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In this paper we investigated structural, electronic, and magnetic properties of 3d (light) transition metal
atomic chains using first-principles pseudopotential plane-wave calculations. Infinite periodic linear, dimerized
linear, and planar zigzag chain structures, as well as their short segments consisting of finite number of atoms
have been considered. Like Cu, the periodic, linear chains of Mn, Co, and Ni correspond to a local shallow
minimum. However, for most of the infinite periodic chains, neither linear nor dimerized linear structures are
favored; to lower their energy the chains undergo a structural transformation to form planar zigzag and
dimerized zigzag geometries. Dimerization in both infinite and finite chains is much stronger than the usual
Peierls distortion and appears to depend on the number of 3d electrons. As a result of dimerization, a signifi-
cant energy lowering occurs which, in turn, influences the stability and physical properties. Metallic linear
chain of vanadium becomes half-metallic upon dimerization. Infinite linear chain of scandium also becomes
half-metallic upon transformation to the zigzag structure. An interplay between the magnetic ground state and
the atomic as well as the electronic structure of the chain has been revealed. The end effects influence the
geometry, the energetics, and the magnetic ground state of the finite chains. Structure optimization performed
using noncollinear approximation indicates significant differences from the collinear approximation. Variation
of the cohesive energy of infinite- and finite-size chains with respect to the number of 3d electrons is found to
mimic the well-known bulk behavior. The spin-orbit coupling of finite chains is found to be negligibly small.
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I. INTRODUCTION

The fabrication of nanoscale structures, such as quantum
dots, nanowires, atomic chains, and functionalized mol-
ecules, has made a great impact in various fields of science
and technology.'™* The size and dimensionality have been
shown to strongly affect the physical and chemical properties
of matter.> Electrons in lower dimensionality undergo a
quantization which is different from that in the bulk
materials.®~8 In nanostructures, the quantum effects, in par-
ticular the discrete nature of electronic energies with signifi-
cant level spacing, become pronounced.

The suspended monatomic chains being an ultimate one-
dimensional (1D) nanowire have been produced and their
fundamental properties have been investigated both theoreti-
cally and experimentally.®-'° Ballistic electron transport®
with quantized conductance at room temperature has been
observed in metallic nanowires.>'> Moreover, magnetic and
transport properties become strongly dependent on the de-
tails of atomic configuration. Depending on the type and po-
sition of a foreign atom or molecule that is adsorbed on a
nanostructure, dramatic changes can occur in the physical
properties.> Some experimental studies, however, aimed at
producing the atomic chains on a substrate.’® Here the
substrate-chain interaction can enter as an additional degree
of freedom to influence the physical properties.

Unlike the metal and semiconductor atomic chains, not
many theoretical studies are performed on transition
metal?=2* (TM) monatomic chains. TM monatomic chains
have the ability to be magnetized much more easier the
bulk.?’ Large exchange interactions of TM atoms in the bulk
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are overcome by the large electron kinetic energies, which
result in a nonmagnetic (NM) ground state with large band-
width. On the other hand, geometries which are nonmagnetic
in bulk may have magnetic ground states in monatomic
chains.? In addition, it is predicted that the quantum con-
finement of electrons in metallic chains should result in a
magnetic ground state and even in a superparamagnetic state
for some of the TM chains®® at finite temperatures. The cen-
tral issue here is the stability of the chain and the interplay
between 1D geometry and the magnetic ground state.?’->*

From the technological point of view, TM monatomic
chains are important in the spin-dependent electronics,
namely, spintronics.”’” While most of the conventional elec-
tronics is based on the transport of information through
charges, future generation spintronic devices will take the
advantage of the electron spin to double the capacity of elec-
tronics. It has been revealed that TM atomic chains either
suspended or adsorbed on a 1D substrate, such as carbon
nanotubes or Si nanowires, can exhibit high spin-polarity or
half-metallic behavior relevant for the spin-valve effect.’ Re-
cently, first-principles pseudopotential calculations have pre-
dicted that the finite-size segments of linear carbon chains
capped by specific 3d TM atoms display an interesting even-
odd disparity depending on the number of carbon atoms.?®
For example, CoC,Co linear chain has an antiferromagnetic
(AFM) ground state for even n, but the ground state changes
to ferromagnetic (FM) for odd n. Even more interesting is
the ferromagnetic excited state of an antiferromagnetic
ground state can operate as a spin-valve when CoC,Co chain
is connected to metallic electrodes from both ends.?

As the length of the chain decreases, finite-size effects
dominate the magnetic and electronic properties.”!?> When
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compared with the infinite case, the finite-size monatomic
chains are less stable to thermal fluctuations.>® Additional
effects on the behavior of nanoparticle are their intrinsic
properties and the interaction between them.?*-3? The effects
of noncollinear magnetism have to be taken into account as
well.*3-3 The end atoms also exhibit different behaviors with
respect to the atoms close to the middle of the structure.3®

In this paper, we consider infinite, periodic chains of 3d
TM atoms having linear and planar zigzag structures and
their short segments consisting of finite number of atoms.
For the sake of comparison, Cu and Zn chains are also in-
cluded in our study. All the chain structures discussed in this
paper do not correspond to the global minimum but may
belong to a local minimum. The infinite and periodic geom-
etry is of academic interest and can also be representative for
very long monatomic chains. The main interest is, however,
in the short segments comprising finite number of TM atoms.
We examined the variation of energy as a function of the
lattice constant in different magnetic states and determined
stable infinite- and also finite-size chain structures. We inves-
tigated the electronic and magnetic properties of these struc-
tures. Present study revealed a number of properties of fun-
damental and technological interest: The linear geometry of
the infinite, periodic chain is not stable for most of the 3d
TM atoms. Even in linear geometry, atoms are dimerized to
lower the energy of the chain. We found that infinite linear
vanadium chains are metallic, but become half-metallic upon
dimerization. The planar zigzag chains are more energetic
and correspond to a local minimum. For specific TM chains,
the energy can further be lowered through dimer formation
within the planar zigzag geometry. Dramatic changes in the
electronic properties occur as a result of dimerization. The
magnetic properties of short monatomic chains have been
investigated using both collinear and noncollinear approxi-
mations, which are resulted in different net magnetic mo-
ments for specific chains. Spin-orbit (SO) coupling which is
calculated for different initial easy axis of magnetization has
been found to be negligibly small.

