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ABSTRACT

LEBESGUE CONSTANTS ON CANTOR TYPE SETS

Yaman Paksoy

M.S. in Mathematics

Advisor: Alexander Goncharov

September 2020

The properties of compact subsets of the real line which are in the class of

Bounded Lebesgue Constants (BLC) are investigated. Knowing that any such

set must have 1-dimensional Lebesgue measure zero and nowhere density, and

the fact that there are examples of countable sets both inside and outside of the

class BLC, families of Cantor-type sets were focused on. Backed up by numerical

experiments (up to degree 128) and analytical results, the conjecture “there exists

no perfect set in BLC” was put forward.

Keywords: Lebesgue Constants, Cantor type Sets, Faber Basis, Lagrange Inter-

polation.
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ÖZET

KANTOR TİPİ KÜMELERDE LEBESGUE SABİTLERİ

Yaman Paksoy

Matematik, Yüksek Lisans

Tez Danışmanı: Alexander Goncharov

Eylül 2020

Sınırlı Lebesgue Sabitleri (SLS) sınıfının içinde bulunan gerçel eksenin kompakt

alt kümelerinin özellikleri incelenmiştir. Bu tip kümelerin tek boyutlu Lebesgue

ölçütlerinin sıfır olduğu, hiç bir yerde yoğun olmamaları ve bu sınıfın hem içinde

hem dışında sayılabilir küme örnekleri olduğu gerçeği göz önünde bulundurularak,

Kantor tipi kümlere odaklanılmıştır. Sayısal deneylerle (128 dereceye kadar) ve

analitik sonuçlarla desteklenen, “SLS sınıfı içinde mükemmel küme bulunmamak-

tadır.” hipotezi ortaya konulmuştur.

Anahtar sözcükler : Lebesgue Sabitleri, Kantor tipi Kümeler, Faber Bazı, La-

grange İnterpolasyonu.
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Chapter 1

Introduction

Interpolation is the method of approximating what lies beyond the discrete col-

lected data. It is called Lagrange interpolation when continuous functions are

interpolated by polynomials. It is perhaps the most commonly studied branch of

interpolation theory as polynomials are perfect, simple tools for approximation.

Given a compact set K ⊂ R and a triangular matrix with distinct entries

in each row X = (xk,N)N, ∞k=1,N=1 ⊂ K, the corresponding Lagrange interpolatory

polynomials are denoted by (LN)N∈N where for eachN ∈ N, LN(f,X, .) ∈ PN−1 =

{algebraic polynomials of degree less than or equal to N − 1} and

LN(f,X, xk,N) = f(xk,N), for k = 1, 2, ..., N. (1.1)

Lebesgue constants are the operator norms of Lagrange interpolatory polyno-

mials. They are denoted by (ΛN(X,K))N∈N where

ΛN(X,K) = ||LN(., X, .)|| = sup
||f ||=1

sup
x∈K
|LN(f,X, x)|.

Due to Weierstrass Theorem, we know that in the space of continuous functions

on compact sets (denoted as C(K)), any function can be approximated (via con-

vergence with respect to the supremum norm) by polynomials. However, it turns
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out the additional condition of interpolation (1.1) disrupts this fact.

Due to Lebesgue Lemma, the growth of the Lebesgue constants is crucially

related to the accuracy of Lagrange interpolation.

From the famous result of Faber [10], on a compact interval, for any system of

nodes, Lebesgue constants follow at least logarithmic growth. In chapter 2, follow-

ing the classical literature, we take a look at the growth of Lebesgue constants

on a compact interval for some significant system of nodes. More specifically,

we see that when the nodes are distributed equidistantly, Lebesgue constants

(ΛN(E, [−1, 1]))N∈N grow exponentially, which corresponds to rapidly growing er-

ror terms ||LN(f, E, .)−f(.)||[−1,1]. Taking the nodes to be the zeros of Chebyshev

polynomials, the corresponding Lebesgue constants (ΛN(T, [−1, 1]))N∈N follow a

logarithmic growth and later on we demonstrate that they are infact very close

to being optimal.

In the final part of the chapter, we follow the notation introduced on [3] and

say K ∈ BLC (Bounded Lebesgue Constants) if there exists a system of nodes

in K of which the Lebesgue constants are bounded. We go over the relevant

results and some necessary conditions of the compact set K to be in the class

BLC. Perhaps the most important one (at least for our research aims) being the

condition of K having Lebesgue measure zero and nowhere density on the real

line, proven by Szabados, Vertesi [22].

In chapter 3, having our search narrowed down by these conditions, we first

take a look at countable sets where by Obermaier [17] the family of sets Sq =

{qn : n ∈ N} ∪ {0} for 0 < q < 1 are in the class of BLC. This result was later

generalized by him together with Szwarc [18] where sets consisting of monotone

sequences with their limit points are shown to be in BLC if they satisfy geometric

progression or a faster convergence. On the other hand, Privalov [19] showed that

there exist countable sets where Lebesgue constants are unbounded for every

system of nodes.

Turning our attention to Cantor-type sets (perfect, nowhere dense), we see that
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Korovkin [14] consturcted a perfect set with a bounded subsequence of Lebesgue

constants, which imply that the continous functions can be approximated on that

set, by that subsequence of Lagrange interpolatory polynomials.

In second part of chapter 3, we adress Mergelyan’s book [16] dated 1951, where

he attains some important results in the theory of complex approximation. In one

of his supplementary theorems, Mergelyan asserts that geometrically symmetric

Cantor sets, if they are sufficiently small, are in the class BLC. We look at his

proof and show that it is not correct. Although his theorem can be utilized to

show that, infact for sufficienty small (smaller than what he considered) geomet-

rically symmetric Cantor type sets, we have a bounded subsequence of Lebesgue

constants.

Finally, we introduce a range of geometrically symmetric Cantor-type sets and

analyze the Lebesgue constants on these sets. With the support of numerical

results regarding these families, we conjecturize that perfect sets are outside of

the class BLC.
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Chapter 2

Lagrange Interpolation and

Lebesgue Constants

2.1 Notations and Definitions

Let K ⊂ R be a compact set and X = (xk,N)N, ∞k=1,N=1 ⊂ K be an interpolatory

matrix (we use the notation X ⊂ K to indicate that the entries of the matrix X

are elements of K), i.e, a triangular matrix such that every row consists of distinct

entries (called interpolation nodes). Moreover, WLOG assume xk,N < xk+1,N for

convenience later on.

