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ABSTRACT

GEOMETRIC CHARACTERIZATION OF
EXTENSION PROPERTY FOR MODEL
COMPACT SETS

Muhammed Altun
M. S. m Mathcematics
Advisor: Assist. Prof. Alexander Goncharov
September 2000

[n this work we examined the existence of a linear continuous extension operator
lor the space of Whitney [unctions given on subsets of the whole space. We stud-
ied the lincar topological invariants, especially an invariant which topologically
characterizes the existence ol an extension operator. Ifinally, we gave necessary
and sullicient conditions for the existence of an extension operator on some special
Lype compact sels.

Keywords and Phrases: I'véchetl spaces, [Sxtension operator, Whitney func-

tions, Linear Topological Invariants.
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OZET

BAZI MODEL KOMPAKT KUMELER I(;IN
GENISLETME OZELLIGININ GEOMETRIK
KARAKTERIZASYONU

Muhamined Altun
Matematik Yuksck Lisans
Damgman: Doc¢. Dr. Alexander Goncharov
Eylal 2000

Bu caligmada vektorel bir uzayin alt kimelerinde tannulanmig olan Whit-
ney fonksiyon uzaylarinda lineer strekli bir genigletme operatoriiniin var olina
durumlarmi inceledik.  Ayrica lincer topolojik invariantlar tGzerinde, ozellikle
bir genigletme operatortinin var olma durumunu karakterize eden bir invariant
tizerinde cahigtik. Son olarak bazi 6zel kompaki kimelerde bir genigletme op-
craloriiniin var olma durumu igin yeter ve gerck sartlart verdik.

Anahlar Kelimeler ve 1:/'(1,(1(:167': I'réchet uzaylari, Genigletme operatovi, Whit-

ney lonksiyonlari, Lincer topolojik invariant]ar.
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Chapter 1
Introduction

The development ol differential calculus in the 20" century has its origin in
the work of Whitney on diflerentiable [unctions. The profound theorems proved
during the last (ifty years were motivated on the one hand by problems of Laurent
Schwartz concerning division of distributions and differentiable [unctions, and on
the other hand by the theory of singularitics of dillerentiable mappings, developed
at first by Thom and Whitney. Some of the most fundamental results are due to
Schwartz’s students Glaeser,Grothendick and Malgrange.

We will begin with an clementary theorem on dillerentable even functions,
which introduces some important techniques and which provides a good illustra-
tion of the fundemental problems and the relationships among then.

Let U be an open set of R™ We deunote by E™(U) (respectively E(U)) the alge-
bra of m times continuously differentiable (respectively infinitely differentiable)
functions in U, with the topology of unilorm convergence of functions and all
their partial derivatives on compact scts. This is the topology defined by the

seminorms

) [k
/15 = sup 0 f('l)] cx e K|kl <my,
: dak

where K is a compact subset of U (and m runs through N in the C* case). Here

= (T1,...,T,), k denotes a multiindex & = (ky,..., k) € N [k = &y + ..+ ky

Okl OIkl
Ak Dat. Dukn’

We will sometimes use m [or cither a nonnegative integer or 4oo and write
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gre(U) = €(U)

Let €™ (R )even be the closed subspace of £™(R) consisting of even functions
(m € Norm = 400)
Theorem 1.1 If f(x) is a C*™ even funclion of one variable (m € N or m =
+00), then there exists a C™ funclion g(y) such that f(z) = g(z*). In fact
there exisls a conlinuous linear operator L : E*™(R)eyen — E™(R) such that

J(@) = L)) (2) for all f € E2(R)quen

The first assertion is due to Whitney [25]. The second [ollows [rom the the-
orem of Seeley [20]. It will be clear that an analogous result holds for functions
of several variables that are even in some ol them.

The prool of the theorem can be given by using the [ollowing elemantary but
important lemma. »

Lemma 1.2 (Hadamard’s lemma) If [(z) = [(z1,..0, Tn, Trg1y ooy Tp) 15 @ C™

function such thal
_/(O, 0, ceey O, Tpblyeey .’L'p) =0

then there exists C™! funclions gi(xy,...,2,),1 <1 < n, such lhat
n
f(z) =D wigi(=)
i=1
Proof: By the fundamental theorem of calculus and the chain rule, we have

LOf(lay, ..ty Tagyy .y T n
J(x) :/0 ety s o iy ﬂp)‘“ = xigi(x)
=1

ot

where L)
gi(:v):/o E—T(txl,...,tx,t,m,LJrl,...,mp)dt

Ti
It is clear that the g; defined in the proof of Lemma 1.2 depend in a continuous
linear way on f.