II. METHODOLOGY

We have performed first-principles plane-wave
calculations®”*® within density-functional theory®® using ul-
trasoft pseudopotentials.** We also used projector augmented
wave (PAW) (Ref. 41) potentials for the collinear and non-
collinear spin-orbit calculations of the finite chains. The
exchange-correlation potential has been approximated by
generalized gradient approximation (GGA).*? For the partial
occupancies, we have used the Methfessel-Paxton smearing
method.*3 The widths of smearing for the infinite structures
have been chosen as 0.1 eV for geometry relaxations and as
0.01 eV for the accurate energy band and the density of state
calculations. As for the finite structures, the width of smear-
ing is taken as 0.01 eV. We treated the chain structures by
supercell geometry (with lattice parameters, d., by, and ¢,.)
using the periodic boundary conditions. A large spacing (
~10 A) between the adjacent chains has been assured to
prevent interactions between them. In single cell calculations
of the infinite systems, c,. has been taken to be equal to the
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FIG. 1. (Color online) Various structures of 3d TM atomic
chains. (a) Infinite and periodic structures; L—the infinite linear
monatomic chain of TM atom with lattice constant c¢. LD—the
dimerized linear monatomic chain with two TM atoms in the cell. €
is the displacement of the second atom from the middle of the unit
cell. ZZ—the planar zigzag monatomic chain with lattice parameter
¢ and unit cell having two TM atoms. c¢; ~c¢, and 59° <a<62°.
77D—the dimerized zigzag structure c¢; # ¢,. WZ—the wide angle
zigzag structure ¢~ ¢,, but with a@>100°. (b) Various chain struc-
tures of small segments consisting of finite number (n) of TM at-
oms, denoted by (TM),,.

a)

=

lattice constant of the chain. The number of plane waves
used in expanding the Bloch functions and that of k points
used in sampling the Brillouin zone (BZ) have been deter-
mined by a series of convergence tests. Accordingly, in the
self-consistent potential and the total energy calculations, the
BZ has been sampled by (1 X 1X41) mesh points in k space
within the Monkhorst-Pack scheme.** A plane-wave basis
set with the kinetic energy cutoff |k +G|?/2m=350 eV has
been used. In calculations involving PAW potentials, kinetic
energy cutoff is taken as 400 eV. All the atomic positions and
lattice constants (c,.) have been optimized by using the con-
jugate gradient method where the total energy and the atomic
forces are minimized. The convergence is achieved when the
difference of the total energies of last two consecutive steps
is less than 107 eV and the maximum force allowed on
each atom is 0.05 eV/A. As for the finite structures, super-
cell has been constructed in order to assure ~10 A distance
between the atoms of adjacent finite chain in all directions
and BZ is sampled only at the I point. The other parameters
of the calculations have been kept the same. The total energy
of the optimized structure (Ey) relative to free atom energies
is negative, if it is in a binding state. As a rule, the structure
becomes more energetic (or stable) as its total energy is low-
ered. Figure 1 describes various chain structures of TM at-
oms treated in this study. These are the infinite periodic
chains and the segments of a small number of atoms forming
a string or a planar zigzag geometry. The stability of
structure-optimized finite chains is further tested by displac-
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FIG. 2. (Color online) The energy versus lattice constant ¢ of
various chain structures in different magnetic states. FM—
ferromagnetic, ~AFM—antiferromagnetic, ~ NM—nonmagnetic,
FMD—ferromagnetic state in the linear or zigzag dimerized struc-
ture, and AFMD—antiferromagnetic state in the dimerized linear or
zigzag structure. The energy is taken as the energy per unit cell
relative to the free constituent atom energies in their ground state
(see text for definition). In order to compare the energy of the L
structure with that of the LD, the unit cell (and also lattice constant)
of the former is doubled in the plot. Types of structures identified as
L, LD, ZZ, ZZD, and WZ are described in Fig. 1.

ing atoms from their equilibrium positions in the plane and
subsequently reoptimizing the structure. Finite-size clusters
of TM atoms are beyond the scope of this paper.

III. INFINITE AND PERIODIC CHAIN STRUCTURES

Figure 2 shows the energy versus lattice constant of vari-
ous infinite and periodic chain structures (described in Fig.
1) in different magnetic states. These are the infinite linear
(L), the dimerized linear (LD), the planar zigzag (ZZ), and
the dimerized zigzag (ZZD) monatomic chains. WZ is a
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planar zigzag monatomic chain which has apical angle «
>100°. In calculating the FM state, the structure is opti-
mized each time using a spin-polarized GGA calculations
starting with a different preset magnetic moment in agree-
ment with Hund’s rule. The relaxed magnetic moment yield-
ing to the lowest total energy has been taken as the FM state
of the chain. For the AFM state, we assigned different initial
spins of opposite directions to adjacent atoms and relaxed the
structure. We performed spin-unpolarized GGA calculations
for the NM state. The energy per unit cell relative to the free
constituent atoms is calculated from the expression E
=[NE,—E7] in terms of the total energy per unit cell of the
given chain structure for a given magnetic state (E7) and the
ground state energy of the free constituent TM atom E,. N is
the number of TM atom in the unit cell, which is N=1 for L,
but N=2 for LD, ZZ, and ZZD structures. The minimum of
E is the binding energy. By convention E, <0 corresponds to
a binding structure but not necessary to a stable structure.
The cohesive energy per atom is E.=—E,/N. Light transition
metal atoms can have different structural and magnetic states
depending on the number of their 34 electrons. For example,
Sc having a single 3d electron has a shallow minimum cor-
responding to a dimerized linear chain structure in the FM
state. If the L structure is dimerized to make a LD structure,
the energy of the chain is slightly lowered. Other linear
structures, such as linear NM, and AFM states have higher
energy. More stable structure ZZ is, however, in the FM
state. This situation is rather different for other 3d TM ele-
ments. For example, Cr has LD and more energetic ZZD
structures in the AFM state. It should be noted that in the
dimerized linear chain structure of Cr, the displacement of
the second atom from the middle of the unit cell, €, is rather
large. Apparently, the dimerization is stronger than the usual
Peierls distortion. As a result, the nearest neighbor distance
(c—e€) is much smaller than the second nearest neighbor dis-
tance (c+e€). This situation poses the question whether the
interaction between the adjacent dimers is strong enough to
maintain the coherence of the chain structure. We address
this question by comparing the energies of individual dimers

Y

FIG. 3. (Color online) The plot of charge accumulation, namely,
the positive part of the difference between the charge density of the
interacting system and that of the noninteracting system for the
linear (L) and the dimerized linear structure (LD) of Cr monatomic
chains. The contour spacings are equal to Ap=0.0827 ¢/A3. The
outermost contour corresponds to Ap=0.0827 /A3, The dark balls
indicate the Cr atom.
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TABLE L. The calculated values for linear structures (L and LD): the lattice constant ¢ (in A), the displacement of the second atom in the
unit cell of dimerized linear structure € (in A), the cohesive energy E, (in eV/atom), the magnetic ground state (MGS), and the total magnetic
moment g per unit cell (in Bohr magnetons up) obtained within collinear approximation.