For such K, X and N ∈ N and for a fixed k ∈ {1, 2, ..., N}, the corresponding

fundemental polynomial of Lagrange interpolation, denoted as lk,N is the unique

polynomial of degree N − 1, satisfying lk,N(xj,N) = δk,j where δ is the Kronicker

delta. It can be written explicitly as

lk,N(X, x) :=
ωN(X, x)

(x− xk,N) ω′N(X, xk,N)
, (2.1)

where ωN(X, x) =
N∏
k=1

(x− xk,N). The N’th Lagrange interpolatory polynomial is

4



defined as

LN(f,X, x) :=
N∑
k=1

f(xk,N)lk,N(X, x) , f ∈ C(K), (2.2)

the Lebesgue function as λN(X, x) :=
N∑
k=1

|lk,N(X, x)| and the Lebesgue constant

as ΛN(X,K) := maxx∈K λN(X, x).

Some basic properties of Lebesgue functions are as following (see [15]) : λN is a

piecewise polynomial (where pieces are [xi,N , xi+1,N ], i = 1, 2, ...N −1) for N ≥ 2.

For all x ∈ R we have λN(X, x) ≥ 1 with equality only on the interpolation nodes.

In each interval [xi,N , xi+1,N ], i = 1, 2, ...N − 1, λN has a single maximum and in

(−∞, x1,N) and (xN,N ,∞) it is convex and monotone.

We see that the N ’th Lagrange interpolatory polynomial can be thought of as

a projection

LN(., X, .) : C(K)→ PN−1,

where PN−1 = {algebraic polynomials of degree less than or equal to N − 1}.

Regarding the operator norm of LN(., X, .), it is a simple exercise to show that

||LN || = max
||f ||≤1

max
x∈K
|LN(f,X, x)| = max

x∈K
λN(X, x) = ΛN(X). (2.3)

These operator norms of (LN)N∈N play a crucial role in the convergence of the

interpolatory polynomials to the corresponding functions of C(K). Namely, by

Lebesgue Lemma, we have

|LN(f,X, x)− f(x)| ≤ (ΛN(X) + 1)EN−1(f), x ∈ K (2.4)

where EN−1(f) = minP∈PN−1
||f − P ||K .

We can see from here that if

lim
N→∞

ΛN(X,K)EN−1(f) = 0 (2.5)
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is satisfied, then LN(f,X) uniformly converges to f on K. As a consequence,

boundedness of the Lebesgue constants and Weierstrass Approximation Theorem

imply that the Lagrange interpolatory polynomials uniformly converge to each

continuous function on the corresponding compact set.

From now on, some arguments of LN , λN ,ΛN , etc. might be omitted where it

doesn’t create a confusion.

2.2 Classical Results for Interpolation on Inter-

vals

Due to Weierstrass Approximation Theorem, the expectation in the mathemat-

ical world regarding polynomial interpolation in compact intervals was highly

positive at late 19th, early 20th century, which is why Faber’s result in 1914

came as a mild shock and perhaps a let down. Faber [10] showed that for any

interpolatory matrix X ⊂ [−1, 1], there exists a function f ∈ C[−1, 1] such that

lim supN→∞ ||LN(f,X)|| =∞, where ||.|| denotes the supremum norm in C[−1, 1].

In fact he proved that the corresponding Lebesgue constants followed at least log-

arithmic growth.

Regardless of this fact, the exigency of uses of interpolation on intervals is

so strong that it is used often and in any science or engineering where there are

discrete data points and the need to fill in the blanks in between them. Arguably,

the most essential problem that attracted mathematicians until this day, has been

to obtain the optimal (in the sense of smallest corresponding Lebesgue constants)

set of interpolation nodes on an interval. Although many properties about these

nodes are now known, their explicit formula still constitutes an open problem.

Let us do a quick review of the classical literature corresponding to Lagrange

interpolation and Lebesgue constants on compact intervals. Before moving on

further, we need to note that the fundemental polynomials are invariant under

affine transformations, so the results obtained for a certain interval, apply to all of

6



them. Throughout this section, K = [−1, 1] and will be ommited as an argument

when possible.

2.2.1 Equidistant Nodes

The first negative result regarding Lagrange interpolation was due to Runge in

1901. Runge [20] showed that there exists a function such that its uniform dis-

tance to the corresponding Lagrange interpolatory polynomials (using equidistant

nodes) diverges.

Let E ⊂ [−1, 1] be the interpolatory matrix of equidistant nodes, i.e E =

(xk,N)N, ∞k=1,N=1 with xk,N = −1 +
2(k − 1)

N − 1
for k = 1, 2, ..., N and N ≥ 2.

Moreover let ||.||[−1,1] denote the sup-norm in C[−1, 1].

Theorem 2.2.1 (Runge). Let f(x) =
1

1 + 25x2
for x ∈ [−1, 1]. Then

lim
N→∞

||LN(f, E)− f ||[−1,1] =∞.

Admitting fundemental importance to Runge’s demonstration, 17 years later,

Bernstein [1] showed that even a function as basic as f(x) = |x|, x ∈ [−1, 1] when

interpolated equidistantly, not only couldn’t be uniformly approximated but the

process diverged, in the sense of pointwise limits, almost everywhere.

Theorem 2.2.2 (S.N Bernstein). For f(x) = |x|, x ∈ [−1, 1] and every x0 ∈
(−1, 1) \ {0}, the sequence {LN(f, E, x0), N = 1, 2, ...} diverges.

The exact asymptotic estimations for the Lebesgue constants corresponding

to equidistant nodes came many years later. Turetskii [23] and later Schönhage

[21] estimated that these Lebesgue constants grow exponentially. Namely

ΛN(E) ∼ 2N+1

eN(logN + γ)
, (2.6)
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where γ is the Euler constant, i.e.

γ = lim
n→∞

(
n∑
i=1

1

i
− log n

)
≈ 0.577. (2.7)

2.2.2 Chebyshev and Extended Chebyshev Nodes

From Runge and Bernstein’s examples, after some further analysis, it was evident

that the equidistant interpolation caused more problems near the end points

compared to the mid part of the interval. Due to this observation, it was only

natural to increase the density of the nodes around the end points. Thus came

the nodes corresponding to the zeros of Chebyshev polynomials.

