currently with the Argonne National Laboratory, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-626-7/09/10 ...$10.00.

Keywords
Parallelizing Compilers, Iteration Space Slicing, Automatic
Code Parallelization, Code Analysis and Optimization

1. INTRODUCTION
Multi-core architectures, which combine two or more inde-

pendent cores on a single chip, are expected to dominate the
landscape of computer architecture in the near future. The
potential performance gains that can be achieved through
the use of multi-cores depend, to a large extent, on how
parallelism is exploited by the application being executed.

With the emergence of multi-core systems, it is becoming
increasingly important to parallelize sequential applications
in an efficient manner. In the context of distributed mem-
ory multi-cores, minimizing inter-processor communication
can lead to significant improvements in execution latencies.
While optimizing compiler literature includes many papers
that aim at reducing inter-processor data communication
through code-data restructurings, most of these previously-
proposed schemes work at a loop nest granularity and do
not consider an entire program in making computation-data
distribution decisions. Note that different data and com-
putation distributions (partitions) across parallel processors
can lead to entirely different inter-processor communication
requirements and selecting the best distribution is a chal-
lenging task. The fact that computation and data distribu-
tions cannot be performed independent of each other makes
this problem only harder.

In this work, we present a novel code parallelization scheme
based on iteration space slicing [25]. Our proposed scheme
targets distributed memory multi-core architectures, and
tries to parallelize the input code and distribute computa-
tions (loop iterations) as well as data (arrays) such that
the total amount of data communications between proces-
sors is minimized. To do this, it formulates the problem
of data-computation distribution across parallel processors
such that, starting with the partitioning of output arrays,
it iteratively determines the partitions of other arrays in
the application code. During this process, it also partitions
computations (loop iteration space) across processors.

Based on this iteration space slicing based formulation of
the problem, we also propose a solution scheme. The pro-
posed scheme is evaluated using six data-intensive bench-

87

mark programs. Our results show that the proposed scheme
is scalable and outperforms three alternate computation-
data distribution schemes for all the benchmark programs
and all processor counts tested. For example, with 16 cores,
our scheme achieves an average speedup of 11.1, which is
about 10% better than the next-best scheme.

The rest of this paper is organized as follows. We give
a description of the architectural template our scheme tar-
gets and explain the impact of data-computation partition-
ing on inter-processor communication requirements in Sec-
tion 2. The prior work relevant to this paper is discussed in
Section 3. Section 4 provides the basics of iteration space
slicing, and the technical details of our proposed scheme are
presented in Section 5. Our experimental setup and results
are discussed in Section 6 and the paper is concluded in
Section 7.

2. ARCHITECTURAL ABSTRACTION
The architecture we focus on in this study is a distributed

memory based multi-core system where each core has a sep-
arate address space. The communication between two cores
in this architecture is through explicit message passing (e.g.,
using a library such as MPI [22]). Clearly, minimizing inter-
processor communication in this architecture is critical for
good performance. Along this direction, prior research dis-
cussed numerous optimization schemes which can be broadly
divided into two categories (as will be discussed in the next
section). In the first category are the works that distribute
data and computation across processors such that the overall
communication requirements are minimized. In comparison,
the second category includes studies that try to minimize
the number of communication calls in the code by applying
schemes such as message vectorization, message aggregation,
and message coalescing.

To illustrate how much difference different
data-computation distributions can make in communication
requirements across parallel processors, consider the follow-
ing code fragment written in a C-like pseudo-language:

for(i1 = 1; i1 ≤ N ; i1 + +)
for(i2 = 2; i2 ≤ N − 1; i2 + +)

A[i1, i2] = (B[i1, i2 − 1] + B[i1, i2] + B[i1, i2 + 1])/3

This is a simple code that performs three-point stencil
computation, variants of which are used frequently in sig-
nal and image processing. Within the body of the loop,
each element of array A is updated using three elements
of array B. Let us now consider two alternate data parti-
tioning schemes for the arrays involved in this computation,
assuming a 4 processor multi-core machine for simplicity.
The first one, depicted in Figure 1(a) partitions both the
arrays into column-blocks across processors. We see that,
in this case, the data elements (from array B) across block-
boundaries (one such set of elements are highlighted) should
be communicated across neighboring processors. In the sec-
ond partitioning scheme, in comparison, the data distribu-
tion is row-block wise for both arrays, as illustrated in Fig-
ure 1(b). In this case, all data accesses are localized, i.e., no
inter-processor communication is needed. While one may
say that row-block partitioning is an easy choice in this par-
ticular scenario, the problem becomes non-trivial in realistic
embedded signal and image processing applications where
we have tens of loop nests, each processing a subset of tens

�� � ��
A

� � � ��
B

�� ��

�� � � �
A

�� � ��
B

�� ��
�� 	
�
 	

Figure 1: Two different data partitioning schemes:
(a) partitions both the arrays into column-blocks
across processors, and (b) partitions the arrays in
row-blocks across processors.

of multi-dimensional arrays of signals declared in the pro-
gram.

Most of the prior data-computation distribution techniques
targeting distributed memory architectures either operate
on a loop nest granularity, i.e., they handle one loop nest
at a time, or process multiple (separate) loop nest by car-
rying data/computation distribution decisions across them
using several heuristics. In our opinion, to minimize inter-
processor communication, a parallelization scheme should
consider an entire application code. Our goal in this work
is to present and evaluate a global (program wide) data-
computation distribution scheme that minimizes
inter-processor communication. We formulate our problem
using iteration space slicing theory, discuss a solution strat-
egy, and evaluate it experimentally using several
data-intensive, array-based application programs.