Sc Ti \'% Cr Mn Fe Co Ni Cu Zn
c 6.0 49 4.5 4.4 2.6 4.6 2.1 2.2 2.3 2.6
€ 0.38 0.52 0.51 0.66 0.0 0.21 0.0 0.0 0.0 0.0
E, 1.20 1.83 1.86 1.40 0.76 1.81 2.10 1.99 1.54 0.15
MGS FM FM FM AFM AFM FM FM FM NM NM
M 1.74 0.45 1.00 +1.95 +4.40 3.32 2.18 1.14 0.0 0.0

with the chain structure. The formation of the LD structure is
energetically more favorable with respect to individual dimer
by 0.54 eV/atom. Furthermore, the charge accumulation,
namely the positive part of the difference between the charge
density of the interacting system and that of the noninteract-
ing system, presented in Fig. 3, indicates a significant bond-
ing between the adjacent dimers. On the other hand, the
bonding in a dimer is much stronger than the one in the L
chain. Nevertheless, the LD structure has to transform to
more energetic ZZD structure. The zigzag structures in the
AFM, FM, and NM states have minima at higher binding
energies and hence are unstable.

The linear structures of Ti atoms always prefer dimerized
geometries and the displacement of the second atom from the
middle of the unit cell is large. There is also a remarkable
energy difference between L and LD structures in favor of
the latter. The energies of LD AFM, FM, and NM structures
are very close to each other. Looking at the band structure of
L and LD Ti chain in Fig. 7, it can easily be seen that dimer-
ization forms flat bands which are results of localized elec-
trons. This band structure suggests that Ti atoms form two
atom molecules which interact weakly with adjacent dimer
molecules. However, more energetic ZZ structures do not
dimerize. All magnetic structures of V prefer to dimerize.
Dimerization of V atoms also influences the magnetic and
the electronic properties of the structure. One sees that the
number of flat bands increases after dimerization. Vanadium
is the only light TM monatomic ZZ chain which appears in

the NM lowest energy state. The linear and the linear dimer-
ized Fe chains have a local minimum in the FM state. More
stable ZZ and ZZD structures in the FM state have almost
identical minima in lower binding energy. The ferromagnetic
planar zigzag chain structure appears to be the lowest energy
structure for Mn. Both Co and Ni monatomic chains prefer
the FM state in both L and ZZ structures. The energy of ZZ
chain in the FM state is lowered slightly upon dimerization.
The displacement of the second atom in ZZD structure is
also not very large. It is also saliency to note that Fe, Mn and
Co chains in the NM state undergo a structural transforma-
tion from ZZ to WZ structure. As the number of electrons in
the d shell of atom increases, the effect of dimerization on
the energy and the geometry of the structure decreases.
Therefore, it can be concluded that 3d TM atoms having
fewer electrons can make hybridization easier. It is noted
from Fig. 2 that the structure of 3d TM atomic chains is
strongly dependent on their magnetic state. Optimized struc-
tural parameters, cohesive energy, magnetic state, and net
magnetic moment of infinite linear and zigzag structures are
presented in Tables I and II, respectively.

In Figs. 4 and 5 we compare the nearest neighbor distance
and the average cohesive energy of the linear and zigzag
chain structures with those of the bulk metals and plot their
variations with respect to their number of 3d electrons of the
TM atom. The nearest neighbor distance in the linear and
zigzag structures is smaller than that of the corresponding
bulk structure but displays similar trend. Namely, it is large
for Sc having a single 3d electron and decreases as the num-

TABLE II. The calculated values for the planar zigzag structures (ZZ and ZZD): the lattice constant ¢ (in A), the first nearest neighbor

¢; (in A), the second nearest neighbor ¢, (in A), the angle between them « (in degrees), the cohesive energy E, (in eV/atom), the magnetic
ground state (MGS), and the total magnetic moment w per unit cell (in Bohr magnetons up) obtained within collinear approximation.

Sc Ti A% Cr Mn Fe Co Ni Cu Zn
c 3.17 2.60 2.60 2.90 2.76 2.40 2.30 2.30 2.40 2.50
c 2.94 243 1.84 1.57 2.64 2.24 2.23 2.33 2.39 2.67
CH 2.94 245 242 2.65 2.64 2.42 2.39 2.33 2.39 2.67
@ 65.2 64.5 73.8 82.6 63.0 61.9 59.6 59.1 60.2 55.8
E, 2.05 2.78 2.64 1.57 1.32 2.69 291 2.74 2.16 0.37
MGS M FM NM AFM FM FM FM FM NM NM
o 0.99 0.18 0.0 +1.82 4.36 3.19 2.05 0.92 0.0 0.0
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FIG. 4. (Color online) Variation of the nearest neighbor distance
of 3d TM atomic chains and the bulk structures. For the linear and
zigzag structures the lowest energy configuration (i.e., symmetric or
dimerized one) has been taken into account. The experimental val-
ues of the bulk nearest neighbor distances have been taken from
Ref. 47.

ber of 3d electrons, i.e. N,, increases to 4. Mn is an excep-
tion, since the bulk and the chain structure show opposite
behavior. While the nearest neighbor distance of bulk Mn is
a minimum, it attains a maximum value in the chain struc-
ture. Owing to their smaller coordination number, chain
structures have smaller cohesive energy as compared to the
bulk crystals as shown in Fig. 5. However, both L (or LD if
it has a lower energy) and ZZ (or ZZD if it has a lower
energy) also show the well-known double hump behavior
which is characteristics of the bulk TM crystals. Earlier, this
behavior was explained for the bulk TM crystals.**% The
cohesive energy of zigzag structures is generally ~0.7 eV
larger than that of the linear structures. However, it is 1-2 eV
smaller than that of the bulk crystal. This implies that stable
chain structures treated in this study correspond only to local
minima in the Born—-Oppenheimer surface.

