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We introduce a local signal decomposition method for the analysis of three-dimensional (3D) diffraction fields
involving curved surfaces. We decompose a given field on a two-dimensional curved surface into a sum of prop-
erly shifted and modulated Gaussian-shaped elementary signals. Then we write the 3D diffraction field as a sum of
Gaussian beams, each of which corresponds to a modulated Gaussian window function on the curved surface. The
Gaussian beams are propagated according to a derived approximate expression that is based on the Rayleigh—
Sommerfeld diffraction model. We assume that the given curved surface is smooth enough that the Gaussian
window functions on it can be treated as written on planar patches. For the surfaces that satisfy this assumption,
the simulation results show that the proposed method produces quite accurate 3D field solutions. © 2012 Optical

Society of America
OCIS codes:

1. INTRODUCTION

Recording digital holograms on curved surfaces and recon-
struction from such curved holograms are attractive alterna-
tives to conventional planar geometries. Spherical geometries
are shown to be more useful compared to planar ones to re-
duce the resolution requirements of the sensor and display
devices [1,2]. In the work of Hahn et al. [3], a curved array
of spatial light modulators (SLMs) is used as a holographic
display device to increase the field of view compared to
the conventional planar array of SLMs. Similar possible advan-
tages of the curved display and sensor devices for holography
indicate the need for the theoretical analysis of diffraction be-
tween curved surfaces. In this paper the local Gaussian beam
decomposition method is proposed to calculate the diffraction
field from such curved surfaces.

The interest of graphics and optics communities to
computer-generated holography has been significant, such
that several methods are proposed to generate digital holo-
grams of three-dimensional (3D) objects [4,5]. For the simple
case of planar objects, the Rayleigh—Sommerfeld (RS) formu-
lation and its paraxial approximation (Fresnel model) can be
used to find the desired 3D field [6,7]. For the more general
case of 3D objects, having depth, the 3D object is commonly
modeled as a collection of self-illuminating point sources
[8-11]. The field due to a single point source is found by
the RS or Fresnel diffraction model. The 3D diffraction field
due to the object is then found by superposing the fields due to
the point light sources. In some applications, the object is as-
sumed to be formed by planar patches [12-14]. In this case,
the plane wave decomposition (PWD) method (angular spec-
trum) is applied to each patch to calculate the 3D diffraction
field. Note that the PWD method is the frequency domain
counterpart of the RS integral [15].

For the problem of finding the 3D field due to a field spe-
cified on a curved surface (or an object), the commonly used
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source model approaches [8-14] do not produce accurate
results, because they ignore the mutual couplings between
the field samples on the given curved surface. In other words,
if the 3D field is calculated by using such source model ap-
proaches, then the subsequently reconstructed field on the
same curved surface is found to be inconsistent with the ori-
ginal one. The mutual coupling problem is solved by using a
field model approach, based on PWD, in [16,17], resulting in
an exact method to calculate the diffraction field from a given
curved surface. However, for large sizes of curved surfaces,
this method becomes impractical because of an intolerable
increase in the computational complexity and the related
memory requirement.

Instead of global plane waves, we propose to use local
Gaussian beams to find the diffraction field from curved sur-
faces. For the case of a planar input surface, the decomposi-
tion of a two-dimensional (2D) signal as a sum of Gaussian
elementary signals was suggested by Gabor [18]. After that,
several studies, which aim to find Gabor’s expansion coeffi-
cients and expand an optical signal into a set of Gaussian
beams, related to this decomposition were introduced by
Bastiaans [19,20]. In those works the input surface is re-
stricted to be planar, and an explicit 3D Gaussian beam
decomposition expression is not given. In this paper, we study
the more general case of curved input surfaces. Furthermore,
for the propagation of 3D Gaussian beams, we develop an ap-
proximate explicit expression that is based on the RS diffrac-
tion model. Such an expression enables us to use an optically
valid model for the propagation of nonparaxial Gaussian
beams.

In Section 2, we give a brief explanation of the global PWD
and the method proposed in [16] related to PWD. Then
we introduce the local Gaussian beam decomposition
method in Section 3. We test our approach and present the
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simulation results in Section 4. Finally, we draw conclusions
in Section 5.

2. PLANE WAVE DECOMPOSITION

A possible way to calculate the 3D diffraction field due to a
field specified on a planar surface is to use the PWD. The PWD
is a global signal decomposition method where the basis func-
tions are the infinite extent plane waves [6]. That is, a mono-
chromatic 3D field that can be formed by propagating waves
can be written as a sum of infinite extent plane waves propa-
gating toward different directions:

(@, y.2) = // A ofy) eXDU2E(S o 1 F oy + £} 2df
B

)

where f% +f% +f2=1/2* and 1 is the wavelength of the
plane waves. (Please note that units of all spatial frequencies
are cycles per unit length.) Here we exclude the evanescent
waves and take into account only the propagating plane waves
whose frequency components along the x and y axes satisfy
S% +f35 < & Thus, the integration is over a circular frequency
band, which we call B, having a radius % In this paper, we as-
sume that a given 3D field u(x,y,2): R? - C is formed by a
superposition of propagating plane waves with f, > 0; in other
words, the component of the propagation direction along the z
axis is always positive [21]. The coefficient of each plane wave
is found by an integration over the spatial domain as