3. RELEVANT PRIOR WORK
Program slicing was introduced by Weiser in his seminal

paper [31]. A program slice consists of the parts of a pro-
gram that may affect the values computed at some point
of interest. Tip surveys various program slicing techniques
and presents a classification of various static and dynamic
program slicing techniques for features such as procedures,
arbitrary control flow, and interprocess communication [29].
Horwitz et al present a technique to generate a slice of an en-
tire program with the slice crossing the boundaries of proce-
dure calls, also called interprocedural slicing [17]. Reps and
Yang describe the semantics of program slicing, which is the
relationship between the execution behavior of a program
and the execution behavior of its slices [26].

Agrawal and Horgan present the concept of dynamic de-
pendence graph and use it to compute dynamic slices [1].
Harrold and Ci adapt a control-flow based interprocedural
slicing algorithm which also reuses slicing information for

88

better efficiency [15]. Liang and Harrold extend this reuse-
driven interprocedural technique to an efficient and precise
interprocedural algorithm for recursive programs and pro-
grams with pointers [21]. Zhang and Gupta present a dy-
namic dependence graph based program slicing technique
which is both cost effective and efficient [32]. Gallagher
and Lyle apply the program slicing technique to the soft-
ware maintenance problem by extending the program slice
to a decomposition slice, which captures all computation
on a given variable [11]. Komondoor and Horwitz identify
the problem of duplicated code and further present a slicing
based technique to identify clones and show them to the user
[20]. Iteration space slicing, on which we base our work, is
introduced by Rosser and Pugh [25]. We will discuss itera-
tion space slicing in more depth later in the paper.

Another area of related work we wish to discuss here re-
gards the compiler support for distributed memory based
parallel architectures. The compiler framework discussed
in [4] generates a parallel program from a given serial pro-
gram for efficient execution on a distributed memory ma-
chine. Amarasinghe and Lam present techniques to partition
the computation across different processors in a machine.
They further present algorithms to generate SPMD (single
program multiple data) program to be run on each proces-
sor [2]. Anderson describes elegant computation and data
distribution schemes in her Ph.D. thesis [3]. Chakrabarti
et al present a compiler algorithm for global analysis and
communication optimization in data parallel programs [7].
They consider all the communication in a procedure body
at once instead of considering the loop nests and array ref-
erences distinctly. Chatterjee et al present ways to generate
local addresses and communication sets in distributed mem-
ory implementations of data-parallel languages such as High
Performance Fortran (HPF) [8]. Gong et al reduce commu-
nication overhead and execution delays through optimiza-
tions such as avoiding sequentialization caused by commu-
nication, and by overlapping communication and computa-
tion [12]. Gupta and Banarjee discuss several methods that
identify the constraints on data partitioning and present var-
ious automatic data partitioning techniques for distributed
memory architectures [13]. Kennedy et al show that com-
bining data dependence analysis and data-flow analysis can
yield promising results [18]. Hall et al present a set of al-
gorithms to perform interprocedural analysis, optimization,
and code generation for Fortran D, where compilation in-
volves only one pass over the procedures [14]. Kennedy and
Sethi show the importance of taking the resource constraints
into account when deciding about communication placement
to ensure correctness [19]. Basumallik et al present a tech-
nique to extend the shared memory parallel programming in
OpenMP to distributed memory systems thereby exploiting
communication pattern reuse [5].

Different schemes have been proposed for automatic code
parallelization within different domains. In the context of
high-end computing, the relevant studies include [33, 14,
34]. Bondalapati propose techniques for parallelizing nested
loops that appear in the digital signal processing domain [35].
To parallelize such loops, they exploit the distributed mem-
ory available in the reconfigurable architecture by imple-
menting a data context switching technique. Goumas et
al. [36] propose a framework to automatically generate par-
allel code for tiled nested loops. They have implemented sev-
eral loop transformations within the proposed approach us-

ing MPI [22], the message-passing parallel interface. A mod-
ulo scheduling algorithm to exploit loop-level parallelism
for coarse-grained reconfigurable architectures has been pro-
posed by Mei et al. [37]. Hogstedt et al. [39] investigate the
parallel execution time of tiled loop nests. They use a pre-
diction formula for the execution time of tiled loop nests
to aid the compiler. Using this prediction, compiler is able
to automatically determine the tiling parameters that mini-
mizes the execution time. Navarro et al. [38] target minimiz-
ing communication and load imbalance in parallel programs.
Our work is different from most of these efforts as well as
prior HPF-related studies since we can handle an entire pro-
gram code that contains a series of nested loops.

Finally, our work is also related to the efforts that employ
polyhedral arithmetic and integer linear programming for
code analysis and optimization purposes. Pouchet et al [24]
consider iterative optimization in the context of a polyhe-
dral model. They focus on the class of loop transformation,
which can be expressed as one-dimensional affine schedules,
and define a systematic exploration method to enumerate
the space of all legal, distinct transformations in this class.
Feautrier et al [10] describe a method for solving systems of
affine inequalities, which can be used for different optimiza-
tion purposes. Verdoolaege et al [30] study enumeration of
integer projections of parametric polytope.

Our work is different from these studies as we use program
slicing in a systematic fashion to derive data and compu-
tation partitions for minimizing inter-processor communica-
tions. In our experiments, we also compare our strategy with
three alternate data-computation distribution techniques.