We note that spin-polarized calculations are carried out
under collinear approximation. It is observed that all chain
structures presented in Tables I and II have magnetic state if
N;<9. Only Cr and Mn linear chain structures and Cr zigzag

6
s| 9B o
/’ \ . 2
/ \ __e—-
4[%/ » »

Cohesive Energy (eV/atom)

1 /—\/ O Bulk (Calc.) )
I — -6— -Bulk (Exp.) 1

—a—77
—e—1,

Sc Ti V Cr Mn Fe Co Ni Cu Zn

FIG. 5. (Color online) Variation of the cohesive energy E. (per
atom) of 3d TM monatomic chains in their lowest energy linear,
zigzag, and bulk structures. For the linear and zigzag structures the
highest cohesive energy configuration (i.e., symmetric or dimerized
one) has been taken into account. The experimental values of the

bulk cohesive energies have been taken from Ref. 47.
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FIG. 6. (Color online) Variation of the binding energy difference
AE (per atom) between the lowest antiferromagnetic and ferromag-
netic states of 3d TM monatomic chains. The open squares and
filled circles are for the symmetric zigzag ZZ and dimerized zigzag
ZZD chains, respectively.

chain structure have an AFM lowest energy state. The bind-
ing energy difference between the AFM state and the FM
state, AE :E,’J\FM—EFM, is calculated for all 3d TMs. Varia-
tion of AE with N, is plotted in Fig. 6. We see that only Cr
77 and ZZD chains have an AFM lowest energy state. AE of
Fe is positive and has the largest value among all 3d TM
zigzag chains. Note that AE increases significantly as a result
of dimerization.

Having discussed the atomic structure of 3d TM chains,
we next examine their electronic band structure. In Fig. 7,
the chain structures in the first column do not dimerize. The
linear chains placed in the third column are dimerized and
changed from the L structure placed in the second column to
form the LD structure. Most of the linear structures in Fig. 7
display a FM metallic character with broken spin degen-
eracy. A few exceptions are Mn, Cr, and V chains. The linear
Mn chain has an AFM state, where spin-up (majority) and
spin-down (minority) bands coincide. Chromium L and LD
structures are AFM semiconductors. Vanadium is a ferro-
magnetic metal for both spins but becomes half-metallic
upon dimerization. In half-metallic state, the chain has inte-
ger number of net spin in the unit cell. Accordingly, vana-
dium chain in the LD structure is metallic for one spin di-
rection but semiconducting for the other spin direction.
Hence, the spin polarization at the Fermi level, i.e. P
=[D{(Ep)-D | (Ep))/[Dy(Ep)+D (Ef)], is 100%. Bands of
Cu and Zn with filled 3d shell in nonmagnetic state are in
agreement with previous calculations.*® In Fig. 8, the chain
structures in the first column have only ZZ structure. The
zigzag chains in the second column are transformed to a
lower energy (i.e. more energetic) ZZD structure in the third
column. The ZZ chain of Sc is stable in a local minimum
and displays a half-metallic character with 100% spin-
polarization at the Fermi level. Accordingly, a long segment
of ZZ chain of Sc can be used as a spin valve. Ti, Mn, and Ni
in their stable zigzag structures are FM metals. The stable
77D structures of Fe and Co chains are also FM metals. The
77 and relatively lower energy ZZD structure of V chain are
nonmagnetic. Both ZZ and ZZD structures of Cr are in the
AFM state.
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FIG. 7. (Color online) Energy band structures of 3d TM atomic
chains in their L and LD structures. The zero of energy is set at the
Fermi level. The gray and black lines are the minority and majority
bands, respectively. In the antiferromagnetic state majority and mi-
nority bands coincide. The energy gaps between the valence and the
conduction bands are shaded.

For Co and Fe in the ZZD structure more bands of one
type of spin cross the Fermi level as compared to those of the
other type of spin resulting in a high spin polarization at the
Fermi level. This situation implies that in the ballistic elec-
tron transport, the conductance of electrons with one type of
spin is superior to electrons with the opposite type of spin,
namely, o> oy. Accordingly, the conductance of electrons
across Fe and Co chains becomes strongly dependent on
their spin directions. This behavior of the infinite periodic Fe
or Co chain is expected to be unaltered to some extend for
long but finite chains and can be utilized as a spin-dependent
electronic device. In closing this section, we want to empha-
size that the infinite, periodic chains of 3d TM atoms can be
in the zigzag structure corresponding to a local minimum.
However, most of the zigzag structures are dimerized.
Dimerization causes remarkable changes in electronic and
magnetic properties.

IV. SHORT CHAIN STRUCTURES

Periodic infinite chains in Sec. III are only ideal struc-
tures; long finite-size segments perhaps can attain their
physical properties revealed above. On the other hand, the
end effects can be crucial for short segments consisting of
few atoms which may be important for various spintronic
applications. In this section, we examine short segments of
3d TM chains consisting of n atoms, where n=2-7.

PHYSICAL REVIEW B 77, 214413 (2008)
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FIG. 8. (Color online) Energy band structures of 3d TM atomic
chains in their ZZ and ZZD structures. The zero of energy is set at
the Fermi level. The gray and black lines are minority and majority
spin bands, respectively. The gray and dark lines coincide in the
antiferromagnetic state. Only the dark lines describe the bands of
nonmagnetic state. The energy gap between the valence and the
conduction bands is shaded.

A. Collinear approximation

We first study the atomic structure and magnetic proper-
ties of the finite chains within collinear approximation using
ultrasoft pseudopotentials.*” The linear structure is unstable
for the finite-size segments. Various planar zigzag structures,
which are only local minima, are described in Fig. 1. We
optimized the geometry of these zigzag structures with dif-
ferent initial conditions of magnetic moment on the atoms
within collinear approximation. If the final optimized struc-
tures for ¢ different initial conditions result in different av-
erage cohesive energy (or different total energy), they may
actually trapped in different local minima. Here we consid-
ered the following different initial conditions: (1) At the be-
ginning, opposite magnetic moments *u, have been as-
signed to adjacent atoms, and the total magnetic moment,
pm=2u,, has been forced to vanish at the end of optimization
for n=2-7. Initial magnetic moment w, on atoms is deter-
mined from the Hund rule. (2) For n=2-7, initial magnetic
moments of all atoms have been taken in the same direction,
but the final magnetic moment of the structure has been de-
termined after optimization without any constraint. (3) For
n=2-17, the system is relaxed using spin-unpolarized GGA.
(4) For n=2-7, initial magnetic moments of chain atoms
have been assigned as is done in (1), but u=>pu, is not
forced to vanish in the course of relaxation. (5) For n=2-7,
spin-polarized GGA calculations have been carried out with-
out assigning any initial magnetic moment. (6) We have as-
signed the magnetic moments | |T forn=4and T| | |1 for
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TABLE III. The average cohesive energy E. (in eV/atom), the net magnetic moment w (in Bohr magneton up), the magnetic ordering
(MO), and the LUMO-HOMO gap of majority and/or minority states, ETG and Eé, respectively (in eV) for lowest energy zigzag structures.
p/q indicates that the same optimized structure occurred p times starting from ¢ different initial conditions (see text). Results have been
obtained by carrying out structure optimization within collinear approximation using the ultrasoft pseudopotentials.