Let T = (xk,N)N, ∞k=1,N=1 ⊂ [−1, 1] with xk,N = − cos

(
(2k − 1)π

2N

)
for k =

1, 2, ..., N and N ∈ N.

The sequence of Lebesgue constants corresponding to these nodes {LN(T ), N ∈
N} was subject to many asymptotic estimations and improvements of those esti-

mations, without going into too much historical detail, starting with Bernstein [1]

and realising its final upper and lower bounds by Günttner [11]. The correspond-

ing Lebesue constants were found follow a logarithmic growth, more specifically

ao +
2

π
logN < ΛN(T ) < 1 +

2

π
logN, (2.8)

where ao =
2

π

(
γ + log

8

π

)
= 0.9625... .

After the observation ΛN(T ) = λN(T, 1) by Lutmann and Rivlin [15], the

idea of making the interpolatory matrix cannonical, i.e. taking the end points

of the interval in question as interpolation nodes on every step, occured. The

extended Chebyshev nodes is the linear transformation of the Chebyshev nodes

such that [x1, xN ] is mapped into [−1, 1] with x1 7→ −1 and xN 7→ 1. Explicitly

8



T̂ = (xk,N)N, ∞k=1,N=1 with

xk,N = −
cos

(
(2k − 1)π

2N

)
cos
( π

2N

) k = 1, 2, ..., N , N ∈ N .

Brutman [4] found an upper bound corresponding to these nodes as

ΛN(T̂ ) < 0.7219 +
2

π
logN, (2.9)

and later on Günttner [12] proved the existence of an asymptotic expansion,

for k = 1, 2, ...:

ΛN(T̂ ) =
2

π
logN + b0 +

b1
logN

+ ...+
bk

(logN)k
+R

(k)
N (2.10)

where

b0 = 0.5381... , b1 = 0.006371... , . . . , R
(k)
N = O

(
1

(logN)k+1

)
.

2.2.3 Optimal Nodes

A natural question that arises is: what is the best choice of nodes for La-

grange interpolation on the interval, i.e. X∗ ⊂ [−1, 1] such that ΛN(X∗) =

infX⊂[−1,1] ΛN(X), for each N ∈ N? Existence of such nodes is easy to prove (see

[22], pp. 94).

It was initially Faber [10] who proved that any sequence of Lebesgue constants

on a compact interval would follow at least logarithmic growth. In 1931, Bernstein

[2] put forward a conjecture that the Lebesgue function corresponding to the

optimal nodes equioscillates, i.e. values the function attains at each maximum

9



are the same and he estimated asymptotically

ΛN(X∗) ∼ 2

π
logN. (2.11)

In 1950, Erdös [8] added as a conjecture that given that the interpolatory matrix

is cannonical (we don’t lose generality if so), the optimal nodes are unique and

that

mN(X) ≤ ΛN(X∗) ≤MN(X), N ∈ N, for every X ⊂ [−1, 1] , (2.12)

where mN(X) and MN(X) are the minimal and maximal local maximums of

λN(X), respectively.

The results in the direction of these conjectures started coming after 1976,

which is when T. Kilgore and E.W. Cheney [5] proved the existence of interpola-

tory nodes which the corresponding Lebesgue function equioscillates. Two years

later, T. Kilgore [13] and DeBoor and Pinkus [6] proved rest of the conjectures.

Utilizing (2.12), also known as Erdös inequality, Brutman [4] has shown that

for N ≥ 1:

1

2
+

2

π
logN < mN(T̂ ) < ΛN(X∗) < MN(T̂ ) <

3

4
+

2

π
logN. (2.13)

Although we have a nice characterization of the Lebesgue function for the

optimal nodes, their explicit forms of these nodes are unknown to this date. On

the other hand, Rivlin in his monograph “Chebyshev Polynomials” states: “The

readily available extended Chebyshev array T̂ is, for all practical purposes as

useful as the optimal nodes”. We can infer from here that the extended Chebyshev

nodes are considered to be “almost optimal”.
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2.3 Divergence of Lagrange Interpolation

As we saw in the previous section, interval is not exactly an ideal set for Lagrange

interpolation of continuous functions in general. In order to obtain a converging

Lagrange interpolatory process, one must return to the inequality (2.4).

There are three obvious frontiers to attack this problem from. First one is

restricting the class of functions that are going to be interpolated, (i.e. attain

a more rapidly decreasing sequence EN(f) for every f in that restricted family)

with criteria such as smoothness, Lipschitz continuity, etc.

Second one is to loosen restrictions on the degrees of interpolating polynomials.

Without going into too much detail, it was found by Erdös [7] that given an

interpolatory matrix X, for any function f ∈ C[−1, 1] and ε > 0, there exists a

sequence of interpolatory polynomials pN(f) ∈ PN(1+ε) such that pN interpolates

f at N distinct nodes (N ’th row of X) and

lim
N→∞

||f − pN(f)||[−1,1] = 0 (2.14)

if and only if X satisfies what is known as the Erdös conditions. For an extended

review of results in this direction, we refer the reader to [22], pp. 37 – 69.

Third one is to restrict the domain of the functions, i.e. look for a compact

set K and an interpolatory matrix X ⊂ K such that the corresponding Lebesgue

constants are small, preferably bounded. In the next chapter, such pairs of sets

and matrices will be investigated. First, let us state some results that will direct

us through our search of such pairs.

In 1918, Bernstein [1] proved the following theorem regarding pointwise diver-

gence of Lagrange polynomials for arbitrary system of nodes:

Theorem 2.3.1 (Bernstein). For any X ⊂ [−1, 1] there exist a point x0 ∈ [−1, 1]

and f ∈ C[−1, 1] such that

limN→∞|LN(f,X, x0)| =∞ (2.15)
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The next result by Erdös in 1958 proved that the sequence of Lebesgue func-

tions for any interpolatory matrix can only be bounded in a set of measure zero.

Theorem 2.3.2 (Erdös). Let ε and A be any given positive numbers and X ⊂
[−1, 1] any interpolatory matrix. Then, the measure of the set

{x ∈ R : λN(X, x) ≤ A for N ≥ N0(A, ε)}

is less than ε.

In 1980, a theorem that seems like continuation of the previous one was proven

by Erdös and Vertesi [9].

Theorem 2.3.3 (Erdös, Vertesi). Let X ⊂ [−1, 1], then there exists f ∈ C[−1, 1]

such that

lim sup
N→∞

|LN(f,X, x0)| =∞,

for almost all x0 ∈ [−1, 1].