4. BASICS
Slicing, proposed originally by [31], is a program analysis

technique that computes a slice of a program based on some
slicing criterion. A program slice consists of the parts of a
program that may affect or maybe affected by the values
computed at some point of interest in the code. Important
applications of slicing include debugging, code maintenance,
program analysis and program optimization, as discussed in
Section 3. Pugh and Rosser [25] proposed a strategy that
extends conventional slicing to array-intensive applications
and referred to this version as the iteration space slicing.
Using iteration space slicing, one can answer questions such
as ”Which iterations of which statements might affect the
values of a given set of elements from array A?” In this sec-
tion, we summarize how iteration space slicing can be used
for array-based applications constructed from nested loops
and data arrays.

for(i1 = 1; i1 < N ; i1 + +)
for(i2 = 1; i2 < N ; i2 + +)
· · ·A[i1 + 1, i2 + 1] · · ·

Figure 2: An example code fragment.

We start by discussing the mappings between loop iter-
ations and array elements. Consider the code fragment in
Figure 2. We use affine sets to represent the set of loop
iterations and array elements. For example, the iteration
space of the loop nest in this fragment can be expressed as
Y1 = {(i1 i2)

T | (1 ≤ i1 ≤ N − 1) && (1 ≤ i2 ≤ N − 1)}.
Similarly, the set of array elements accessed by the reference

89

(1 1)T ≤ ~I ≤ (N − 1 N − 1)T

· · ·A[h1(~I)] · · ·

Figure 3: Compact form (representation) of the
fragment in Figure 2.

shown can be expressed as X1 = {(d1 d2)
T | ∃(i1 i2) ∈

Y1 (d1 = i1 + 1 && d2 = i2 + 1)}. We use mappings from
iteration space to data space to represent array references.
For instance, for the reference shown in this code fragment,
we can define a mapping (h1) as follows:

h1 : Y1 −→ X1

h1 = {(i1 i2)
T −→ (d1 d2)

T |
(i1 i2)

T ∈ Y1 && (d1 d2)
T ∈ X1}.

As a result, we can write X1 = h1(Y1) and Y1 = h−1
1 (X1)

for convenience.1 We can also re-write the code fragment
in Figure 2 as shown in Figure 3. In this compact form, ~I,
which is the same as (i1 i2)

T , is referred to as the itera-
tion vector, a vector of loop iterators which takes its values
from the iterations space of the loop nest to which it be-
longs. Note that the first expression (the upper one) in the
compact form indicates the bounds of the iteration vector,
and the second expression is the same as the original loop
body, except that it is written using our mapping h1. We
would like to say that all the (data/iteration) sets we use
in our problem formulation and solution strategy (like X1

and Y1) are Presburger sets (i.e., sets that are constructed
from expressions formed using Presburger arithmetic) and
can therefore be manipulated using polyhedral tools such as
the Omega Library from University of Maryland [23].

Consider now the sample code fragment (compact form)
depicted in Figure 4. In this fragment, array A is updated
in the first loop nest and is used to update array B in the
second loop nest. Let us focus on a set of elements of array
B assigned to a processor (e.g., as a result of data distribu-
tion of arrays across processors) and denote this set using
X. Now, based on our discussion above, the set of itera-
tions that access (assign value to) these data elements can
be represented using h−1(X). Going further, the set of data
elements accessed, by the right-hand-side reference (to array
A) can be expressed using g ◦h−1(X). In this paper, we use
the operator “◦” as a means of composing an iteration set
from a data set, or vice versa. Continuing with the first loop
nest now (i.e., going from the second loop nest to the first
one), the set of iterations that access (assign values) the data
elements in g ◦ h−1(X) can be written as f−1 ◦ g ◦ h−1(X).
This discussion clearly shows that, by starting with a subset
of data elements from array B assigned in the second loop
nest and using (backward) iteration space slicing, we are
able to determine the set of iterations in the first loop nest
that assign values to the data elements of array A, which af-
fect these elements of B (accessed in the second loop nest).
In short, we determined the set of loop iterations in the
first nest that affect the values of the elements of array B

1Note that, clearly, some mappings do not have inverse in
mathematical sense. However, using a polyhedral tool, we
can compute the elements in h−1

1 (X1).

in the second nest. In the rest of this paper, we demon-
strate how this concept of (backward) iteration space slicing
can be used for minimum-communication computation-data
partitioning in distributed memory machines.

· · · ≤ ~I ≤ · · ·
A[f(~I)] = · · ·

· · · ≤ ~I ≤ · · ·
B[h(~I)] = A[g(~I)]

Figure 4: An example code fragment in compact
form.

LN(1): · · · ≤ ~I ≤ · · ·
A1[f1,1(~I)] = A0[f0,1(~I)]

LN(2): · · · ≤ ~I ≤ · · ·
A2[f2,2(~I)] = A1[f1,2(~I)]

LN(s− 1): · · · ≤ · · ·
LN(s): · · · ≤ ~I ≤ · · ·

As[fs,s(~I)] = As[fs−1,s(~I)]
LN(s + 1): · · · ≤ · · ·
LN(n− 1): · · · ≤ ~I ≤ · · ·

An−1[fn−1,n−1(~I)] = An−2[fn−2,n−1(~I)]

LN(n): · · · ≤ ~I ≤ · · ·
An[fn,n(~I)] = An−1[fn−1,n(~I)]

Figure 5: A generic code template in its compact
form. LN(s) indicates the sth loop nest—the loop
nest in which array As is updated, and An is the
output array.