Hadamard’s lemma is a very simple type of division theorem for dillerentiable
functions. In the C* case, the assertion of the lemma is equivalent to the state-
ment that the ideal in £(R?) generated by zy, ..., 2, is closed. Malgrange [14]
proved that il U is an open subsct of R™) then any ideal [ in E(U) which is gen-

crated by finitely many analytic [unctions is closed. Malgrange’s theorem las a
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more concrete formulation: a C* function [ on U belongs to I if and only if it
"belongs formally to I”. "Belongs [ormally to I” mcans that the formal Taylor
series of f al cach point of U is the formal Taylor series of some element of . In
fact according to Whitney’s spectral theorem [26], the closure of any ideal I in
E(U) cquals the ideal of C* functions which belong formally to 1.

Proof of Theorem 1.1: Let f(2) be a C** cven function. There is a
unique continuous funclion g(y) defined in [0,00) such that ¢ is C*™ in [0, 00)
and f(z) = g(2?). Il x # 0, we have

M = 2.1:g(k"'1)(:v2) 0<k<2m
dz
On the other hand we can use [ladamard’s lemma to deline C2(™=%) even functions

hy. inductively as follows:

ho = [
hi = 2xhgy, 0<k<m

It follows that hy(2) = ¢®)(22) outside the origin, so that cach derivative g®) 0 <
k < m can be continued up to the origin. We will prove that g is the restriction
to [0,00) of a C™ [unctlion deflined on R.

The problem ol extending g to a differentiable [unction is a very special in-
stance of Whitney’s extension problem: When is a function [, defined in a closed
subset X of R”, the restriction ol a C™ [unction in R™ 7 ([27],[28]). In fact we
want to extend ¢ in a continuous lincar way. The existence ol such an extension
in the C™ case was (irst proved by Mityagin [17] and Secley [20].

Let £™ (][0, 00)) denote the space of continuous functions g in [0, 00) such that
g is C™ in (0,00) and all derivatives of ¢](0,00) extend continuously to [0, 00).

4

Then £™([0,00)) has the structure of a Frechet space defined by the seminorms
9l = sup{lg"(v)] : y € I, [k] < m},

where K is a compact subsct of [0,00) (and m runs through N in the C* casc),
and where ¢* denotes the continuation of (¢*/dy*)(g](0, 00)) to [0, 00).

The following theorem completes the proof of theorem 1L.1.

Theorem 1.3 There is a conlinuous lincar cxlension operalor

1 E™([0,00)) — E™(R)
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such that [(g)|[0,00) = g for all g € £™(]0, 00)).

Proof: Our problem is to define I(¢)(y) when y < 0. Il 1 = 0 we can deline
I(g)(y) by rellection in the origin : L(¢)(y) = g(~y),y < 0. If m = 1 we can

use a weighted sum of reflections. Consider

L(g)(y) = arg(byy) + azg(bay), y <0

Where 01,02 < 0. Then £(g) determines a C! extension of g provided that the
limiting values of IZ(g)(y) and E(¢)'(y) agrec with those of g(—y) and ¢'(—y) as

y — 0— ; in other words il

a1+a2:],

aphy + azby =1

For distinct b, b, < 0 these equations have a unique solution ay, az.This extension
is due to Lichtenstein [13].

Hestenes [11] remarked that the same technique works for any m < oo :
a weighted sum of m refllections leads to solving a system of linear equations
determined by a Vandermonde matrix.