From (2.5) we know that boundedness of Lebesgue constants implies uniform

convergence of Lagrange interpolatory polynomials on the corresponding com-

pact set. The next proposition by Bilet, Dovgoshey, Prestin [3] show the inverse

implication is also true.

Proposition 2.3.4 (Bilet, Dovgoshey, Prestin). Let K ⊂ R be infinite and com-

pact, and let X ⊂ K be an interpolatory matrix. Then the following are equiva-

lent:

1. The inequality

lim sup
N→∞

ΛN(X) <∞

holds.

2. The limit relation

lim
N→∞

||LN(f,X)− f ||K = 0

is true for every f ∈ C(K).

12



3. The inequality

lim sup
N→∞

||LN(f,X)||K <∞

holds for every f ∈ C(K).

Proof. By (2.4) we have (1)⇒ (2) and (2)⇒ (3) is trivial. For (3)⇒ (1), assume

(3) is true, then the sequence (||LN(f,X)||K)N∈N is bounded for all f ∈ C(K).

Since C(K) is a Banach space and LN(., X, .) : C(K) → C(K) is a continuous,

linear operator, the Banach-Steinhaus theorem gives

sup
N∈N
||LN(., X, .)||K <∞.

There is also an analog of the pointwise version of the previous proposition.

Proposition 2.3.5 (Bilet, Dovgoshey, Prestin). Let K ⊂ R be infinite and com-

pact, and let X ⊂ K be an interpolatory matrix and x ∈ K. Then the following

are equivalent:

1. The inequality

lim sup
N→∞

λN(X, x) <∞

holds.

2. The limit relation

lim
N→∞

LN(f,X, x) = f(x)

is true for every f ∈ C(K).

3. The inequality

lim sup
N→∞

|LN(f,X, x)| <∞

holds for every f ∈ C(K).

In the light of this result, Theorem 2.3.3 has the following corollary:

13



Corollary 2.3.6. Let K ⊂ R be infinite and compact and X ⊂ K be an interpo-

latory matrix. If

lim sup
N→∞

ΛN(X,K) <∞,

then K has one dimensional Lebesgue measure equal to zero.

Now let us introduce a definition that was first put forward by Bilet, Dov-

goshey, Prestin [3]. Let us say that the infinite, compact set K ⊂ R is in the

family of Bounded Lebesgue Constants (K ∈ BLC), if there exists an interpola-

tory matrix X ⊂ K such that

lim sup
N→∞

ΛN(X,K) <∞. (2.16)

Corollary 2.3.7. Let K ∈ BLC. Then K is nowhere dense in R and its one

dimensional Lebesgue measure is zero.

Proof. K has measure zero by Theorem 2.3.3 and Proposition 2.3.5.

Since it is compact we have K = K. Due to its zero measure we get Int(K) =

Int(K) = ∅.

Now, we are confined in our search to compact sets K with zero measure and

nowhere density. Let us take a slight detour and see another significance of this

problem, which is constructing an interpolating polynomial basis of the space

C(K), with strict degrees.
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Chapter 3

Faber and Lagrange Bases

3.1 Definitions and Relevance

In what follows, we will see the relevance of Faber bases to Lagrange interpola-

tory processes. In this section, to a large extent, we follow the survey by Bilet,

Dovgoshey, Prestin. Thus for most of the proofs (will be stated otherwise) we

refer the reader to [3].

Let us recall first the definition of a Schauder basis. Let V be a Banach space

over field F . Then, a countable set {bn : n ∈ N} ⊂ V is called a Schauder basis

if for every v ∈ V , there exist a unique sequence (αn)n∈N ⊂ F such that

v =
∞∑
n=1

αnbn,

where the convergence is with respect to the norm topology in V.

Definition 3.1.1. Let K ⊂ R be infinite and compact. A polynomial Schauder

basis (PN)N∈N of C(K) is called a Faber basis if degPN = N − 1 for all N ∈ N.

It is a well known result by Faber [10] that there exists no Faber basis for

C[a, b]. Let us assume that for a given C(K) we have a Faber basis (PN)N∈N. For
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N ∈ N, define the operator SN : C(K)→ PN as the partial sum

SN(f) =
N∑
k=1

akPk (3.1)

where f =
∞∑
k=1

akPk.

Notice that, similar to the Lagrange interpolatory operators (LN(., X, .))N∈N,

each SN is a linear, continuous projection onto the set of algebraic polynomials

of degree at most N − 1.

We say that a Faber basis (PN)N∈N of C(K) is interpolating with respect to

the sequence of distinct points (xk)k∈N ⊂ K if

Skf(xk) = f(xk) (3.2)

holds for all f ∈ C(K) and k ∈ N.

Lemma 3.1.2 (Bilet, Dovgoshey, Prestin). A Faber basis (PN)N∈N of C(K) is

interpolating with respect to the sequence (xk)k∈N if and only if

Pk(xk) 6= 0 and Pk(xj) = 0 (3.3)

for every k ∈ N and j < k.

Proof. (⇐) Assume (3.3) holds. Then we have for any f ∈ C(K) and k ∈ N

f(xk) =
∞∑
j=1

ajPj(xk) =
k∑
j=1

ajPj(xk) = Skf(xk).

Thus (PN)N∈N is interpolating with respect to (xk)k∈N.

(⇒) Now assume (PN)N∈N is interpolating with respect to (xk)k∈N. Firstly,

it is clear that P1 6≡ 0. For k > 1, from uniqueness of the representation Pk =
∞∑
j=1

ajPj, we have aj = δj,k. Thus SjPk ≡ 0 for every j < k. Since (PN)N∈N is

interpolating with respect to (xk)k∈N, Pk(xj) = SjPk(xj) = 0 for every j < k.
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Now Pk ∈ Pk−1 \ Pk−2, so Pk attains zero at xk only if Pk ≡ 0, which gives a

contradiction. So (3.3) follows.

Corollary 3.1.3. Let (PN)N∈N be an interpolating Faber basis of C(K) with nodes

(xk)k∈N and let (µN)N∈N be any sequence of nonzero, real numbers. Then

(µNPN)N∈N

is also an interpolating Faber basis with same nodes.

Conversely, if there exist two interpolating Faber bases (PN)N∈N and (QN)N∈N

with the same nodes, then

PN = µNQN

for some sequence of nonzero real numbers (µN)N∈N.