At = [ / @y, 0) exp{—i2a(f,x +f,y)}dady. (@)
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Note that these coefficients correspond to the Fourier trans-
form of the 2D input field u(x, v, 0) given on the z = 0 plane,
where the Fourier transform of a 2D function a(x, y), from the
(2,y) domain to (f,.f,) domain, is defined as

A(Fnf,) = / / (. y) explg2a(for + f,p)dady.  (3)
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The PWD is also used to calculate the 3D field due to a field
specified on a curved surface [16,17]. In the discrete case, the
decomposition is formulated as a matrix vector product

¥ = Qa. @

In this equation, each column of the matrix @ represents the
field samples that a particular plane wave produces at the dis-
crete points on a given curved surface and W is the array of the
given field samples at the same discrete points of the curved
surface. a is the array of coefficients of the plane waves to be
found. Once the coefficients of the plane waves are found, the
3D diffraction field is written as a sum of plane waves, each of
which is weighted by its corresponding coefficient. Note that,
as opposed to the planar input surface case, the columns of
the matrix @ are not orthogonal for nonplanar surfaces. As a
result, the computational complexity in calculating the coeffi-
cients increases significantly [16,17].
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3. LOCAL BEAM DECOMPOSITION

We start with developing formulations for the calculation of
the diffraction field due to a field specified on a planar input
surface. This will relieve us from dealing with the structure
of the surface. We will take into account the curvature of the
input surface in Subsection 3.B and extend the formulations
developed for planar input surfaces.

A. Decomposition for the Planar Input Surface Case
Instead of writing the 3D diffraction field as a sum of infinite
extent plane waves by using PWD, we want to write it as a sum
of local beams. We define a local beam in 3D space as the
beam that corresponds to a shifted and modulated version
of a local function on the given input surface. Hence, we start
with writing the field u(x, y, 0) specified on a planar surface at
2 = 0 in the form of a continuous short time Fourier decom-
position as [22]

u(a,y,0) = / / / / Qe S o o £y~ )

x exp{j2x(f,x +fyy)1dédndf,df,.  (B)

where g(x, ) is a unit energy local synthesis window function.
The corresponding analysis equation of Eq. (5) is given as

WENSof,) = // @y, 0)g" @ - £,y — )
< expl—g2n(for +f,y)dudy.  (6)

Equation 5 can be viewed as a decomposition of the input
signal u(x, y, 0) into a sum of modulated and shifted versions
of the synthesis window function g(x, ). The discrete version
of Eq. 5 is

w@,y,0) =Y "% "> Y Amuug@—mX,y -n¥)
l

m n k

x exp{j2n(kF v + IF y)}, ™

where X, Y are the shift steps in space and F',,, F',, are the shift
steps in frequency. In the discrete case, the corresponding
analysis window function is not same as the synthesis window
function. One can find an analysis window function w(x, y)
corresponding to the synthesis window function g(x, y) such
that the signal u(x,y,0) is obtained exactly with the coeffi-
cients @, [19,23]. Thus,

Gt = /f (., y, 0w (@ - mX.y - n¥)

x exp{—j2n(kFx + IFy) dxdy. ®

As a special case of the decomposition given by Eq. (7),
Gabor considers the Gaussian-shaped signal as the synthesis
window function [18]. Each modulated and shifted version of
a Gaussian-shaped elementary signal occupies the smallest
possible area in the space-frequency domain. This is a parti-
cularly desirable property for our aims in this paper. In [18],
the decomposition is restricted to the case of critical sampling
XF, =1, YF, =1) of the space-frequency domain. How-
ever, for the choice of Gaussian-shaped signal as the synthesis
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window function, it is shown in 24 that oversampling
(XF, <1, YF, <1) should be preferred, for a numerically
stable reconstruction.

The Gaussian signal decomposition on the input surface
corresponds to the Gaussian beam decomposition in the 3D
space. Let us define g;,(x - r.f,.f,) as the 3D field expression
of the Gaussian beam at the observation pointx = [z, y, 2] due
to the modulated Gaussian window function, at r = [£,#, 0]7
on the 2z = 0 plane, with the modulation frequencies f, and
Sy along the x and y axes, respectively. The 3D field at x
due to the field u(x,y,0) specified on 2 = 0 plane is then
written as an integration over Gaussian beams by using the
decomposition given by Eq. (5)

u(x) = / // WENS oS )00 - f o ) AENASAF . (9)