5. PROBLEM FORMULATION AND
PROPOSED SOLUTION

5.1 Determining Data and Computation
Partitions

Our goal is to derive data and computation partitions
across the processors of a distributed memory multi-core ar-
chitecture to minimize inter-processor communication. For
each loop nest, we want to determine a computation (loop
iteration) distribution across processors and, for each array,
we want to determine a distribution of its elements across
(the local memories of) the processors. We consider the
generic application program in Figure 5, written in its com-
pact form. In this program, n + 1 different data arrays
(A0 through An) are accessed using n (independent) loop
nests. There are two main reasons why we focus on this
generic code form. First, it represents the program struc-
ture of many array-intensive, loop-based application codes.
In these codes, each loop nest computes new values for a set
of array elements and the computation ends when the val-
ues of the elements of the output array (in this case, An) are
computed. The second reason is that it is simple enough to
help us illustrate and explain how our iteration space slicing
based approach operates. We discuss later how we handle
the cases where the input code deviates from this generic
format.

90

We assume that Xp,n is the set of data elements from
array An (the output array) assigned to processor p where
1 ≤ p ≤ P , that is, we start with the partitioning of the out-
put array An across the parallel processors (how this par-
titioning is determined will be discussed later) and this is
the starting point of our backward data-computation parti-
tioning scheme. Using this data partitioning, the set of loop
iterations assigned to any processor p in loop nests 1 through
n can be expressed as follows using our “◦” operator:

Yp,n = f−1
n,n(Xp,n)

Yp,n−1 = f−1
n−1,n−1 ◦ fn−1,n ◦ f−1

n,n(Xp,n)

Yp,n−2 = f−1
n−2,n−2 ◦ fn−2,n−1 ◦ f−1

n−1,n−1

◦fn−1,n ◦ f−1
n,n(Xp,n)

· · · = · · ·
Yp,1 = f−1

1,1 ◦ f1,2 ◦ · · · ◦ fn−2,n−1 ◦ f−1
n−1,n−1

◦fn−1,n ◦ f−1
n,n(Xp,n)

In these expressions, Yp,s captures the set of iterations as-
signed to processor p from loop nest s. Notice that this pro-
cess operates in a backward fashion on the input program
code. More specifically, using the distribution of the ele-
ments of array An across processors, we first determine the
iteration partitioning for the nth loop nest (LN(n)). Then,
we move to loop nest (n−1) and determine the partitioning
of its iteration space across parallel processors, and so on.

For ease of discussion, let us define Qp,s as f−1
s,s ◦ fs,s+1 ◦

· · · ◦ f−1
n−1,n−1 ◦ fn−1,n ◦ f−1

n,n. As a result, we have Yp,s =
Qp,s(Xp,n). Note that Qp,s summarizes the function that
returns us the set of loop iterations to be assigned to pro-
cessor p from loop nest s, given as input Xp,n, the set of
data elements from array An assigned to processor p (the
partitioning of the output data array). In this way, for each
loop nest s and processor p, we can calculate Yp,s and this
gives us distribution of computation (loop iterations) across
available processors.

Similarly, we can determine the set of data elements ac-
cessed by different processors as follows (note that the cal-
culations for array distribution and those for computation
distribution share a lot of computations between them, and
so, efficient implementations are possible):

Zp,n = Xp,n

Zp,n−1 = fn−1,n ◦ f−1
n,n(Xp,n)

Zp,n−2 = fn−2,n−1 ◦ f−1
n−1n−1

◦fn−1,n ◦ f−1
n,n(Xp,n)

· · · = · · ·
Zp,1 = f1,2 ◦ · · · ◦ fn−2,n−1 ◦ f−1

n−1,n−1

◦fn−1,n ◦ f−1
n,n(Xp,n)

Zp,r is the set of data elements accessed by processor p
from array Ar. As before, defining Rp,r as fr,r+1 ◦f−1

r+1,r+1 ◦
· · ·◦f−1

n−1,n−1◦fn−1,n◦f−1
n,n, we have Zp,r = Rp,r(Xp,n). Note

that Rp,r is a function that gives the set of data elements
from array Ar assigned to processor p, given the partitioning
of the output array An across parallel processors (i.e., given
the Xp,n sets).

Algorithm 1 Integrated data-computation distribution al-
gorithm based on slicing.

1: partition(J , Xp,n, ∀p)
2: for (k := n; k ≥ 1; k −−) do
3: for (p := 1; p ≤ P ; p + +) do
4: Qp,k := f−1

k,k ◦ fk,k+1 ◦ · · · ◦ f−1
n−1n−1 ◦ fn−1,n ◦ f−1

n,n

5: Yp,k := Qp,k(Xp,n)
6: Rp,k := fk,k+1 ◦ f−1

k+1,k+1 ◦ · · · ◦ fn−1,n ◦ f−1
n,n

7: Zp,k := Rp,k(Xp,n)
8: end for
9: end for

10: return {Yp,k and Zp,k, ∀p, ∀k}

Algorithm I summarizes our slicing based computation
and data partitioning scheme explained above (J , the first
input parameter, represents the input program to be parti-
tioned). At each step, this algorithm determines Yp,k and
Zp,k for all p. We want to emphasize that, at this point,
nothing can be said about optimality of these iteration space
and data space partitionings. It is clear that the quality of
the resulting iteration/data space partitioning depends on
the partitioning of An across processors and, consequently,
different partitionings of this array can lead to different iter-
ation space and data space partitionings (and consequently
different inter-processor communication requirements). In
the next subsection, we discuss how we determine a good
partitioning for An that minimizes the amount of inter-
processor communication (when all loop nests and all arrays
in the code are considered).