Now we can uniquely determine an interpolating Faber basis (PN)N∈N with a

certain set of nodes (xk)k∈N, by normalization

PN(xN) = 1 N ∈ N. (3.4)

Definition 3.1.4. An interpolating Faber basis (PN)N∈N with nodes (xk)k∈N is

called a Lagrange basis if (3.4) hold for all N ∈ N.

Note that if we have such a Lagrange basis, for f =
∞∑
k=1

akPk we have

ak = f(xk)−
k−1∑
j=1

ajPj(xk), k = 1, 2, ... (3.5)

The next result demonstrates the equivalence of admitting an interpolating

Faber basis and having a convergent interpolatory process.

Theorem 3.1.5 (Bilet, Dovgoshey, Prestin). Let K ⊂ R be infinite and compact

and let X = (xk,N)N, ∞k=1,N=1 ⊂ K be an interpolatory matrix. The following are

equivalent:
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1. The space C(K) admits a Faber basis such that the equality

SN = LN(., X, .) (3.6)

holds for every N ∈ N.

2. The sequence (ΛN(X,K))N∈N is bounded and there is a sequence (xk)k∈N

of distinct nodes such that for any N ≥ 2 the tuple (x1,N , ..., xN,N) is a

permutation of the set {x1, ..., xN}.

Observe that in the interpolating matrix X, each interpolation node is carried

over to higher degrees, i.e. xk,N = xk1,N+1 = xk2,N+2 = ... , for every xk,N ∈ X.

This restrics our system of nodes if we are looking for an interpolating Faber

basis rather than a convergent Lagrange interpolatory process.

3.2 Results for Countable Sets

Due to Corollary 2.3.7, in order to attain a convergent interpolatory process, we

must turn our attention to small sets in terms of measure and density. The first

class of sets that come to mind is the class of countable sets. There are two major

results showing us that countability is not strongly linked to ”being in the class

of BLC”.

First one is due Obermaier [17] in 2003, where he proves that convergent,

geometrically progressing sequences together with their limit points are of BLC.

Theorem 3.2.1 (Obermaier). Let Sq = {qn : n ∈ N} ∪ {0} for 0 < q < 1. Then

there exist a Lagrange basis of C(Sq) with respect to the sequence (qn)n∈N0 .

After this theorem, Obermaier states that the same is not true for any set of

similar structure. Namely for Sr = {(k + 1)−r : k ∈ N0} ∪ {0}, 0 < r < ∞,

there is no Lagrange basis of C(Sr) with respect to the sequence ((n+ 1)−r)n∈N0 .

Clearly, this does not mean that there exist no Lagrange basis on C(Sr), there
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could exist another sequence on the set such that the corresponding Lebesgue

constants are bounded.

In any ways, we see here that Sq ∈ BLC. Two years later, Obermaier and

Szwarc [18] improve this result in the following way.

Theorem 3.2.2 (Obermaier, Szwarc). Assume (sk)k∈N0 is a strictly increasing

or strictly decreasing sequence and S = {s0, s1, ...} ∪ {σ} where σ = limk→∞ sk.

Then there exist a Lagrange basis of C(S) with respect to the sequence (sk)k∈N0 if

and only if there exist 0 < q < 1 with

|σ − sk−1| ≤ q|σ − sk| for all k ∈ N0. (3.7)

Again, the “only if” in the previous theorem does not imply the non-existence

of a Lagrange basis without (3.7), but non-existence with respect to these nodes.

The second result is due Privalov [19], where he finds an example of a countable

set out of the class BLC.

Theorem 3.2.3 (Privalov). Let F = {n−1/2 : n ∈ N} ∪ {0}. Then for every

X ⊂ [−1, 1] there exists a positive constant c(X) such that for every N ∈ N, we

have

ΛN(X,F ) > c(X) logN. (3.8)

Thus, as long as countability is concerned, there are sets in and out of the

class BLC that are countable.

3.3 Results for Perfect Sets

In the previous section, we established that being countable gives no information

about being inBLC, second class of sets that we consider is perfect sets. Korovkin

[14] constructed a perfect set K ⊂ [−1, 1] and interpolatory matrix X ⊂ K such
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that

ΛN2(X,K) <∞. (3.9)

While this result does not imply that K ∈ BLC, it means that every f ∈ C(K)

can be approximated by Lagrange interpolating polynomials (LN2(f,X, .))N∈N.

The other result that is often referred to in this topic is Mergelyan [16].

Mergelyan claimed that a wide range of Cantor-type sets belong to the class

BLC. Here, we will show a mistake in his proof and then prove that his result is

incorrect by a counter example and finally put forward the following conjecture:

Conjecture 3.3.1. There exists no perfect set in BLC.

Before starting, let us explain some of the notations regarding the processes of

geometrically symmetric Cantor-type sets. Let (`s)
∞
s=0 be a sequence of positive

numbers such that `0 = 1 and 0 < 3`s+1 ≤ `s for s ∈ N0. Let K be the Cantor

set associated with the sequence (`s)
∞
s=0, that is

K =
∞⋂
s=0

Es

where E0 = [0, 1] = I1,0, Es is the union of 2s closed basic intervals Ij,s of length

`s and Es+1 is obtained by replacing each Ij,s, j = 1, 2, ..., 2s, by two adjacent

subintervals I2j−1,s+1 and I2j,s+1. Let hs = `s − 2`s+1 be the distance between

them. Note that we have hs ≥ `s+1.

Also, for each x ∈ R and Z ⊂ R finite, by dk,Z(x) we denote the distances

|x− zjk | from x to points of Z arranged in the nondecreasing order.

Now, let us consider a specific form of these Cantor-type sets. Let Kβ for

0 < β ≤ 1/3 be the Cantor set associated to sequence (`s)
∞
s=0 with `s+1 = β`s for

s ∈ N0. Observe that K1/3 is the classical Cantor ternary set.

Now, let us exhibit Mergelyan’s result in [16], pg. 64 – 65. For convenience,

we translate his result into our notations. Let wf be the modulus of continuity
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of a continuous function f .

Theorem 3.3.2 (Mergelyan). Let K be any geometrically symmetric Cantor-

type set with hs > `s+1 for every s ∈ N0. Let Y ⊂ K be an interpolatory matrix

whose 2s+1’th row consists of the endpoints of each interval Ij,s, j = 1, 2, ..., 2s.