Il m = oo, we can use an infinite sum of rellections [20]:
- o0

L(g)(y) = >_ arb(biy)g(bry), v <0,
k=1

where {ar}, {bx} are sequences satisfying

(1) b <0,b — —0c0 as k —— oo;

(2) D |ar]|be* < oo lforall n>0;
k=1

(3) S abp=1 forall n>0
k=1

and ¢ is a C* [unction such that ¢(y) =110 <y <1 and ¢(y) =0ify > 2.
In fact condition (1) guarantees that the sum is finite for each y < 0. Condition
(2) shows that all derivatives converge as y — 0—,uniformly in each bounded
sct, and (3) shows that the limits agree with those of the derivatives of ¢(y) as

y — 0+. The continuity of the exteusion operator also follows [rom (2).
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It is easy to choose sequences {a}, {0} satislying the above conditions. We
can take by = —2% and choose a;, using a theorem of Mittag Lefller : there exists
an entire [unction 32 | axz* taking arbitrary values (here (—1)") for a sequence
of distinct points (here 2™) provided that the sequence does not have a [inite
accumulation point.

[t is clear thal Sccley’s extension operator actually provides a simultaneous
extension ol all classes of dillerentiability.

In this article we will be concerned mainly with C*° functions. Whitney’s
theorem on even functions in the C* case is equivalent to the statement that the

subalgebra of E(R) of functions of the form g(a?) is closed.

1.1 Whitney’s Extension theorem

In this section we will examine the classical extension theorem of Whitney [27].
Let U be an open subset of R™, and X a closed subset of U. Whitney’s theorem
asserts that a function /70 defined in X is the restriction of a C™ function in U
(m € Nor m = +oco) provided there exists a sequence (Fk)|k[§m of functions
defined in X which salisfics certain conditions that arise naturally [rom Taylor’s
formula.

Ifirst we consider m € N. By a jet of order m on X we mean a set of continuous
functions I = (17"“'),“3,” on X.llere k denotes a multiindex & = (ky, ..., k,) € N™.
Let J™(X) be the vector space of jets of order m on X. We write

|P|E = sup{|I7™*(x)] : @ € K, |k] < m}

m

il K is a compact subsct of X, and I'(x) = I"°(x).

There is a linear mapping J™ : E™(U) — J™(X) which associates to cach
Ok f

f € &E™(U) the jet
WOE ( — X)
Dt [k|<m

For cach k with |k] < m, there is a lincar mapping D* @ J™(X) — Jm=H(X)
defined by DFI? = (")) ¢pn_py. We also denote by DF the mapping of £€™(U)
into Em~#(U) given by
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This should cause no conlusion since
DFogm = gtk o pk

If e € X and I7 € J™(X) , then the Taylor polynomial (of order m) of I at a is

the polynomial

rran i 1;‘}\' (”)
1) = 3 Dl oy
[k]<m
ol degree < m. llere k! = ky1..k,). We deline R " = I" — J™(T™F7), so that
o ik [+ (a)
(R 1Y () = [ Ma) — |,|<Z " ——ll——(z —a)

il [k] < m.

Definition 1.4 A jet I' € J™(X) is a Whitney field of class C™ on X if for
each k| <m

(R FY(y) = offe — y 1) (1)
as |t —y| — 0, 2,y € X.

Let £™(X) C J™(X) be the subspace of Whitney fields of class C™. £™(X)

is a I'rechet space with the seminorms
|5 1) ()]

—L—Tm cx,y € Ko # oy, |kl < m},

I m I( m _f_ su {
I = 1P+ sup § 105

where I{ C X is compact.
There are two more type of norms used to identify the topology in E™(X),

where one of them is:

Rm
”Illlm_lll m _*_SUP{ Z , ) ( )I CII,yE[\’,(l,‘?éy},

Km J,m——|kl

and the other is

Rm_llek 1
NS = maz | FIX, sup I——I—T(‘]{)—l cx,y € Ky £y, |kl <mop .
v — gyl

It is easy to sce thal topologies given by these system of norms are equivalent.
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< m we have

Remark 1.5 If I' € J™(U) and for all x € U, |k

then there exists f € E™(U) such thal I"' = J™([). This simple converse of Tay-
lor’s lheorem shows Lhat lhe lwo spaces we have denoled by E™(U) are equivalent.

K ”l K

On E™(U), the topologics defined by the seminorms |5 LK are cquivalent (by

the open mapping theorem).
Theorem 1.6 (Whitney [27]) There is a conlinuous linear mapping
W.&em(X)— &™)

such that D*W (I")(x) = IP¥(x) if I' € £™(X), 2 € X, |k] < m, and W’(F)](U —
X) is C.