Now, let us find an explicit expression for g, (x — r.f.f,). We
know that the beams having higher propagation angles with
respect to the direction of the surface normal correspond
to the modulated Gaussian window functions with higher
modulation frequencies on the input plane. Hence, the range
of propagation directions of the beams with respect to the
direction of the surface normal depends on the frequency con-
tent of the signal being analyzed. Because of this, as the band-
width of the signal increases the propagating beams are no
longer paraxial. Although the accurate RS model can be suc-
cessfully used for such nonparaxial cases, it is difficult to ob-
tain an explicit expression for Gaussian beams under the RS
model (to our knowledge there is no explicit expression of the
Gaussian beam obtained under the RS model in the literature).
Therefore, we propose an approximate formula that is still
based on the RS model. For an input field u(x, y) = u(x,y,0)
given on the z = 0 plane, we find the diffraction field over a
planar surface, located at a distance z and parallel to the input
plane, as

x Y
us(.) = (@)U (i\/xz + P+ AV P+ zz)'
(10)

This expression produces quite accurate results even for non-
paraxial cases, as long as the observation distance z is suffi-
ciently large and the given input field u((x, ) has a sufficiently
narrow support around (x,y) = (0,0). In Eq. (10)
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is the 2D RS kernel; ‘76/(/1\/1‘2 +y2+z2) andy/(ﬂ\/xZ +y2+z2)
are the instantaneous frequencies of the RS kernel at (x,y)
along the x and y directions, respectively; and U(f.f,) is
the Fourier transform of the given input field wu,(x,y). By the
way, because we restrict the 3D field only to superposition of
propagating waves (i.e., evanescent components are zero),
Uo(furfy) =0 if (fy.f) €B, where B represents the circular
frequency band having a radius %, as before. The expression
given by Eq. (10) is applicable for a sufficiently large observation
distance z, because in this case the RS kernel can be success-
fully approximated locally as a single frequency complex expo-
nential. For example, the diffraction field at z = 0.1 mm due to
a Gaussian window function on 2 = 0 plane having a parameter
of 10® m (typical case in our experiments) is calculated by
the approximate expression with a normalized error in the order
of 10-2. However, for z > 0.1 m the normalized error is found to
be in the order of 10-8. Note that we define the normalized error,
in approximating a signal f(x, y) as f(x, ), as

- S @.9).f @) (12)
(f@,y).f @ 9){f@.y).f (@)

where (f;(x,y),fs(x,y)) is the inner product of f(x,y) and
fo(x,y). We will use the defined normalized error as the error
measure in the simulations.

In order to write the Gaussian beam decomposition by
using Eq. (10), we need the Fourier domain expressions of
the modulated and shifted Gaussian window functions.
The Fourier transform of a Gaussian window function
g(@,y) = c exp{(@® + y*)/0®} is given as [25], Fig(x,y)} =
co’n exp{-n2c*(f% + f2)}, where F denotes the Fourier trans-
form from the (x,y) domain to (f,.f,) domain as defined by
Eq. (3) and ¢ is a constant making g(xr,y) a unit energy
function. The Fourier transform of a shifted Gaussian win-
dow function is then written as Fi{gx-&y-n)} =
co?n exp{-n>6*(f2 +f2)} exp{~j2n(f,& + f,n)}. Finally, the
Fourier transform of a shifted and modulated Gaussian win-
dow function is obtained as

Fig(@ - &y — n) exp(j2nux) exp(j2nvy)} = co’n expl-7*c[(f, — w)* + (f, — )]} exp{—j2al(f, — W&+ (Fy —v)nly. (1)

Hence, g, (x - r.f.fy) is found by substituting Eq. (13) in Eq. (10) as

gh(x _r’faﬁfy) = hz(x_é:vy _77)

2
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The 3D field for a function uy(x,y) on z =0 plane is then found by substituting g, (x —r.f,.f,) given by Eq. (14) into

Eq. (9) as

u(x) = ///f UE NS o f e - &y~ 1)

x-£

y-n

2 _ g2 s2 —
XCGI[BXD{ Y/ |:(/1\/(x_§)2+(y_]1)2+z2

x-¢

—i9%7 _
Xexp{J [(A\/(x—é)2+(y—n)2+z2 !

At this point we should note that, as mentioned before, the
accuracy of the 3D Gaussian beam expressions used in
Eq. (15) is better for a narrower Gaussian window function.
Therefore, in order to calculate the 3D field with an accepta-
ble accuracy by using Eq. (15), a sufficiently narrow Gaussian
window function should be chosen.

The discrete version of Eq. (15) is obtained by sampling the
space-frequency domain, at £ = mX, n =nY, and f, = kF,
Sy =1F, as

uw =YY

m n

Zzamnklhz (.76' - va Y- TLY)
k1

x-mX

2
W@-8>+@-n?+2° _fy) ]}

2
fx) +(
Yy—-n
o)+ 1, \n | Laednar.dar,.
)'f (/1\/(%—5)2+(y—r7)2+z2 fj)"]} sndfadly

(15)

assumption of S enables us to represent a given field u(r),
on S, locally on the tangent planes of S. Therefore, in order
to decompose u(r) as a sum of modulated Gaussian window
functions on the tangent planes of S, we first define the
Gaussian window function at r on the tangent plane 7', as

X co’m exp{—;rzzr2 [(

X €X] {—'27[[( v - mX
P (@ -mX)? + (y —nY)? + 22

where the discrete analysis coefficients a,,,;; are found by
using Eq. (8).