77 Sc Ti v Cr Mn Fe Co Ni Cu Zn
n=2 E, 0.83 1.38 1.29 0.93 0.32 1.29 1.49 1.38 1.14 0.02
)% 4.0 2.0 2.0 0.0 10.0 6.0 4.0 2.0 0.0 0.0
EI;/ElG 0.59/1.60 0.29/1.01 1.03/1.22 2.17/2.17 2.04/0 1.14/0.59 1.42/0.36  1.48/0.27 1.59/1.59 3.96/3.96
MO FM FM FM AFM FM FM FM FM NM NM
p(g=5) 2 1 2 1 1 2 2 1 3 3
n=3 E, 1.30 1.87 1.61 0.91 0.63 1.72 1.84 1.78 1.24 0.12
) 1.0 6.0 3.0 6.0 15.0 10.0 7.0 2.0 1.0 0.0
ETc/ElG 0.66/0.44 0.45/1.08 0.31/0.78 1.23/2.03 1.66/0.35 0.39/0.58 0.19/0.18 0.87/0.24 0.08/1.55 2.96/2.96
MO FM FM FM FM FM FM FM FM FM NM
p(g=5) 3 1 2 2 1 2 3 3 1 3
n=4 E, 1.54 2.13 2.01 1.16 0.84 2.07 2.31 2.08 1.61 0.13
m 4.0 2.0 2.0 0.0 18.0 14.0 10.0 4.0 0.0 0.0
Ez;/ElG 0.37/0.36  0.46/0.50 0.35/0.30 1.16/0.61 1.16/0.50 1.47/0.04 1.98/0.34 1.10/0.25 0.96/0.96 2.35/2.35
MO FM FM FM AFM* FM FM FM FM NM NM
p(q=6) 5 3 4 4 4 2 1 3 3 3
n=5 E, 1.63 2.27 2.08 0.83 0.91 2.25 2.46 2.23 1.74 0.15
m 3.0 0.0 0.0 0.0 5.0 16.0 11.0 6.0 1.0 0.0
ETG/ ElG 0.29/0.46  0.43/0.43 0.49/0.40 0.47/0.52 1.12/0.30 1.42/0.56 1.53/0.37 1.47/0.09 1.42/0.90 1.96/1.96
MO FM AFM* AFM* AFM* FM FM FM FM FM NM
p(g=6) 3 4 2 4 4 1 1 3 1 3
n=6 E. 1.69 2.32 2.26 1.29 1.02 2.31 2.50 2.29 1.75 0.17
m 8.0 0.0 0.0 0.0 0.0 20.0 14.0 6.0 2.0 0.0
Eg/ElG 0.22/0.29 0.44/0.44  0.54/0.54 0.53/0.55 0.41/0.38 1.33/0.41 0.30/0.32 0.28/0.10 1.42/0.95 1.88/1.88
MO FM AFM AFM AFM* AFM* FM FM FM FM NM
plg=T7) 3 3 7 4 4 2 4 4 1 3
n=17 E. 1.74 2.38 2.22 1.25 1.06 2.35 2.58 2.36 1.84 0.18
)% 7.0 6.0 5.0 6.0 5.0 22.0 15.0 8.0 1.0 0.0
Eg/E%; 0.01/0.33  0.34/0.21 0.32/0.48 0.54/0.68 0.85/0.42 0.95/0.29 0.98/0.17 0.83/0.09 0.79/0.61 1.77/1.77
MO FM FM FM FM FM FM FM FM FM NM
plg=17) 5 3 6 4 5 1 2 4 1 3

n=>5. Here different spacings between two spin arrows indi-
cate different bond lengths. This way different exchange cou-
plings for different bond lengths and hence dimerization is
accounted. (7) The initial magnetic moments on atoms T] |1
1] forn=6and 1|7 1 7)1 for n=7 have been assigned. (8)
Similar to (7), initial magnetic moments 7|7 T]7 and T}
LT1 |7 have been assigned for n=6 and n=7, respectively.
Last three initial conditions are taken into consideration due
to the fact that different bond lengths of 3d TM atoms affect
the type of magnetic coupling between consecutive atoms.?*
The initial atomic structures have been optimized for these
initial conditions except Cu and Zn. Only first three condi-
tions are consistent with Cu and Zn. As the initial geometry,
a segment of n atoms has been extracted from the optimized
infinite zigzag chain and placed in a supercell, where the

interatomic distance between adjacent chains was greater
than 10 A for all atoms. Our results are summarized in Table
III, where the magnetic orders having the same lowest total
energy occurred p times from ¢ different initial conditions
are presented. In this respect the magnetic ordering in Table
IIl may be a potential candidate for the magnetic ground
state.

The average cohesive energy of finite-size chains in-
creases with increasing n. In Fig. 9, we plot the average
cohesive energy of these small segments consisting of n at-
oms. For the sake of comparison, we presented the plots for
the linear and zigzag structures. The average values of cohe-
sive energy in Fig. 9(b) are taken from Table III. We note
three important conclusions drawn from these plots. (i) The
cohesive energies of the zigzag structures are consistently
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FIG. 9. (Color online) Variation of the average cohesive energy
of small segments of chains consisting of n atoms. (a) The linear
chains; (b) the zigzag chains. In the plot, the lowest energy configu-
rations for each case obtained by optimization from different initial
conditions.

larger than those of the linear structures, and the cohesive
energies also increase with increasing n. (ii) For each types
of structures, as well as for each n, the variation of E,. with
respect to the number of 3d electrons in the outer shell, N,
exhibits a double hump shape, which is typical of the bulk
and the infinite chain structures as presented in Fig. 5. (iii)
For specific cases E (n,) <E.(n;), even if n,>n; (V and Cr).
This situation occurs because the total energy cannot be low-
ered in the absence of dimerization.