5.2 Minimizing Inter-processor Communica-
tion

Let us now consider a partitioning of elements of array
An across P processors: X1,n, X2,n, · · · , XP,n. We define
sharing factor induced by this partition as:

SF (X1,n, X2,n, · · · , XP,n) =∑
1≤p≤P

∑
1≤q≤P,p6=q

∑
1≤r≤n |Zp,r ∩ Zq,r|,

where “∩” denotes set intersection, and Zp,r is as defined in
the previous subsection. Sharing factor captures the sum of
the differences between the common data elements accessed
by pairs of processors. We search for a partitioning that
minimizes the sharing fact. In the ideal case, we do not want
the processors to share any data and this would lead to no
communication. Clearly, in this case, each loop nest can be
executed in parallel without requiring any communication.
However, in practice, it may not be possible to obtain a
communication-free partitioning; instead, we try to obtain a
partitioning that minimizes communication. Note also that
we can also have a weighted version of the sharing factor
defined above:

SF (X1,n, X2,n, .., XP,n) =∑
1≤p≤P

∑
1≤q≤P

∑
1≤r≤n αp,q,r|Zp,r − Zq,r|,

αp,q,r is a weight capturing the importance of reducing data
sharing between processors p and q regarding loop nest r.

91

Before defining our problem formally, let us make another
definition: partitioning factor. A partitioning factor indi-
cates how a dimension of a multi-dimensional array is di-
vided across processors. For example, the partitioning of
array A shown in Figure 1(b) can be expressed using the
partitioning factors (4,1), indicating that the first dimen-
sion of the array is divided across 4 processors and the sec-
ond dimension is not distributed (i.e., it is sequential). In
a similar fashion, the distribution of the same array in Fig-
ure 1(a) can be expressed as using partitioning factors (1,4).
For an a-dimensional array, if (b1b2 · · · ba) are the partition-
ing factors, we have b1b2 · · · ba = P , where P is the total
number of cores in the multi-core architecture.

Recall that, in the iteration space slicing based approach
described in the previous subsection, all computation and
data partitionings depend on (are determined by) the par-
titioning of the output array An. Therefore, to reach the
minimum communication partitions, we need to determine
a suitable partitioning of array An that leads to it. Based on
this discussion, we can formulate the problem of determin-
ing the optimal partitioning of an output array An across P
processors as follows:

Let An has a dimensions. Find partitioning fac-
tors (b1, b2, · · · , ba) (b1b2 · · · ba = P) such that,
for any other partitioning factor (c1, c2, · · · , ca)
(c1c2 · · · ca = P), we have

SF (Xb1,n, Xb2,n, · · · , XbP,n) ≤
SF (Xc1,n, Xc2,n, · · · , XcP,n),

where Xbp,n and Xcp,n are allocations for proces-
sor p (1 ≤ p ≤ P) from array An under partition-
ing factors (b1, b2, · · · , ba) and (c1, c2, · · · , ca), re-
spectively.

Informally, we want to determine the partitioning factor
that minimizes inter-processor data sharing. Our approach
to this problem is to build Presburger sets for sharing factor
(SF) in terms of unknowns (bis) and determine the values
of these unknowns such that the overall value of the sharing
factor is minimized. For example, assuming all bis are un-
knowns, we can express SF in terms of these unknowns and
then try to determine the best values for these unknowns to
minimize SF . Unfortunately, this is easier said than done, as
Presburger sets can contain existential and universal quan-
tifiers and complex expressions. Instead, we take a rather
indirect approach to this problem which exploits the code
generation utility provided by the Omega Library and other
similar polyhedral toolsets. The Omega Library has a func-
tion called code-gen(.) which takes as input an arbitrarily
complex Presburger set and generates as output a code (a
series of potentially nested loops) that enumerates the ele-
ments in that Presburger set. We first generate this code
and then add an outer loop to this code which goes over
the potential values on unknowns (bis). We then execute
this code (at compile time), and for each potential values of
unknowns, print out the number of times the loops iterate
(this can be determined by increasing a counter variable in-
side the generated loops). The values of the unknowns that
give the minimum number (counter value) are the values

Algorithm 2 Algorithm to determine data-computation
partitions with minimum communication.

1: min-comm(J)
2: let (b1, b2, · · · , ba) be the partitioning factors (a vector

of unknowns)
3: compute Xb1,n, Xb2,n, · · · , XbP,n

4: call partition(J , Xbp,n, ∀p)
5: compute SF (Xb1,n, Xb2,n, · · · , XbP,n) using Zp,k sets
6: T := call code-gen (SF (Xb1,n, Xb2,n, · · · , XbP,n))
7: W:= put an outer loop (iterating over potential values

of (b1, b2, · · · , ba) enclosing T
8: execute W for each (b1, b2, · · · , ba) with b1b2 · · · ba = P
9: return (b1, b2, · · · , ba) that minimizes number of times

the loops in W iterate

that also minimize the amount of inter-processor communi-
cation. Algorithm II gives the pseudo-code for our algorithm
that employs this strategy.

5.3 Discussion
In this section, we first discuss what happens if a loop in

our target application is not parallelizable. After that, we
elaborate on what happens if the target application deviates
from the template shown in Figure 5.