B. Decomposition for the Curved Input Surface Case

The expression given by Eq. (15) calculates the 3D diffraction
field by an integration over the local Gaussian beams for a
given input field on a planar surface. Now, let us consider
a continuously differentiable curved surface S c R3. We
represent the points on S by the vector r € R>.

In order to define modulated Gaussian window functions
on S let us first define the local coordinate systems on the
curved surface. We define the local coordinate system x, =
(%, y,,2,) at r such that x, and y, axes are orthogonal to each
other and they are placed on the tangent plane 7', to S atr. The
2, axis is chosen to give a right-handed orthogonal coordinate
system (see Fig. 1). Please note that S is assumed to be
an orientable surface. For all regions of S where u(r) is effec-
tive, we assume that S is smooth enough such that it can be
treated as locally planar within the support of the Gaussian
window functions. Here, we define the “support” casually to
describe the domain such that the Gaussian window function
is practically zero outside of that domain. The smoothness

(@ -mX)? + (y-nY)? + 22 -

2
9r (X, Yy) = € €Xp {—(ng;zy)} (17
| Jl
ks _IF,
) +(i\/(x—mX)2+(y_ny)2+z2 v
)]
Fo Jm —IF, |InY |, 16
x)m +(/1\/(x—mX)2+(y_ny)2+22 v " 16)

The modulated Gaussian window function with modulation
frequencies of f, and f, is then given as

9r (X, y,) exp 2n(f o, 2%, + Sy, Yr)}
(22 + y?)

:ceXp{— : }exp{jzﬂ(fx,xr C Al (8)

Now, let us define the neighborhood V, of the point r on 7',
such that the Gaussian window function is effectively zero
outside of V. Then we define the neighborhood Vg of r
on S such that its orthogonal projection onto T, is V; and
represent the corresponding projected field on Vp as
u(2,,y,). The smoothness assumption of S together with
the small extent of the Gaussian window function ensures that
the projected field u,(,,y,) represents the field u(r) on Vg
with a negligible error. Using the projected field u,(x,,y,)
we find the coefficients of the modulated Gaussian window
functions at r by the analysis equation, defined on the tangent
plane T,, as
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a(r.fo, Sfy,) = 77u Zr, Yr)9r (Xrs Yr)
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X exp {_jzﬂ'(fx,xr +fy,yr)}dxrdyr

~ // U (X, Yp) 97 (7, Yy)

Ve,

X exp {_jzﬂ'(fx,xr +fy,yr)}dxrdyr (19)

In order to calculate the diffraction field in 3D space due to
the field u(r) on S, we need to propagate the Gaussian beams
corresponding to the modulated Gaussian window functions
on S. Before doing this, let us relate the representation of a
vector x in (x, y, 2) global coordinate system to its representa-
tion x, in (x,,¥,,2,) local coordinate system as

x, =Rx-r. (20)

Here, R, is the 3 x 3 rotation matrix. Note that both the local
coordinate system (z,,¥,,2,) and R, change with position
r on S. We gave the expression for the propagation of a
Gaussian beam corresponding to a shifted and modulated
Gaussian window function on a planar surface in Eq. (14).
Now, using the definition given in Subsection 3.A, we define
In(x.f.fy) as the 3D field at the observation point x =
[, . 2] on aplane parallel to z = 0 plane, due to a modulated
Gaussian window function at (x,y) = (0,0) on 2 = 0 plane,
with the modulation frequencies f, and f, along the x and
y axes, respectively. Remember that (x,y,z) is the global
coordinate system as shown in Fig. 1. By using the expression
derived in Subsection 3.A and given by Eq. (14), g, (x.f.f) is
written as

gh(x’fxv y) ® hz(xvy)CUZﬂ'

2 2
e {2 () J)- e

At this point we should note that g, (x, f.f) is defined for the
case of parallel input and observation planes because the un-
derlying RS diffraction model gives the field relation between
two parallel planes. Therefore, a reference plane (even it is
hypothetical) is needed to specify a 3D field. The 2D field
on the infinite extent reference plane uniquely determines
the corresponding 3D field, provided that the propagation di-
rection components of the waves along the z axis is always
positive. The 2D fields over the planes that are parallel to

Fig. 1. Local coordinate system on the input curved surface.
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the reference plane can be found by using the RS diffraction
model. What we call the 3D field is the concatenation of such
2D fields over the planes at different depths. Therefore, the
field u(r) given on S represents a 2D field resulting from
the intersection of such a 3D field by the curved surface S.
With these definitions, the meaning of a 3D field, given a 2D
field on a curved surface S, should be correctly interpreted:
the 3D field at a point gives the scalar field on a plane that
passes through that point and parallel to the reference plane.
Note that the extent of S along the reference plane is assumed
to be infinite such that the projection of S onto the reference
plane covers the entire plane. Therefore, under the assump-
tion that the propagation direction components of the waves
along the z axis is restricted to be positive, the 3D field is un-
iquely determined by the 2D field on S.