Most of the finite zigzag chain structure of 3d TM atoms
has a FM lowest energy state. The magnetic ordering speci-
fied by AFM* for specific chains indicates that the magnetic
moment on individual atoms, w,, may be in opposite direc-
tions or may have unequal magnitudes, but the total mag-
netic moment, w=2>u,, adds up to zero. The finite chains of
Zn atoms are always nonmagnetic for all n. Finite zigzag
chains of Cu are nonmagnetic for even n, except n=6. Inter-
estingly, the dimerized linear chain of Cr (n=5) with a FM
lowest energy state is more energetic than that of the zigzag
chain given in Table III. The geometry of this structure is
such that two dimers consisting of two atoms are formed at
both ends of the linear structure and a single atom at the
middle is located equidistant from both dimers. The distance
from the middle atom to any of the dimers is approximately
twice the distance between the atoms in the dimer. Even
though the nearest neighbor distance of the middle atom to
dimers is long, there is a bonding between them. The cohe-
sive energy is ~0.2 eV higher than that of the zigzag case,
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and the total magnetic moment of the structure (6up) is pro-
vided by the atom at the middle. This is due to the fact that
two dimers at both ends are coupled in the AFM order. This
is an expected result because the cohesive energy (per atom)
of Cr, is higher than that of Crs in the zigzag structure. The
lowest unoccupied molecular orbital (LUMO)/highest occu-
pied molecular orbital (HOMO) gap for majority and minor-
ity spin states usually decreases with increasing n. However,
depending on the type of TM atom, the maximum value of
the gap occurs for different number n of atoms. The zigzag
chains of Zn atoms usually have the largest gap for a given n.

Even though the total magnetic moment, u=2>u,, of the
AFM* state vanishes for the finite molecule, LUMO-HOMO
gaps for majority and minority states are not generally the
same as in the AFM state. This can be explained by exam-
ining the magnetic moment on every individual atom and the
geometry of the molecule. For Cry, the magnetic moment on
each atom is lined up as described in the sixth initial condi-
tion. In this ordering, two dimers each consisting of two
atoms are in the AFM ordering within themselves, but in the
FM ordering with each other. The distribution of final mag-
netic moment on atoms for Mng also obeys one of the initial
conditions [case (7)]. Three dimers each consisting of two
atoms coupled in the AFM order within themselves, but in
the FM order with each other. Similar results are also ob-
tained for other AFM™ states.

The zigzag planar structure for n>3 in Table III corre-
sponds to a local minimum. To see whether the planar zigzag
structures are stable or else it transforms to other geometry
by itself is a critical issue. To assure that the finite chain
structures of n=4 and n="7 in Table III are stable in a local
minimum, we first displaced the atoms out of planes, then we
optimized the structure. Upon relaxation all displaced atoms
returned to their equilibrium position on the plane.

B. Noncollinear approximation and the spin-orbit interaction

In cases where both AFM and FM couplings occur and
compete with each other, collinear magnetism fails for mod-
eling the ground state magnetic ordering. A midway between
AFM and FM exchange interactions results in allowing the
spin quantization axis to vary in every site of the structure.
Geometric structure also influences noncollinear magnetism.
Frustrated antiferromagnets having triangular lattice struc-
ture, disordered systems, as well as broken symmetry on the
surface will result in noncollinear magnetism. Spin glasses,
a-Mn, domain walls, and Fe clusters are typical examples of
noncollinearity. Finite structures that are studied in this paper
all have low symmetry and AFM-FM coupling competition,
which increase the probability of observing noncollinear
magnetism. Coupling the magnetic moment to the crystal
structure (spin-orbit coupling) plays an important role in de-
termining the direction of easy axes of magnetization. This
magnetization axis influences magnetic anisotropy and it is
required for determining the magnetic behavior of the struc-
ture in a magnetic field. Due to the geometry of the finite
molecules studied in this paper, shape and magnetocrystal-
line anisotropy are expected to result in noncollinear magne-
tism. For further information on noncollinear magnetism, see
Refs. 49-54.
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The finite chains discussed in Sec. III within collinear
approximation will now be treated using noncollinear ap-
proximation. To this end, the structure of chains has been
optimized starting from the same initial geometry [starting
from a segment of n atoms extracted from the optimized
infinite ZZ (or ZZD) chain placed in a supercell] and five
different initial configurations of spins on individual atoms.
(i) The direction of the initial magnetic moment on the atoms
is consecutively altered as xyzy. (ii) No preset directions are
assigned to the individual atoms; they are determined in the
course of structure optimization using noncollinear approxi-
mation. (iii) For each triangle, the initial magnetic moment
on the atoms has a nonzero component only in the xy plane,
but (Zyu,)y=0. (Here “A” stands for the summation over
the atoms forming a triangle.) (iv) Similar to (iii), but
(Zama).#0. (v) In a zigzag chain, the magnetic moments of
atoms on the lower row are directed along the z axis, while
those on the upper row are directed in the opposite direction.
Using these five different initial conditions on the magnetic
moment of individual atoms, the initial atomic structure is
optimized using both ultrasoft** pseudopotentials and PAW
(Ref. 41) potentials. We first discuss the results obtained by
using ultrasoft pseudopotentials. Almost all of the total mag-
netic moment and the cohesive energy of the optimized
structures have been in good agreement with those given in
Table III (obtained within collinear approximation). How-
ever, there are some slight changes for specific finite struc-
tures. For example, Sc; is found to have magnetic moment of
7up in collinear approximation. Even though one of the ini-
tial conditions in noncollinear calculations resulted in the
same magnetic moment and energy, we also found a state
which has 0.01 eV lower total energy with the total magnetic
moment of 9ug. The same situation also occurred with PAW
potential. Tis has a special magnetic moment distribution
which is the same for both ultrasoft and PAW cases and will
be explained below. In collinear approximation, Vs is noted
to have zero magnetic moment; nevertheless, there is a state
of 0.03 eV lower in energy which is FM with u=1. Even
though Co; has the same total magnetic moment in both
collinear and noncollinear cases, there is a significant energy
difference between two cases.

Noncollinear calculations have also been performed using
PAW potentials (which is necessary for the spin-orbit cou-
pling calculations) starting with five different initial assign-
ments of magnetic moments as described above. Most of our
calculations have yielded the same magnetic moment distri-
bution with previous calculations, but there are still few
cases which are resulted differently. Mn; is an exception;
all structure optimization starting from different initial con-
ditions resulted in a nonplanar geometry. Note that in collin-
ear and noncollinear calculations using ultrasoft pseudopo-
tential Mn; was stable in a local minimum corresponding to
the planar zigzag geometry, but it formed a cluster when
spin-orbit coupling and noncollinear effects are taken into
account by using PAW potentials. Unlike other n=5 zigzag
structures, Tis has a unique ordering of the atomic magnetic
moments. Two Ti atoms on the upper row have magnetic
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FIG. 10. (Color online) The atomic magnetic moments of some
finite chains of 3d transition metal atoms. Numerals on the atomic
sites stand for the value of the atomic magnetic moments. Positive
and negative numerals are for spin-up and spin-down polarizations,
respectively. Because of finite-size of the zigzag chains, the end
effects are usually appear by different values of magnetic moments
on atoms at the end of the chain.