Recall that our main target code is of the type shown
in Figure 5. We assume that the code parallelization deci-
sions have already been made before our approach is invoked
and the slicing-based computation distribution we propose
is mainly for parallel loops (i.e., loops whose iterations can
be executed in parallel). If a loop is to be executed sequen-
tially (due to dependences), our approach can process that
loop by simply assuming that all iterations will be executed
on a single processor (and this actually happened in two of
our benchmarks, presented later in Section 6). As a result,
our approach will be still applicable (but be less effective)
when majority of the loops cannot be executed in parallel.

We now discuss what happens if the input program we
want to optimize does not exactly fit in the generic code tem-
plate shown in Figure 5. Specifically, we elaborate on several
sample scenarios and briefly explain how our approach han-
dles these scenarios. Let us first consider the scenario where
an array has more than one reference on the right hand side.
As an example, consider the following statement in a loop
nest:

Ar[fr,r(~I)] = Ar−1[fr−1,r(~I)] + Ar−1[gr−1,r(~I)],

where array Ar−1 is referenced twice on the right hand
side. In this case, we can compute Zp,r−1 as

Zp,r−1 = fr−1,r ◦ · · · ◦ f−1
n−1,n−1 ◦ fn−1,n ◦ f−1

n,n(Xp,n)

∪ gr−1,r ◦ · · · ◦ f−1
n−1,n−1 ◦ fn−1,n ◦ f−1

n,n.

That is, in determining the set of elements assigned to
processor p from array Ar−1, we take into account both the
references it has. The other cases can be handled similarly.
For example, if there are references to different arrays on
the right hand side, to determine Zp,r, we need to consider
all the references to array Ar that occur in all different right

92

Parameter Value
Processor 1GHz

Issue width 4 per cycle
On-chip memory 512KB/processor, 8 cycles access

latency
Off-chip memory latency 220 cycles

On-chip network Dual-bus, 3 cycles average bus
contention

Table 1: Our simulation parameters and their de-
fault values.

Benchmark Brief Description Data
Size (MB)

ADPCM Adaptive diff. pulse code 8.21
modulation (MediaBench)

CELP Linear prediction based 6.73
speech coder

FACEREC Face recognition algorithm 4.78
(SpecOMP)

ART Image recognition using 6.92
neural networks (SpecOMP)

LU LU solver (NAS) 3.54
SP Pentadiagonal solver (NAS) 5.44

Table 2: Benchmark codes used in our evaluation.

hand sides. Finally, it is possible that we may have more
than one output array (like An). This case is also easy to
handle as we can consider each output array in isolation. Al-
though we do not discuss here in detail, we can use similar
strategies to compute the Yp,s sets under these situations.
We want to mention that our current implementation han-
dles any program code shape, including those that exhibit
the scenarios discussed above.

6. EXPERIMENTAL EVALUATION
Our goal in this section is to present an experimental eval-

uation of the proposed approach. In particular, we are in-
terested in answering two important questions. First, how
scalable is this approach? And second, how does it compare
against existing data-computation partitioning strategies?
Table 1 gives the default values of our simulation parame-
ters, and Table 2 lists the benchmark codes used in our eval-
uation. The last column of this table gives the total data
size processed by each benchmark program. We used SUIF
[28] from Stanford University to implement our scheme and
the other schemes against which we compare our approach.
In SUIF, independently developed compilation passes work
together by using a common intermediate format to repre-
sent programs. We implemented our code-data partitioning
step as an independent pass within SUIF. To do this, we con-
nected the Omega Library to SUIF, i.e., the library worked
as a sub-module of the SUIF infrastructure. All our simu-
lations have been performed using the SIMICS tool-set [27],
which is a full-system simulator used to run unchanged pro-
duction binaries of the target hardware at high-performance
speeds. For conducting our experiments, we first enhanced
SIMICS with accurate timing models. Then, using this en-
hanced version, we modeled a distributed-memory multi-
core system and executed the programs compiled for the
SPARC-V9 ISA. For codes that are not in the MPI form
originally (e.g., CELP), we hand-coded their MPI versions.
We noted that the additional increase in compilation time
due to our approach was at most 74% (occurred in compiling
the FACEREC program).

�� �
��� �� �� �

� � � � � � � � 	 � � � � � � � � � � � � � �
� �
 �� � �� � �� � �
� ����� � ��
 ���� �
� � �� � � �� � �!"
 # �$ �

Figure 6: Scalability of our scheme (speedup over
sequential codes) when the number of processors is
modulated between 1 and 16.

�� ���
� �� �� �

� � � � � � � � 	 � � � � � � � � � � � � � �
� �
 �� � �� � �� � �
������� �� � � �� � � � � � �� � � �

Figure 7: Speedup values with different dataset
sizes.

The first set of results we collected are presented in Fig-
ure 6 and shows the scalability of our scheme (speedup over
sequential codes) when the number of processors is modu-
lated between 1 and 16. The curve marked as ”mean” repre-
sents the mean value across all applications. Our observation
is that the proposed strategy scales quite well. For example,
with 8 and 16 processors, we achieve average speedup values
of 7.4 and 11.1, respectively. Maybe more importantly, as il-
lustrated in Figure 7, the speedup values we obtain increase
as the dataset sizes are increased. In this plot, each curve
represents the mean value when considering all six bench-
marks we have. The curve marked using ”Default”represents
the default dataset sizes used in our applications (given in
the last column of Table 2), and ”Small” and ”Large” repre-
sent, respectively, the dataset sizes that are roughly half and
roughly twice of the default size. These results are encour-
aging considering the trend that dataset sizes of parallel ap-
plications increase much faster than the increase in on-chip
memory capacities.