Then, there exists a positive function of integer argument ϕK(n) such that for

every f ∈ C(K) we have the inequality

max
x∈K
|f(x)− L2s+2(f, Y, x)| < Cwf (ϕK(2s+2)) (3.10)

where C does not depend on s.

First, let us emphasize that (3.10) implies boundedness of the subsequence

(Λ2s+2(Y,K))s∈N, since the right side of (3.10) is bounded by 2C for all continuous

functions f with ||f || ≤ 1. Now, the mistake Mergelyan made, identified by

my advisor Alexander Goncharov, is on page 65, 4’th line from below, where

Mergelyan estimates from above Ms =
22s+3`s+2

(2s+1!)`2
s+1

s+1

by a bounded value Cwf (Ms).

However, for example taking K = Kβ for 0 < β ≤ 1/3, we have `s = βs (which

is ∆s−1 in the author’s notation) and by Stirling’s formula, the leading term of

logMs is 2s+1(s+1)[log
1

β
−log 2] which tends to infinity as s→∞, since β < 1/3.

Now, let us show that for any 0 < β ≤ 1/3, taking Kβ and as interpolatory

matrix Y ⊂ Kβ as above, we have

lim
s→∞

Λ2s(Y,Kβ) =∞. (3.11)

Observe that for any s ∈ N, 2s+1’th row of Y (denote this by Y(s)) consists

of x1 = 0, x2 = `s, ..., x2s+1 = 1. For the next lemma, let k = 2s − 1 so that

xk = `1 − `s, also let x̃ = `s+1.

Lemma 3.3.3. Given s ≥ 2, we have

|lk,2s+1(x̃)| ≥ `s+1(`s − `s+1)

`s`1

(
1− `s+1

1− `1 − `s

)2s

. (3.12)
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Proof. We have

|lk,2s+1(x̃)| = π1π2 :=
2s∏
j=1
j 6=k

∣∣∣∣ x̃− xjxk − xj

∣∣∣∣ 2s+1∏
j=2s+1

∣∣∣∣ x̃− xjxk − xj

∣∣∣∣ .

Let’s obtain the lower bounds of these two separately. Observe that π1 corre-

sponds to product of ratios of distances of x̃ and xk to the nodes Y(s)∩I1,1 \{xk} .

Thus, d1,Y(s)\{xk}(x̃) = d1(x̃) = `s+1, d2(x̃) = `s− `s+1. For 2 ≤ j ≤ 2s−3 we have

dj+1(x̃) = dj(xk)+ε with ε = `s−`s+1. Indeed for such j we have dj(xk) = dj(x2)

and x2 − x̃ = ε. Also d1(xk) = `s, d2s−2(xk) = xk − x2 = `1 − 2`s, d2s−1(xk) =

`1 − `s, and d2s−1(x̃) = `1 − `s+1. Therefore,

π1 =
d1(x̃)d2(x̃)

d1(xk)
·
2s−3∏
j=2

dj+1(x̃)

dj(xk)
· d2s−1(x̃)

d2s−2(xk)d2s−1(xk)
.

We neglect the product in the middle as all terms are greater than one. Hence,

π1 >
`s+1(`s − `s+1)

`s
· `1 − `s+1

(`1 − 2`s)(`1 − `s)
>
`s+1(`s − `s+1)

`s`1
.

As for π2 i.e. product of ratios of distances to the nodes Y(s) ∩ I2,1, we have

dj(x̃) = dj(xk) + xk − x̃ for j = 2s + 1, ..., 2s+1.

Here, xk − x̃ = `1 − `s − `s+1 and dj(xk) ≤ 1− xj = 1− `1 + `s. Hence,

π2 =
2s+1∏

j=2s+1

(
1 +

xk − x̃
dj(xk)

)
≥

2s+1∏
j=2s+1

(
1 +

`1 − `s − `s+1

1− `1 + `s

)
=

(
1− `s+1

1− `1 + `s

)2s

.

The desired result follows from here.
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Theorem 3.3.4. For any 0 < β ≤ 1/3, we have Λ2s+1(Y,Kβ)→∞ as s→∞.

Proof. Applying Lemma 3.3.3 for `s = βs yields π1 ≥ βs(1 − β). It is easy to

check that (1− βs+1)(1− β2) > 1− β− βs for s ≥ 2. Hence π2 > (1− β2)−2
s

and

|lk,2s+1(x̃)| ≥ (1− β)βs

(1− β2)2s
. Finally, we have

Λ2s+1(Y,Kβ) > λ2s+1(Y, x̃) > |lk,2s+1(x̃)| > (1− β)βs

(1− β2)2s
,

and the RHS goes to infinity as s→∞. So, we are done.

Note that Theorem 3.3.4 does not imply that Kβ 6∈ BLC. In fact, we believe

that just like equidistant nodes for interval, end points for the sets Kβ is far from

the optimal choice, although it gets closer and closer to optimal for smaller and

smaller sets.

Now, let us take the classical Cantor ternary set, i.e. Kβ with β = 1/3 and

observe the behaviour of the Lebesgue functions of degrees 2s for s = 2, ..., 7.

We denote by Yβ ⊂ Kβ an interpolatory matrix whose 2s’th row consists of the

endpoints of the process at step s− 1.

In the figures below, for each s ∈ {2, 3, ..., 7}, the Lebesgue function λ2s(Y1/3, x)

was evaluated at every node of 2s+1’th row of Y1/3. So, there are 2s of them where

λ2s(Y1/3, x) is exactly one and the same number of them where the function is

strictly greater than one. In between the nodes linear extension was used.
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Figure 3.1: λ22(Y1/3, .)

Figure 3.2: λ23(Y1/3, .)
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Figure 3.3: λ24(Y1/3, .)

Figure 3.4: λ25(Y1/3, .)
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Figure 3.5: λ26(Y1/3, .)

Figure 3.6: λ27(Y1/3, .)
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As we can see from the figures above, the Lebesgue functions are maximized

in the first and last intervals I1,s and I2s,s for s ∈ N. Moreover, just like equidis-

tant nodes, the maxima in these two intervals follow exponential growth and are

incomparably large with respect to middle ones.