Remark 1.7 The condilion (1.1) cannol be weakened to :

B F )l _ 1)

lim Ty

v o=y
Jorall z € X, |k] <m.

For example let A be the sel of points (using onc variable) x = 0,1/2° and
1/2° +1/2% (s=1,2,...). Set f(x) =0 at =0 and 1/2° and [(z) = 1/2* at
w=1/2% 4+ 1/2%.Set [M(z) =0 in A. The above condition is satisficd but there’s
no extension of f(x) which has continuous first derivative.

For K a closed subset of R™ and m € N. Whitney’s extension theorem [27]
gives an extension operator (a lincar continuous extension operator) from the
space E™(K) of Whitney jets on K to the space C™(R™). In the case m = oo
such an operator does not exist in general.

Definition 1.8 [or { C R™ K has the Extension property o there exists a
linear continuous exlension operalor I : E(K) — C(R™).

An example for a compact set which does not have the extension property
is the set K = {0} C R. To prove this fact assume that there exists such a
continuous extension operator L for I{ = {0}. llence we have

Vp 30,C : |LEF|, < C)F||, VI € E(K).
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Let p = 0, then we have ¢, C salislying ||LI|lo < C||I'||, VI € E(K).

Let [' = (I7)72, with I,y = L and I, =0 for all ¢ # ¢+ 1.

It is easy to see that || 7|, = 0.

But of course L 1" # 0 since L") (0) # 0.

Then we get 0 < [[LI7jo < C|[1)|, = 0 which is a contradiction.

We can similarly prove that N = {0} U [¢,b] CR 0 < a < b also does not
have the extension property. Generalizing this, it is casy to sce that if K C R™

has isolated points then K has no extension property.

1.2 Linear Topological Invariants

In this scction we will introduce IFréchet spaces, IK6the spaces and linear topo-

logical invariants. We will denote by K cither of the ficlds R or C.

Deﬁnition 1.9 /l K-vector space 1” (3']1,(10’(1)6(1 'WiL/L a melric, is called metric
1 ) ’
linear space, if in [’ addilion s uniformly conlinuous and scalar 1IL1L[[,i')17:Cd[}i07l
I ’ Y 1

s conlinuous.
A melric lincar space I is said Lo be locally convex if for cach a € I' and
cach neighborhood V of « there exists a convex neighborhood U of « with U C V.

A comnlele, melric, locally convex space is called o 'récliet space.
! ) ) ]

Iivery normed space is a metric lincar space and every Banach space is a I'réchet
space; however there are I'réehet spaces which are not Banach spaces. The next
lemima gives an example ol a I'réchet space whicl is not Banach.The prool can

he found in [16] Lenma 5.17.

Lemma 1.10 Lel (19, ]]-||.)nen be a sequence of Banach spaces. A metric 1s

defined on 15 = Myenlon by

”mn - yn,lln

=01
T,Y) = E T =\Tn)n = \Yn/n € L.
d(L,!/) n=1 2] + ||.’I:n - :’/n”n’ ’ (L ) e (y ) &N

Then (12,d) is a [réchel space. (12,d) is nol a Banach space if I, # {0} for
infinilely many n € N,
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Using this lemma it is casy to sec that C(U),C*®(U) are I'réchet spaces lor U an
open subset of R™, and the space of analytic [unctions on U which we denote by
A(U) is a I'réchet space when U is an open subset of C.

C(U) lor U an open subset of R™,C*°(U)-the space of infinitely differentiable
[unctions on an open bounded domain U which are uniformly continuous with all
their derivatives, E(K) for K a compact subsct of R™ and A(U) for U an open

“domain in C* are typical examples of Fréchel spaces.
We now give a simple but usclul property of Fréchet spaces by the [ollowing

proposition:

Proposition 1.11 [or cvery Iiréchel space 12 and each closed subspace I'' of I2,

the spaces I' and 15/ 1" arc I'véchel spaces.

Definition 1.12 Lel IV be a locally convex space. A colleclion U of zero neigh-
borhoods in Iv is called a fundamental systemn of zero neighborhoods, f for every
zero neighborhood U there crisls a V € U and an ¢ > 0 with ¢V C U.