In addition to these experiments, we also compared our
approach to three state-of-the-art data and computation dis-
tribution strategies. We can summarize these three alternate
schemes as follows (note that we do not have direct compar-
ison against [25] as it uses iteration space slicing for the
purposes of different optimizations—optimizing fused loops,
tolerating message latency, and enhancing message aggrega-
tion):

93

�� ��
�� �� �

� � � � � � � � 	 � � � � � � � � � � � � � �
� �
 �� � �� � �� � �
������� � ��
 � �� � � ��
 � � �! "�
 � � �! " "�
 � � �! " " "

Figure 8: Speedup values for Scheme-I, Scheme-II,
and Scheme-III.

• Scheme-I: This is a data locality-aware parallelization
strategy, where each loop nest is first restructured to maxi-
mize data reuse in innermost loop positions. This, as a side
effect, also helps remove data dependences from outer loop
positions. The outermost loop that does not carry any data
dependence is then parallelized. After these parallelizations
(computation distributions) have been performed, the most
frequently demanded data distribution for each array (when
considering all loop nests in the program) is selected as its
data distribution across processors.
• Scheme-II: This is similar to the scheme discussed in

[3]. This scheme processes loop nests one-by-one and car-
ries parallelization and data distribution decisions made in
currently-processed nest to the next ones. It is essentially
a global approach (like ours) to code parallelization for dis-
tributed memory message-passing architectures.
• Scheme-III: This is a data distribution oriented code par-

allelization scheme. In this scheme, which is semi-automatic,
first, the elements of data arrays declared in the code are
distributed across the local memories of the involved pro-
cessors. This distribution is carried out by hand using a
programmer’s expert knowledge (in our implementation we
carried out a profile-driven distribution of data to have a fair
comparison against our scheme). Based on this data distri-
bution, then the loop nests are parallelized one-by-one and
for each loop its iterations are distributed across processors.
In a sense, this strategy is similar to the used in HPF and
other data parallel computing paradigms [16].

Figure 8 plots the speedup curves for these three schemes
(the results with our proposed scheme are reproduced for
ease of comparison). Each curve represents the mean value
across all our benchmarks. We can summarize our obser-
vations as follows. First, our iteration space slicing based
approach generates better results than all three alternate
schemes tested in all processor counts. Second, Scheme-I
does not generate good results, as it is more suitable for
shared memory machines in which management of shared
cache space is of primary importance, rather than minimiz-
ing inter-processor data sharing. Third, up to 12 processors,
Scheme-III generates results better than other two alternate
schemes, indicating the potential of careful data distribu-
tion by hand. Fourth, with larger number of cores, Scheme-
II generates results that are closer to our scheme (among
all schemes). That is, it is important to consider the data
access patterns of all the loop nests in parallelizing appli-

cation programs. The main difference between our scheme
and that in [3] is that our approach explores a much larger
search space than the one in [3]. In fact, in our experiments,
the loops formed using the code-gen(.) utility of the Omega
Library tested all partitioning factors (b1, b2, · · · , ba), where
b1b2 · · · ba = P , P being the number of processors used,
and we selected the vector that minimizes the total inter-
processor communication volume. In comparison, the scheme
in [3] processes the loop nests one by one and for each loop
nest makes some decisions before moving to the next one.
During this process, the accumulated conditions restrict the
search space for the loop nests yet to be processed. The
performance difference between our scheme and [3] shown in
Figure 8 is primarily due to this difference in search space
sizes.

7. CONCLUDING REMARKS
The main contribution of this paper is a new data and

computation distribution scheme for array-intensive appli-
cation programs. The goal of this scheme is to minimize
the amount of inter-processor communication across proces-
sors in a distributed-memory multi-core architecture. This
is achieved using iteration space slicing which, starting with
output arrays and processing loop nests in a reverse or-
der, determines optimal partitionings for the manipulated
arrays across involved processors. We used a mix of six data-
intensive applications to test the success of this scheme and
compared it, in our experiments, to three alternate data-
computation distribution strategies. Our results show that
the proposed scheme has good scalability and outperforms
the alternate schemes tested for all benchmark programs
and all processor counts. For example, with 16 cores, our
scheme achieves an average speedup of 11.1, this result is
about 10%, 12% and 17% better than the speedups obtained
using the three alternate strategies on the same number of
processors. Our ongoing work includes integrating this data-
computation partitioning strategy with existing parallelism-
related compiler optimizations and collecting results with
control-dominated applications.

8. ACKNOWLEDGMENTS
This work is supported in part by NSF grants 0702519,

0720645, 0720749, 0811687, and 0821527.

9. REFERENCES
[1] H. Agrawal and J. R. Horgan. Dynamic program

slicing. In Proceedings of the ACM Conference on
Programming Language Design and Implementation,
1990.

[2] S. P. Amarasinghe and M. S. Lam. Communication
optimization and code generation for distributed
memory machines. In ACM SIGPLAN Notices, 1993.

[3] J. M. Anderson. Automatic computation and data
decomposition for multiprocessors. Ph.D Thesis,
Stanford University, March 1997.

[4] P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm,
A. Lain, D. J. Palermo, S. Ramaswamy, and E. Su.
The paradigm compiler for distributed-memory
multicomputers. In IEEE Computer, 1995.

[5] A. Basumallik, S.-J. Min, and R. Eigenmann.
Programming distributed systems using Openmp. In
Proceedings of HIPS, 2007.

94

[6] R. Brightwell, R. Riesen, K. D. Underwood. Analyzing
the impact of overlap, offload, and independent
progress for message passing interface applications. In
International Journal of High Performance Computing
Applications, May 2005.