Now, let us return to Mergelyan’s work. Notice that the sequence Ms =
22s+3`s+2

(2s+1!)`2
s+1

s+1

for s ∈ N depends solely on the lenghts of basic intervals of the

Cantor process. For the set Kβ they are unbounded. However, if we were to look

at Cantor processes where the ratios
`s+1

`s
are sufficiently small, then Mergelyan’s

conclusion would be true. In other words, we would attain a Cantor-type set with

a subsequence of bounded Lebesgue constants. Let us construct another family

of Cantor-type sets, to examine this.

Let α = (αs)s∈N be a real sequence with αs > 1 for all s ∈ N and assume

we have the Cantor-type set Kα defined by `1 ≤ 1/3 and `s+1 = `αss for s ∈ N.

Observe that the class {Kβ : 0 < β ≤ 1/3} is a subclass of {Kα : αs > 1, `1 ≤
1/3}. In fact Kα = Kβ if and only if

α1 = 2
log β

log `1
and αs =

s+ 1

s
for s = 2, 3, ... .

Now, let’s look at the set Kα with αs ≥ 2s for every s ∈ N. We have

Ms =
22s+3`s+2

(2s+1!)`2
s+1

s+1

≤ 22s+3

(2s+1!)
, s ∈ N.

Thus, Mergelyan’s theorem is applicable to these very small Cantor-type sets.

On the other hand, the value Ms was attained a little generously, without con-

sideration of the Cantor structure of the set, which caused a loss of precision. To

see this, let’s take again Kα, this time with αs ≡ c for some constant c > 1. For

this set, just like Kβ, the sequence (Ms)s∈N is unbounded.

However, let us inspect the results on this set of the same numerical experiment

that was previously applied on Kβ. Namely, let Y α ⊂ Kα be an interpolatory
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matrix whose 2s’th row consists of the endpoints of the Cantor process (corre-

sponding to Kα) at step s− 1. For α ≡ 2 and `1 = 1/3 we have:
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Figure 3.7: λ22(Y
2, .)

Figure 3.8: λ23(Y
2, .)
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Figure 3.9: λ24(Y
2, .)

Figure 3.10: λ25(Y
2, .)

30



As we can see, for s ≥ 2, this subsequence of Lebesgue constants

(Λ2s(K
2, Y 2))s∈N) seems to be decreasing down to its minimum possible value,

which is one. Note that for constant α, Kα is polar if and only if α ≥ 2. So, before

making inferences, let us look at the graphs of λ2s(Y
α, .) with α < 2, s = 2, 3, 4.

Figure 3.11: λ22(Y
1.5, .) (top left) , λ23(Y

1.5, .) (top right), λ24(Y
1.5, .) (bottom)

Here, we again observe a behavior of the subsequence of Lebesgue constants

as we did for K1/3. Hence, perhaps polarity plays a role in convergence of this

particular subsequence of Lebesgue constants for these types of sets.

Finally, we want to show that for any constant α > 1, on the set Kα, the

sequence of Lebesgue constants with corresponding set of nodes Y α (defined as

before) where Y α preserves previous nodes, is unbounded.

In order to prove this, it is sufficient to show that (Λ2s−1(Y
α, Kα))s∈N diverges.

So the idea is, we will exclude one node xm of level s, take an interval of q’th level
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that contains xm (I.,q 3 xm), where we select an admissible q ≤ s, then estimate

|lk,s(xm)| from below for every k such that xk ∈ I.,q and xk < xm.

First, let us exhibit the graphs that support this divergence of subsequence

of Lebesgue constants when for each s = 2, 3, 4, 5, xm = xm(s) =
s∑
j=0

(−1)j`j is

excluded in between nodes of step s of K2. For s ∈ N, k ≤ 2s+1, let Y α
k,s ⊂ Kα

be an interpolatory matrix such that the 2s+1 − 1’th row of it consists of the

endpoints of intervals of level s, except xk. Observe that the maximal peaks

follow a growth slower than logarithmic (with respect to degree), at precisely xm.
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Figure 3.12: λ22−1(Y
2
m,2, .)

Figure 3.13: λ23−1(Y
2
m,3, .)
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Figure 3.14: λ24−1(Y
2
m,4, .)

Figure 3.15: λ25−1(Y
2
m,5, .)
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For the next result, for each s ∈ N let Z = (xk)
2s+1

k=1 be the endpoints of the

intervals (Ii,s)
2s

i=1 ordered increasingly. Takem = m(s) such that xm =
s∑
j=0

(−1)j`j.

Assume xm ∈ Ij0,s ⊂ Ij1,s−1 ⊂ Ij2,s−2 ⊂ ... ⊂ Ijs,0 = I1,0 = [0, 1]. Also for a finite

set A, let |A| denote its cardinality.

Theorem 3.3.5. For constant α > 1 and Y α where for each s ∈ N the 2s − 1’th

row of Y α is missing xm, we have

lim
s→∞

Λ2s−1(Y
α, Kα) =∞.

Proof. Fix q ∈ {1, 2, ..., s − 1} and for simplicity, denote Iq = Ijs−q ,q and Iq−i =

Ijs−q+i,q−i \ Ijs−q+i−1,q−i+1 for i = 1, ..., q. Thus {Iq−i, i = 0, ..., q} is family of

disjoint intervals that cover Es. Clearly we have |Z∩Iq| = 2s−q+1 and |Z∩Iq−i| =
2s−q+i for i = 1, 2, ..., q. Let us take some xκ ∈ Z ∩ Iq with xκ < xm and assume

q is even, i.e. Ijs−q+1,q−1 ⊃ (Ijs−q ,q ∪ Ijs−q+1,q) i.e. Iq−1 is on the right side of Iq.

Then for any i even and xj ∈ Iq−i , since |xm − xj| > |xκ − xj| , we have

∣∣∣∣xm − xjxκ − xj

∣∣∣∣ > 1

and for any i odd and xj ∈ Iq−i we have

∣∣∣∣xm − xjxκ − xj

∣∣∣∣ =
xm − xj + xκ − xκ

xκ − xj
= 1 +

xm − xκ
xκ − xj

= 1−
∣∣∣∣xm − xκxκ − xj

∣∣∣∣ ≥ 1− `q
hq−i

.

Thus for odd i we have

∏
xj∈Iq−i

∣∣∣∣xm − xjxκ − xj

∣∣∣∣ ≥ (1− `q
hq−i

)2s−q+i

.
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Now, we want to estimate
∏

xj∈Iq\{xm,xκ}

∣∣∣∣xm − xjxκ − xj

∣∣∣∣ from below.