We use the expression given by Eq. (21), with proper coor-
dinate transformations, for the propagation of the Gaussian
beams induced by the curved surface S. Hence, for a given
field u(r) on S we find the diffraction field at x by an integra-
tion over all Gaussian beams as

() = ff // Q0 f o f )00 ) AF s If,, AS
S

= ﬂ[/a(rﬁfx, ’fyr)hzr ({)’,‘r7 yr)CO'zl'[
S
2 2
confore] (s + () )

x df, df,, dS, (22)

where x, = R,x —r, as given by Eq. (20).

The continuous signal decomposition given by Eq. (22) is
extremely redundant. By choosing the discrete set of evalua-
tion points on S and shift steps in frequency properly, we can
still decompose the field on S into a discrete set of modulated
Gaussian window functions on the tangent planes of S. That
is, it is possible to write u(x) as a sum of Gaussian beams that
correspond to Gaussian window functions at discrete posi-
tions {r;,rs,...,r,} on S and having discrete modulation fre-
quencies as multiples of F',, and F, as

n
u@) =y > D i (6, KF . IF,)
i=1 k1
n
~ Z Z Zariklhz” (xri ’yrf)cgzﬂ
=1 k1

e (e ) + () T e
X eXp { —7°0 - + - ,
A, | " A |

where

C’/r,;lcl = //ur; (xr,;s yr,)w:(, (xr;} yr;)

—00 —co

X exp {_]Zﬂ(kFxxr, + leyri)}dxr; dyrf

~ f/ Uy, (X, Yr, WS (X, Yy,)

VTr,-

x exp {~j2n(kF @, + IF,y,)}d, dy,.  (24)
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If the discrete evaluation points are taken on a regular grid,
then, similar to the planar surface case, an analysis window
function w,(x,,y,), which is valid for all r; € {r;,rs,...,r,},
can be found [26]. However, because it is usually not possible
to place aregular grid on the entire surface, the surface can be
partitioned into small patches and each patch can be treated
separately. The locality of the Gaussian synthesis window
function ensures the applicability of such a partitioning. Note
that in the discrete case, V, is used to represent the support
of the analysis window function w,(«,,y,) on T,. For the ap-
plicability of Eq. (24), the analysis window function should be
sufficiently narrow such that within its support the surface
can be treated as locally planar. By a sufficiently dense sam-
pling in space and frequency, it is possible to have an analysis
window function that is as narrow as the synthesis window
function [23].

The accuracy of Eq. (22) mainly depends on three factors.
The first factor is the adaption of an approximate 3D
Gaussian beam expression [see Eq. (15)]. As mentioned in
Subsection 3.4, the accuracy of the approximate 3D Gaussian
beam expression g, (x, f.f ) is better for a narrower Gaussian
window function. The second factor is the application of the
developed Gaussian beam expression to curved surfaces,
even though it is developed for a planar surface. A narrower
Gaussian window function is also desired to decrease the er-
ror resulting from the application of such an expression to a
curved surface, because for a narrower Gaussian window
function, the locally planar assumption of the given curved
surface becomes more reasonable. Finally, the last factor is
the independent treatment of mutually coupled patches on
the curved surface. Here, we use the word “patch” to refer to
a surface element on the curved surface that represents the
support of the Gaussian window function written on it. If a
beam induced by a patch illuminates another disjoint patch
on the curved surface, then such patches cannot be treated
independently [16]. We call such patches mutually coupled
patches. Independent treatment of mutually coupled patches
produces inconsistent 3D field solutions, because a beam in-
duced by one of the mutually coupled patches alters the field
value on the other patch [16]. Because a narrower Gaussian
window function results in Gaussian beams having larger an-
gular spreads, the likelihood that such a wider Gaussian beam
illuminates another patch on the surface increases. Therefore,
as opposed to first two factors given above, a narrower Gaus-
sian window function produces worse results in terms of
mutual couplings.

In order to show the effect of the width of the Gaussian
window function on the mutual couplings, two scenarios
are illustrated in Fig. 2. S; and S, patches shown in Fig. 2(a)
are not mutually coupled, because the beam induced by S;
does not illuminate Sy, and vice versa. In Fig. 2(b) we decrease
the width of the Gaussian window function on S; patch.
Therefore, angular spread of B; increases, and S, is now illu-
minated by also B;. Thus, S; and S, patches become mutually
coupled. Note that as we continue to decrease the width of
the Gaussian window functions on the curved surface, the
angular spreads of the corresponding beams become larger
and larger.

In addition to the locality of the Gaussian window func-
tions, mutual couplings also depend on the structure of the
input curved surface, as well. As an example, mutual coupling
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Fig. 2. Mutual couplings between patches on a curved surface (2D
cross sections of the surface and beams are shown for the sake of
simplicity). (a) Mutual coupling between S; and S5 patches, (b) mutual
coupling between S; and S, patches (in addition to the mutual
coupling between S| and S; patches).

between S; and S5 patches on a curved surface is shown in
Figs. 2(a) and 2(b). Because of the structure of the curved sur-
face, the mutual coupling between these two patches cannot
be reduced to negligible levels, even if we change the width of
the Gaussian window function on S;. In this study, we restrict
the set of curved surfaces to a feasible set for which it is pos-
sible to keep the mutual couplings at negligible levels so that
the developed formulations are applicable.