[7] S. Chakrabarti, M. Gupta, and J. deok Choi. Global
communication analysis and optimization. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation, 1996.

[8] S. Chatterjee, J. R. Gilbert, F. J. E. Long,
R. Schreiber, S. Hua Teng, D. John, and R. Gilbert.
Generating local addresses and communication sets for
data-parallel programs. In Journal of Parallel and
Distributed Computing, 1995.

[9] A. Danalis , K.-Y. Kim , L. Pollock , M. Swany.
Transformations to parallel codes for
communication-computation overlap. In Proceedings of
the ACM/IEEE Conference on Supercomputing, 2005.

[10] P. Feautrier, J.F. Collard, C. Bastoul. Solving systems
of affine (in)equalities. Technical Report,
PRiSM,Versailles University, France, 2002.

[11] K. B. Gallagher and J. R. Lyle. Using program slicing
in software maintenance. In IEEE Transactions on
Software Engineering, 17:751–761, 1991.

[12] C. Gong, R. Gupta, and R. Melhem. Compilation
techniques for optimizing communication on
distributed-memory systems. In In Proc. International
Conference on Parallel Processing, Volume II, 1993.

[13] M. Gupta and P. Banerjee. Demonstration of
automatic data partitioning techniques for
parallelizing compilers on multicomputers. IEEE
Transactions on Parallel and Distributed Systems,
3:179–193, 1992.

[14] M. W. Hall, M. W. Hall, S. Hiranandani,
S. Hiranandani, K. Kennedy, K. Kennedy, C. wen
Tseng, and C. wen Tseng. Compiling Fortran D for
MIMD distributed-memory machines.
Communications of the ACM, 35:66–80, 1992.

[15] M. J. Harrold and N. Ci. Reuse-driven interprocedural
slicing. In In Proceedings of the 20th International
Conference on Software Engineering, 1998.

[16] High Performance Fortran.
http://www.netlib.org/hpf/

[17] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. In ACM
Transactions on Programming Languages and
Systems, 12:26–60, 1990.

[18] K. Kennedy and K. Kennedy. Combining dependence
and data-flow analyses to optimize communication. In
Proceedings of the 9th International Parallel
Processing Symposium, 1995.

[19] K. Kennedy and A. Sethi. Resource-based
communication placement analysis. In Proceedings of
the 9th Workshop on Language and Compilers for
Parallel Computing, 1996.

[20] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In Proceedings of
the 8th International Symposium on Static Analysis,
2001.

[21] D. Liang and M. J. Harrold. Reuse-driven
interprocedural slicing in the presence of pointers and

recursion. In Proceedings of International Conference
on Software Maintenance, 1999.

[22] MPI Standard. http://www-unix.mcs.anl.gov/mpi/

[23] The Omega Project.
http://www.cs.umd.edu/projects/omega/

[24] L.-N. Pouchet, C. Bastoul, A. Cohen, and N.
Vasilache. Iterative optimization in the polyhedral
model: Part I, one-dimensional time. In Proceedings of
CGO, pp. 144–156, 2007.

[25] E. Rosser and W. Pugh. Iteration space slicing and its
application to communication optimization. In
Proceedings of the International Conference on
Supercomputing,,1997.

[26] T. Reps and W. Yang. The semantics of program
slicing. Technical Report, University of Wisconsin,
1988.

[27] http://www.virtutech.com/

[28] http://suif.stanford.edu/

[29] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3:121–189, 1995.

[30] S. Verdoolaege, K. Beyls, M. Bruynooghe, and F.
Catthoor. Experiences with Enumeration of Integer
Projections of Parametric Polytopes. In Proceedings of
the Compiler Construction Symposium, pp. 91–105,
2005.

[31] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering,
1981.

[32] X. Zhang and R. Gupta. Cost effective program
slicing. In Proceedings of the Programming Languages
Design and Implementation, 2004.

[33] J. Anderson and M. Lam. Global optimizations for
parallelism and locality on scalable parallel machines.
In PLDI ’93: Proceedings of the ACM SIGPLAN 1993
conference on Programming language design and
implementation, pp.112–125, 1993.

[34] M. Wolf and M. Lam. A loop transformation theory
and an algorithm to maximize parallelism. IEEE
Trans. Parallel Distrib. Syst. 2, 4:452–471,1991.

[35] K. Bondalapati. Parallelizing DSP nested loops on
reconfigurable architectures using data context
switching. In Proc. of the 38th Design Automation
Conference, pp.273–276, 2001.

[36] G. Goumas, N. Drosinos, M. Athanasaki and N.
Koziris. Automatic parallel code generation for tiled
nested loops. In Proc. of the ACM Symposium on
Applied Computing, pp. 1412–1419, 2004.

[37] B. Mei, S. Vernalde, D. Verkest, H. Man and R.
Lauwereins. Exploiting loop-level parallelism on
coarse-grained reconfigurable architectures using
modulo scheduling. In Proc. of the Conference on
Design, Automation and Test in Europe, pp.
10296–10301, 2003.

[38] A. Navarro, E. Zapata and D. Padua. Compiler
techniques for the distribution of data and
computation. IEEE Transactions on Parallel
Distributed Systems 14, 6:545–562, 2003.

[39] K. Hogstedt, L. Carter and J. Ferrante. On the parallel
execution time of tiled loops. IEEE Transactions on
Parallel Distributed Systems 14, 3:307–321, 2003.

95