moments which are in opposite directions. Similarly, two Ti
atoms at the ends of the lower row also have atomic mag-
netic moments in opposite directions, but the magnitudes of
moments are smaller than those of on the upper row. The
atom at the middle of the lower row has no magnetic mo-
ment. In n=6 case, only Cog has a nonvanishing magnetic
moment. Other atoms form dimers which are coupled in the
AFM order. If we assume that the shape of n=6 molecule is
parallelogram, there is an AFM coupling between the atoms
on both diagonals. In addition to these, remaining two atoms
in the middle also coupled in the AFM order, as indicated in
Fig. 10. Cr,, chains exhibit an even-odd disparity; Cr, has an
AFM ordering for even n, but it has a FM ordering for odd n.
There are also cases where collinear and noncollinear calcu-
lations with ultrasoft pseudopotential resulted in an excited
state for the magnetic moment distribution. Although PAW
potential calculations found the same magnetic ordering with
collinear and ultrasoft noncollinear cases, there are even
more energetic states for Scg, V4, Crs as shown in Fig. 11,
and Mns given in Table IV. Geometric dimerization also
plays an important role in determining the average cohesive
energy. Due to the magnetic ordering and the dimerization of
atoms in the finite molecules, the average cohesive energy
may not always increase as the number of atoms in the mol-
ecule increases. Vg and V5, Crg and Cry, Nis and Nig are
examples where magnetization and dimerization effects are
most pronounced. It should be denoted that Hobbs et al.*
carried out noncollinear calculations with the PAW potential
on Cr,_s and Fe, 5 finite chain structures. Here, our results
on Cr, s are in agreement with those of Hobbs et al.*

Among several 3d-atomic chains, Nig and Mng are only
chains for which noncollinear effects are most pronounced as
shown in Fig. 11. For the other structures, noncollinear mag-
netic moments on the atoms deviate slightly from the collin-
ear case.
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TABLE IV. The highest average cohesive energy E, (in eV/atom), the components (g, iy, u.) and the magnitude of the net magnetic
moment x (in ug), the LUMO-HOMO gap E; (SO coupling excluded) or energy gap after spin-orbit coupling was included in the x
direction or in the z direction (in eV), the magnetic ordering (MO), the spin-orbit coupling energy AE,(/AESo) (in meV) under the x and
z initial directions of easy axes of magnetization. p(¢=5) indicates that the same optimized structure occurred p times starting from ¢ (
=5) different initial conditions. Results have been obtained by carrying out structure optimization calculations within noncollinear approxi-
mation using PAW potentials. Mn; is not stable in the planar ZZ structure. For the (x,y,z) directions, see Fig. 1(b). These values belong to
the most energetic configuration determined by noncollinear calculations including spin-orbit coupling.

77 Sc Ti \'% Cr Mn Co Ni
n=2 E, 0.85 1.56 1.58 0.53 0.47 1.50 1.60
(tys pty, (2.3, 2.3, (0.0, 0.0, (1.2, 1.1, (0.0, 0.0, (1.1, -0.2, (2.8, 2.9, (1.7, 1.0,
M) 2.3), 4.0 2.0), 2.0 1.2), 2.0 0.0), 0.0 9.9), 10.0 0.0), 4.0 0.0), 2.0
EG/EGIE;  0.49/0.18/0.17 0.36/0.36/0.36  0.67/0.67/0.66 0.56/1.87/1.87 0.18/0.18/0.18 0.05/0.05/0.05 0.18/0.17/0.30
MO FM FM FM AFM FM FM FM
AEgo/AES, 3.60/3.80 4.70/3.90 8.30/8.00 10.90/10.90 13.30/13.50 0.01/9.90 33.30/32.50
p(g=53) 4 4 5 3 3 5 4
n=3 E. 1.36 2.00 1.91 0.72 0.70 1.90 2.04
(tys pty, (0.4, 0.9, (2.2, 2.3, (0.6, 0.6, (5.6,2.2, (1.4, -2.7, (0.3, 0.6, 0.7, 1.4
M)y b -0.1), 1.0 2.4), 4.0 0.6), 1.0 0.0), 6.0 0.1), 3.0 7.0), 7.0 1.3), 2.0
EG/EG/Eg  0.37/0.37/0.37  0.26/0.26/0.25  0.44/0.44/0.44 1.01/1.01/1.01  0.25/0.24/0.24  0.34/0.11/0.12  0.11/0.11/0.10
MO FM FM FM FM FM FM FM
AEg,/ AES, 3.70/3.70 4.70/4.70 8.40/8.40 10.40/10.50 13.10/13.00 8.20/9.60 33.10/32.70
p(g=5) 4 2 3 2 1 1 5
n=4 E. 1.60 2.36 2.35 0.89 1.02 2.29 2.33
(tys py, (0.6, 1.7, (1.1, 1.2, (0.0, 0.0 (0.0, 0.0 (0.0, 0.0, (4.6, 4.6, (-0.8, 2.1
M)y b 0.9), 2.0 1.2), 2.0 0.0), 0.0 0.0), 0.0 0.0), 0.0 4.7), 8.0 3.3), 4.0
EG/EG/Eg  0.29/0.29/0.29  0.41/0.41/0.41  0.28/0.28/0.28  1.09/1.09/1.09  0.30/0.30/0.30  0.03/0.03/0.03  0.06/0.21/0.20
MO FM FM AFM AFM AFM FM M
AES,/ AEY, 3.70/3.70 4.70/4.70 8.40/8.40 10.30/10.20 13.20/13.20 8.30/8.80 32.10/ 32.20
p(g=5) 3 4 2 1 3 5 2
n=5 E. 1.67 2.49 2.46 1.00 1.22 2.50 2.46
(e s (0.8, 0.1 (0.0, 0.0 0.7,0.5 (2.5, 2.5, (-1.3, 1.7, (=2.4, 10.6, (2.4, 5.5,
M)y b 0.6), 1.0 0.0), 0.0 0.6), 1.0 1.9), 4.0 -2.1), 3.0 -1.4), 11.0 -0.1), 6.0
EG/EGIE;  0.26/0.26/0.26 0.34/0.34/0.34  0.27/0.27/0.27 0.28/0.44/0.44  0.09/0.21/0.21  0.33/0.33/0.33  0.14/0.01/0.01
MO FM AFM FM FM FM FM FM
AE§,/ AES, 3.80/3.50 4.80/4.80 8.20/8.20 10.40/10.40 14.10/13.00 8.90/8.90 33.90/ 34.20
p(g=5) 4 4 3 1 1 2 5
n=6 E, 1.75 2.53 2.57 1.26 1.31 2.56 2.49
(tys pty, (0.0, 0.0, (0.0, 0.0, (0.0, 0.0, (0.0, 0.0, (0.0, 0.0, (6.7, 6.7, (0.0, 0.0,
M) 0.0), 0.0 0.0), 0.0 0.0), 0.0 0.0), 0.0 0.0), 0.0 7.3), 12.0 0.0), 0.0
EG/EG/E;  0.19/0.19/0.19  0.32/0.32/0.32  0.38/0.38/0.38 0.77/0.77/0.77 0.48/0.48/0.48 0.20/0.20/0.20  0.20/0.17/0.17
MO AFM AFM AFM AFM AFM FM AFM
AE§ o/ AES, 3.70/3.70 4.70/4.70 8.10/8.10 10.30/10.30 13.20/13.30 8.00/8.40 32.30/32.30
p(g=53) 1 4 5 1 4 5 5
n=17 E. 1.82 2.60 2.57 1.14 2.65 2.60
(tys pty, (5.2,5.2, (1.1, 2.8, (0.1, 1.0, (-0.2, -0.2, (8.6, 8.7, (-2.6,7.5
M)y M 5.2),9.0 0.0), 3.0 0.0), 1.0 6.0), 6.0 8.7), 15.0 0.3), 8.0
EG/EG/Eg;  0.15/0.15/0.15  0.19/0.19/0.20  0.24/0.24/0.24  0.39/0.39/0.39 0.09/0.09/0.09  0.09/0.05/0.05
MO FM FM FM FM FM FM
AEgo/ AES, 3.80/3.80 4.90/4.80 8.20/8.20 10.60/10.40 8.30/8.50 33.70/33.50
p(g=5) 2 1 5 2 5 5
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Ni,