Gaussian beams having a large angular spread are not
desirable also because of associated computational reasons.
Such beams illuminate a larger volume of space compared to
the narrower beams, and, therefore, a higher number of them
become effective (superpose) at a given observation point;
this brings an extra computational burden in the computation
of Eq. (22).

All these discussions lead us to choose a Gaussian window
function having a sufficiently small width, such that the accu-
racy of the derived formulations are satisfactory in field cal-
culations, but nevertheless, the computational complexity is
still in tolerable limits and the mutual couplings are negligible.

4. SIMULATION RESULTS

Simulations are presented for the 2D (x, 2) space, for the sake
of simplicity. Note that the z variable still represents the
depth. We aim to find the 2D diffraction field due to a field
specified on a curved line (instead of a curved surface in
3D space) by using the proposed Gaussian beam decomposi-
tion method.

In order to write the signal space as a sum of finite number
of plane waves (whose propagation direction components
along the y axis is zero), we assume a periodicity along the
x axis. The 2D cross sections of such plane waves by the
(@, 2) plane are used in («x, 2) space. The periodicity, together
with the discretization of the functions, enable us to calculate
the coefficients of the Gaussian beams by using the discrete
Fourier transform (DFT) [see Eq. (26)]. An example simula-
tion setup is presented in Fig. 3. As shown in the figure,
the curved line is periodic along the x axis with period X,.
The 2D (x,2) field is also periodic along the x axis with the
same period. Therefore, the signal on the periodic curved line,
u(r(l)), which is obtained by intersecting such a periodic 2D
field, is also periodic. Note that we represent the signals on
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Fig. 3. 2D simulation setup, which is periodic along the x axis (the
fields used in the simulations repeat themselves between each dashed
horizontal line shown in the figure).

the curved line, with respect to the 2D (x, 2) global coordinate
system, by using the arc-length parameterization r(l). Also
note that we use the tilde sign to denote periodic signals
on the curved line and we represent one period of such signals
without the tilde sign.

The discrete and periodic input signal %,[n] is obtained by
uniformly sampling the continuous signal u(r(l)) with the
sampling step Lg; i.e., u4[n] = w(r(Lsn)). N samples per period
are obtained after discretization. The finite-length Gaussian
synthesis window function g(r(l)) is sampled with the same
sampling step and periodically extended over the periodic
curved line to have the discrete and periodic synthesis win-
dow function g4[n]. The total number of Gaussian beams to
be included in the diffraction field calculation depends on
the choice of discrete shift steps in the position and modula-
tion frequency of the Gaussian synthesis window function.
The shift steps in 7 and the normalized frequency domain k
are denoted as M samples and 1/K cycles/sample, respec-
tively. The corresponding total number of Gaussian beams
used in the decomposition is therefore equal to NK/M.
The ratio K /M also affects the shape of the analysis window
function corresponding to g,[n]. For the case of oversampling
of the space-frequency domain K /M > 1, the expansion coef-
ficients are dependent, because the set of modulated and
shifted Gaussian windows is overcomplete. Therefore, the
analysis window function corresponding to the synthesis win-
dow function is not unique. In the simulations we choose M
and K such that K/M = 2, which corresponds to oversam-
pling by a factor of 2. For this case, we find the analysis win-
dow function wy[n] corresponding to the specified Gaussian
synthesis window function by using the relation that gives
the minimum Lynorm solution, developed in [23]. The
parameter of the Gaussian synthesis window function, o,
is chosen as 2.20 ym. One period of the resulting discrete
synthesis window function, g,[n] = exp{-L?n?/c?} for L, =
0.26 ym, and the corresponding discrete analysis window
function, wy[n], are shown in Figs. 4 and b, respectively,
for n = -64,-63, ..., 63.
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Fig. 4. Discrete Gaussian synthesis window function gy[n]=
exp{-L2n?/c*} for ¢ = 2.20 ym and Ly = 0.26 ym.

Note that we presented the formulations in Subsection 3.B
by using the tangent planes of the curved surface, for the 3D
case. However, in the 2D simulations, we do the calculations
on the curved line with the signals defined above (instead of
the tangent lines of the curved line), for the sake of clarity.
The curved lines that we work with are almost locally planar
within the supports of the analysis and synthesis window
functions. Therefore, such an approach is appropriate to simu-
late the developed formulations in 2D (x, 2) space. Regardless
of a dimension reduction, we omit the constant multipliers
and simply assume them as unity during the computations.
For a given periodic input signal ug4[n], the coefficients of

wd‘[n]

-60 -40 -20 0 20 40 60
n
Fig. 5. Discrete analysis window function corresponding to the
Gaussian synthesis window function g,[n] = exp{-LZn?/c?}, for ¢ =
2.20 ym and L; = 0.26 pm, for the case that the shift parameters in
space and frequency are M = 16 and K = 32, respectively.
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the modulated Gaussian window functions on the curved line
are found by the discrete analysis equation as

—

N_
2

Ug[n]w}in — mM]exp (—jZnI%n),

Qg =
=
melN _N+1 1
-K -K K
ke{7,7+1,...,§—1}, (25)

where N, M, and K are positive integer valued (N is an even
integer) simulation parameters that are defined above.
Equation (25) can be rewritten as
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Thus, the analysis coefficients are found by computing a
K-point DFT of the signal

N1
Uy, ] = Y Giglny + noKliwjng + noK - mM)

—=N
e =3k

(which is periodic with period K) for each fixed m. Please
note that even though some of the indicated (m, k) pairs cor-
respond to Gaussian beams having propagation directions
with negative components along the z axis, the coefficients
of such beams are zero. The reason is that we restrict the
2D field to superposition of propagating waves whose propa-
gation direction components along the z axis are positive.