In the set Z ∩ Ij0,s there exists one point other than xm of distance to xm

greater or equal to `s, in the next set Z ∩ (Ij1,s−1 \ Ij0,s) there exist two points

with distances greater or equal to hs−1, in Z ∩ (Ijn,s−n−1 \ Ijn−1,s−n+1) there exist

2n points with distances greater or equal to hs−n, excluding xκ from these points,

we get ∏
xj∈Iq\{xm,xκ}

|xm − xj| ≥
`s h

2
s−1 h

22

s−2... h
2s−q
q

|xm − xκ|

Similar argument works for upper bounds of distances to xκ where we have `n

instead of hn, excluding xm from these points gives us

∏
xj∈Iq\{xm,xκ}

|xκ − xj| ≤
`s `

2
s−1 `

22

s−2... `
2s−q
q

|xm − xκ|
.

Using these, we obtain

∏
xj∈Iq\{xm,xκ}

∣∣∣∣xm − xjxκ − xj

∣∣∣∣ ≥ (hs−1`s−1

)2 (
hs−2
`s−2

)22

...

(
hq
`q

)2s−q

=

s−q∏
j=1

(
hs−j
`s−j

)2j

.

Finally, combining all of these inequalities, we have

|lκ,2s−1(xm)| =
2s+1∏
j=1
j 6=m,κ

∣∣∣∣xm − xjxκ − xj

∣∣∣∣ =

 q∏
i=1

xj∈Iq−i

∣∣∣∣xm − xjxκ − xj

∣∣∣∣

 ∏

xj∈Iq
j 6=m,κ

∣∣∣∣xm − xjxκ − xj

∣∣∣∣


≥

 q−1∏
i=1,odd
xj∈Iq−i

∣∣∣∣xm − xjxκ − xj

∣∣∣∣

 ∏

xj∈Iq
j 6=m,κ

∣∣∣∣xm − xjxκ − xj

∣∣∣∣


≥

(
q−1∏

i=1,odd

(
1− `q

hq−i

)2s−q+i
)(

s−q∏
j=1

(
hs−j
`s−j

)2j
)

=: As,q Bs,q.
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Now, we estimate As,q and Bs,q from below for Kα with constant α. Let α > 1

and `1 ≤ 1/3. Define the set Kα, as usual, by the condition `n = `αn−1 = `α
2

n−2 =

... = `α
n−1

1 for n ∈ N. This implies hn = `n − 2`n+1 = `n(1− 2`α−1n ).

First let us estimate As,q =
∏q−1

i=1,odd

(
1− `q

hq−i

)2s−q+i

from below:

Set εα := min{1− 2`1, 1− 2`α−11 }. Then for each k ∈ N we have

hk ≥ εα`k. (3.13)

By (3.13), we have

`q
hq−i

≤ ε−1α
`q
`q−1

= ε−1α `
αq−2(α−1)
1 . (3.14)

In calculation we consider large enough q = q(s). In particular, we can suppose

that
`q
hq−i

≤ 1/2, since RHS of (3.14) goes to 0 as q goes to infinity. Thus, we can

use the bound log(1 − x) > −2x which is valid for 0 < x < 1/2. Including into

the product terms corresponding to even i, we get

log(As,q) > −2

q−1∑
i=1

2s−q+iε−1α
`q
lq−1

> −ε−1α 2s+1`
αq−2(α−1)
1 .

Let us choose q ∈
{[

log s
logα

+ 3
]
,
[
log s
logα

+ 4
]}

(since we want q even), where [a]

denotes the greatest integer in a. Then αq−2 > s and `
αq−2(α−1)
1 < `

s(α−1)
1 < 2−s.

Therefore,

As,q > ε0 := exp(−2ε−1α ).
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On the other hand, for Bs,q we have

Bs,q =

s−q∏
j=1

(
hs−j
`s−j

)2j

=

s−q∏
j=1

(
1− 2`α−1s−j

)2j
= (1− 2`α−1s−1 )2 (1− 2`α−1s−2 )2

2

... (1− 2`α−1q )2
s−q

≥ (1− 2`α−1q )2
s−q+1

.

Thus, if we use the bound log (1− x) > −2x again we get

logBs,q ≥ 2s−q+1 log (1− 2`α−1q ) > −2s−q+3`α−1q .

Taking again for large enough s ∈ N, q ∈
{[

log s
logα

+ 3
]
,
[
log s
logα

+ 4
]}

we get

`α−1q < 2−s, hence

logBs,q > −2−q+3

and since q > 3

Bs,q > e−1.

Now, remember |Z ∩ Iq| = 2s−q+1. More than half of the points in |Z ∩ Iq|
are smaller than xm, so for every s ∈ N, there are at least 2s−q points xκ ∈ Iq

with xκ < xm, which implies |lκ,2s−1(xm)| ≥ As,q Bs,q. So, for the corresponding

Lebesque constant Λ2s−1 = Λ2s−1(Y
α, Kα), we have Λ2s−1 ≥ 2s−qAs,q Bs,q for

every s ∈ N and for every even q ≤ s − 1, in particular for q ≈
[
log s
logα

]
. Finally,

using the lower bounds corresponding to As,qBs,q that we obtained, we get

Λ2s−1 > 2s−q exp (−2ε−1α − 1).

Taking limits as s tends to infinity, we attain

lim
s→∞

Λ2s−1 =∞. (3.15)
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By this result, for the particular exclusion of the node xm =
s∑
j=0

(−1)j`j, we

have that the corresponding subsequence of Lebesgue constants is unbounded.

The reason we have chosen the node xm in particular is because we think that

the following conjecture is true.

Conjecture 3.3.6. Let Ωk =
2s+1∏
i=1
i 6=k

|xk − xi|. Then for every s ∈ N and k =

1, 2, ..., 2s+1, we have

Ωm ≤ Ωk.

The proof of this conjecture is currently under progress. Assuming Conjecture

3.3.6 is true, we have the following inequality:

λ2s+1−1(Y
α
m,s, xm) =

2s+1∑
i=1
i 6=m

Ωm

Ωi

≤
2s+1∑
i=1
i 6=k

Ωk

Ωi

= λ2s+1−1(Y
α
k,s, xk) (3.16)

Thus, (3.15) and (3.16) imply that all such subsequences (every choice of ex-

clusion) of Lebesgue constants diverge.
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