FIG. 11. (Color online) Atomic magnetic moments of Nig and
Mng planar zigzag chains calculated by noncollinear approximation
including spin-orbit interaction. The magnitudes and directions of
magnetic moments are described by the length and direction of
arrows at each atom.

We calculated the effects of spin orbit coupling (SO) en-
ergy as well. In making fully self-consistent calculations, we
first assumed that initial easy axis of magnetization of the
structure is along x or z direction. As shown in Fig. 1(b), x
direction is perpendicular to the plane of atoms and z direc-
tion is the axis along the chain. This way, spinor wave func-
tions are let rotate from their initial orientation until the mag-
netic moment is parallel to the easy axis of magnetization
which is determined in the course of structure optimization.
Here, the optimized structure of every initial condition to-
gether with the calculated magnetic moment on the indi-
vidual atoms are used for the calculation of SO coupling.
The optimized structures of (TM),, and atomic magnetic mo-
ments have been determined within noncollinear approxima-
tion using PAW potentials. Spin-orbit coupling energy is de-
fined by the expansion, AESS=(E}*~E%)/n, where E}* and
EY. are the total energies of the chain calculated within non-
collinear approximation with and without spin-orbit interac-
tion in the x/z direction, respectively. The highest average
cohesive energy E. given in Table IV is obtained using the
expression E, =(nE,—E}°)/n, where E, is the ground state
energy of the free constituent TM atom. E’}/ is the lowest
value of E} and E%. As can be easily seen SO coupling does
not play an important role on the energy of the planar finite
structure. However, SO coupling becomes crucial when the
total magnetic moments, which happen to be oriented in dif-
ferent directions owing to the different initial conditions, re-
sult in the same energy. It is easily observed that in most of
the structures both initial directions of easy axis of magneti-
zation resulted in the same SO coupling energy. This means
that it is the most probable that fully self-consisted structure
optimization of SO coupling calculations resulted in the low-
est energy easy axis of magnetization. For this reason other
initial directions of easy axis of magnetization were not cal-
culated. In addition, AEg, and AES, appear to be indepen-
dent of n except Mns, Co, and Cos. It is also observed that
when SO coupling is taken into account, LUMO-HOMO gap
energies decrease. Only for Niy, Crs, Mns and Ni;, LUMO-
HOMO gap increased due to the fact that the final geometry
of SO coupling calculations has further relaxed slightly from
that of noncollinear calculations.
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V. CONCLUSION

In this paper, we presented an extensive study of the
structural, electronic and magnetic properties of monatomic
chains of 3d transition metal atoms (Sc, Ti, V, Cr, Mn, Fe,
Co, Ni, as well as Cu and Zn) using first-principles plane-
wave methods. We considered infinite and periodic chains
(with linear, dimerized linear, zigzag, and dimerized zigzag
geometries) and small finite-size chains including two to
seven atoms. Due to the end effects, we found differences
between infinite chains and finite ones. Therefore, we believe
that the basic understanding of monatomic TM chains has to
comprise both infinite and finite structures as done in the
present paper.

The infinite, dimerized linear structures have a shallow
minimum only for a few TM atoms; planar zigzag and
dimerized zigzag structures, however, correspond to a lower
binding energy providing stability in this geometry. As for
short chains consisting of four to seven TM atoms, the planar
zigzag structure is only a local minimum. The finite chains
tend to form clusters if they overcome energy barriers. We
found close correlation between the magnetic state and the
geometry of the chain structure. In this study, we presented
the variation of binding energy as a function of the lattice
constant for different structures and the magnetic states. We
also revealed the dependence of the electronic and magnetic
properties on the atomic structures of the chains. We found
that the geometric structure influences strongly the electronic
and magnetic properties of the chains. For example, infinite
linear V chain becomes half-metallic upon dimerization.
Similarly, infinite dimerized linear and metallic Sc chain be-
comes half-metallic with 100% spin polarization at the Fermi
level upon transformation to zigzag structure. Furthermore,
while the infinite linear Mn chain has an antiferromagnetic
ground state, with u=Su,=0, but |[Su!|=|Su}|=4.40us, it
becomes a ferromagnetic metal with u=>u,=4.36up as a
result of the structural transformation from linear to dimer-
ized zigzag structure.

Magnetic ordering of finite-size chains becomes more
complex and requires a treatment using noncollinear ap-
proximation. The structure optimizations carried out using
ultrasoft pseudopotentials generally result in the same cohe-
sive energy and magnetic moment in both collinear and non-
collinear approximations. However, for specific finite chains
the total magnetic moments calculated by using PAW poten-
tials with the same initial magnetic moment distribution dif-
fer dramatically from ultrasoft results. Of course, our results
which cover much more than 3000 different structure opti-
mizations may not include the lowest energy state but indi-
cates the importance of noncollinear treatment.
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