As a consequence of the periodicity together with the dis-
cretization of the signals on the periodic curved line, for each
(m, k) pair, Eq. (25) gives the coefficient of the corresponding
parallel Gaussian beams induced by the curved line (see
Fig. 6). Because the Gaussian beams are local, only a few
of these parallel duplicates are effective at a given observation
point. We label the windows that are taken into account, for
the (m, k) pair, as the set of integers {b,,,;., by + 1, ..., byi + C}.
Here, the window label b,,, refers to the region of the 2D
space with b,,, X, - % X <byXp, + %, taking the center
window (_—X‘” <x < %) as a reference. For example, while cal-
culating the field at (x,, 2,) due to the parallel beams shown in
Fig. 6, only the windows with labels 1 and 2 (that induce B,
and B, beams, respectively) are taken into account. Under the
above definitions, we find the field at («, 2) due to the periodic
input curved line by using the following equation as
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(x,-3X,,2,)

(x,—2X,,z,)

(x,=X,,z,)

(x,,2,)

5

z=0 : z=z

Fig. 6. Periodic Gaussian beams induced by the periodic pattern
over the periodic curved line.

u(x,2)
-1 K1

g k
= Z Z Z Ui In (Rr(mMLs)[x - bXpaz]T _r(mMLs)7E>7

=gl k=K bES,,

Sw = {b’mkﬁbmk + 1, ...,bmk + C}, (27)

where R,z is the 2 x 2 rotation matrix relating the 2D
(,2) global coordinate system and the local coordinate sys-
tem (one axis is along the tangent line and the other axis is
along the normal line of the curved line) at r(mMLy).

A circular arc with a measure of @ = 30° is used as one per-
iod of the input curved line (see Fig. 3). The period along the x
axis, X, is chosen as 0.26 mm. We uniformly sample the signal
on the curved line with a sampling step L; = 0.514 resulting in
N = 1024 samples in one period of the signal. Note that 4,
which is taken as 500 nm, is the wavelength of the monochro-
matic light. We take M = 16 and K = 32, resulting in 2048
different parallel Gaussian beams. Thus, the oversampling
factor is 2.

As an illustration of the decomposition procedure on the
curved line, three discrete sinc functions, shifted to different
positions, are written on the circular arcs. One period, u4[n],
of this signal is shown in Fig. 7. One period of the diffraction
field due to the input signal %4[n] is given in Fig. 8. This field is
found by superposing various Gaussian beam components
that correspond to modulated Gaussian window functions
on the circular segments with different m and k parameters.
An example Gaussian beam component, which corresponds
to the modulated Gaussian window function with parameters
m =16 and k = 1, is presented in Fig. 9. Note that Figs. 8
and 9 are obtained by sampling the u(x, 2) field with a sam-
pling step X, = 0.54 along both axes. Also note that the beams
shown in Figs. 8 and 9 are propagating from z = - to 2 =
4+ and their beam waists are taken on the curved line.

For a more general case, we start with specifying a 2D (x, 2)
field by randomly choosing the coefficients of the finite num-
ber of plane waves whose frequency components along the x
axis occupy the %™, 27 cycles/m frequency band. Then we
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Fig. 7. Real part of the discrete input signal, u4[n], on the circular arc
with a measure of 30° (imaginary part is zero).

intersect this test field by the curved line. Because the devel-
oped formulations are not applicable for the nonsmooth re-
gions of the curved line, we window the resulting field so
that the field values around the edges of the curved line (non-
smooth regions) are set to zero (see Fig. 10). We first write the
field on the curved line as a sum of modulated and shifted
Gaussian window functions and then find the coefficients
of each Gaussian elementary signal according to Eq. (26).
Afterward, we calculate the samples of the diffraction field
on the observation line at 2 = 0.1 m via Eq. (27). Note that
this distance is sufficiently large for the usage of the devel-
oped Gaussian beam expression, given by Eq. (14), in accurate
field calculations. In order to test the proposed approach, we

|u(z, 2)|

T/ X5

0 200 400 600 800
z/Xs

Fig. 8. Magnitude of the 2D diffraction field due to the input signal
ug[n], one period of which is shown in Fig. 7, on the circular arc with a
measure of 30°.
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|u(,2)]

z/Xs

0 200 400 600 800
z/Xs

Fig. 9. Magnitude of the 2D diffraction field due to a single shifted
and modulated Gaussian window function, with parameters m = 16
and k = 1, on the circular arc with a measure of 30°.

first use the PWD method, given in Section 2, to find the 2D
continuous field due to the discrete and periodic signal com-
puted on the observation line. The periodic continuous field
due to the discrete and periodic signal u(nXy, z,), observed at
2 = z,, is computed by the 2D PWD as

1 & (& 1K
u(x,z):NZAkexp Jen wa—i— p—XgNZ(z—zD) ,

k=
(28)
where
R{ugn]}
1 T
05}
‘ !
0
05}
L : :
-500 0 500
n
R{ug[n]}
1 ‘
05}
!
0 i
I

051

-1l - .
-500 0 500

n

Fig. 10. Real parts of the original, u4[n], and reconstructed, u};[n],
signals on the circular arc with a measure of 30°.
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!

k
A, = Z u(nXy, z,) exp (—j27rﬁn),

—N
n= 5

-N -N N
ke{7’7+ 1,...,5—1}, 29

where, as mentioned before, X is the sampling step along the
x axis. Note that because of the discretization and the periodi-
city along the x axis, we find only the coefficients of 1024 [to-
tal number of samples in one period of u(x, z,)] plane waves
by using 1024-point DFT of the sampled field at 2 = z,,. In or-
der to find the reconstruction error, we resample the contin-
uous field obtained by Eq. (28) at the discrete points on the
curved line and compare the resulting discrete reconstructed
signal with the original discrete test signal written on the
curved line. One periods of the real parts of the original
and reconstructed signals are shown in Fig. 10 (the imaginary
parts have similar plots). We are able to reconstruct the field
on the periodic circular segments with a normalized error [see
Eq. (12)] in the order of 10~%. This shows that the developed
formulations work well in computing the diffraction field in
(, 2) space for a field specified on the given periodic circular
arcs. Similar results are obtained for many other curved lines
that satisfy the smoothness assumption and for which the
mutual couplings between the disjoint patches on it are neg-
ligible for a specified Gaussian window function. Note that for
the circular arcs that we use, the mutual couplings between
the disjoint patches inducing the Gaussian beams are at neg-
ligible levels.

5. CONCLUSIONS

We present a local signal decomposition method to calculate
the 3D diffraction field due to a field specified on a curved
surface. The field given on the curved surface is decomposed
into a sum of shifted and modulated Gaussian window func-
tions. Then the 3D diffraction field is calculated as a sum of
local Gaussian beams each of which corresponding to a modu-
lated Gaussian window function on the curved surface. Satis-
factory results are obtained by using the given approximate
Gaussian beam expression.

The angular spread of a local Gaussian beam is consider-
ably lower than the angular spread of a 3D field induced by
a point source. Thus, the mutual couplings between the point
sources on a curved surface are significantly higher than
the mutual couplings between the patches that induce local
Gaussian beams. Therefore, the proposed signal decomposi-
tion method provides a model with better accuracy compared
to the source model approaches [8-14] for the problem of find-
ing the 3D field due to a field specified on a smooth curved
surface.

The field model introduced in [16] (which is also explained
in Section 2) provides an exact solution for the problem de-
fined in this study. That is an important development over the
source model approaches [8-14]. However, the computational
complexity of the exact field model given in [16] increases
significantly for large sizes of surfaces, because the defined
problem is desired to be solved by an inverse problem ap-
proach. Thus, in the discrete case a large matrix inversion
should be performed,; this is a computationally highly demand-
ing operation for a meaningful size of surface. Moreover, be-
cause the intersections of infinite extent plane waves by the
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given curved surface are needed to be stored as a part of the
algorithm proposed in [16], a memory problem occurs for
large sizes of surfaces. On the other hand, our method is
suitable for parallel programming to reduce the computation
time considerably, because we find the 3D field as a sum of
Gaussian beams each of which can be calculated separately,
in a parallel fashion. Furthermore, the proposed method re-
quires much less memory. That is, although our method does
not produce exact field solutions as the model given in [16], it
provides quite accurate results and applicable to even large
size surfaces.

The choice of the width of the Gaussian window function
used in the decomposition is based on a trade-off. The devel-
oped approximate Gaussian beam expression gives better re-
sults as the width of the Gaussian window function is reduced.
Such a narrower Gaussian window function is also desired
in order to satisfy the smoothness constraint of a given sur-
face for the applicability of the developed formulations. On
the other hand, Gaussian beams corresponding to narrower
Gaussian window functions have larger angular spreads.
Therefore, the likelihood, that the patches on the curved sur-
face (inducing such beams) become mutually coupled, in-
creases. Moreover, because a higher number of such beams
should be taken into account (compared to the case where
Gaussian beams having smaller angular spreads are used)
while calculating the diffraction field at a given observation
point, the computational burden also increases. We conclude
that the width of the Gaussian window function should be
chosen sufficiently small such that the derived formulations
produce satisfactory results in field calculations, but the
mutual couplings are still negligible and the computational
complexity is still in tolerable limits. For some surfaces, such
a choice may not exist. The proposed method produces quite
accurate results with a tolerable complexity for surfaces for
which it is possible to find such a width for the Gaussian
window function.
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