A family (I.]|)eea of conlinuwous scminorms on I7 is called a fundamental

system ol seminorms, if the scls
Us:={z e li: ||l <1}, a€A,
form a fundamental system of zero neighborhoods.

Notation 1.13 Lel [2 be a locally conver space which has a countable fundamen-
tal system of seminorms (||.|L)nen. By passing over lo (max <j<nll-||;)nen one
may assume thal

)l < |||l Ve € IE,n €N

holds. We call (]].||n)nen an increasing fundamental system.

Definition 1.14 A sequence (e;)jen i a locally conver space I8 is called a Schauder
basis of I, if for cach x € [, there is a uniquely delermined sequence (€5()) en
m K, for which « = 352, &(w)e; is lrue. The maps § - I — K, 7€N, arc
called the coeflicient functionals of the Schauder basis (e;)jen. They are lincar by

the uniqueness shipulalions.
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A Schauder basis (e;);en of I¢ 1s called an absolute basis, if for each continuous
seminorm p on IV there is a conlinuous seminorm q on I and there is a C > 0

such that

DO IEi()p(e;) < Cy(x) Ve € I
JEN
Let A = (ay,)ierpen be a mabrix of real numbers such that 0 < Uiy < iy
Kolhe space, defined by the matrix A, is said to be the locally convex space K(A)
of all scquences € = (&) such that
€], = Z(,l,,;,,|§i| <oo VpeN
i€l
with the topology, generated by the system of seminorms {[.|,,p € N}. The set
of indices I is supposed Lo be countable, but in general I # N. This is convenient

for applications, especially when multiple serics are considered.
Definition 1.15 Lel I and I' be locally convex spaces ; lel us define

LI 1) = {A: I) — I": A ds linear and continuous }

L(E) = L(E,E) and ' := L(E,K)

12" s called the dual space, of 19.
A linear map A : [J — I' 15 called an isomorphis, if A is a homomorphism.

I and I' are said lo be isomorphic, if there exisls an isomorphism A belween Iy

and I'. Then we wrile It ~ I,

It is well known that every fréchel space with absolute basis is isomorphic to
some Kothe space. More precisely, II 7 is a Iréchet space, {e;}ier is an absolute
basis in 12, and {||.]|l,}pen is an increasing sequence ol seminorus, generating the
topology ol 17, then I/ is isomorphic to the Kéthe space, defined by the matrix
A = (a), where aip = |[eil],-

For example the space C*°[—1, 1] is isomorphic to the Kéthe space s = K(n?)
(sce [17]), the space A(D), where D = {2z € C : |z| < 1}, is isomorphic to
K(exp(—n/p)), the space A(C) is isomorphic to K (exp(pn)).

It is known ([3],[5],[22],[24],[33]) il the boundary of a domain D is smooth,

Lipschitz or even Holder, then the space C°°(D) is isomorphic to the space s.
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To examine whether two given linear topological spaces are isomorphic or not
it is usclul to deal with some properties of linear topological spaces which are
invariant under isomorphisins. More precisely, if ¥ is a class of linear topological
spaces, {1 is a scl with a relation of cquivalence ~ and ¢ : ¥ — Q is a mapping,
such thal

XY = X))~ P(Y)
then @ is called a Lincar Topological Invarianl. We say thal the invariant & is

complete on the class X if for any X, Y € &
PX)~P(Y) = X~V

IMirst lincar topological invariants connected with isomorphic classification of
Iréchet spaces are due to A.N. Kolmogorov [12] and A. Pelezynski [19]. They in-
troduced linear topological invariants called approaimative dimension and proved
by their help that A(D) is not isomorphic to A(G) il D C C*, G C C*, m # n
and A(ID") is not isomorphic to A(C"), where D" is the unil polydisc in C*. Later
C. Bessaga, A. Pelezynsky, S. Rolewics [2] and 3. Mitiagin [17] considered other
lincar topological invariants called diamelral dimension, which turns out to be
stronger and more convenient than the approximative dimension. V.Zahariuta
[29, 30], introduced some general characleristics as generalizations of Mitiagin’s
invariants and some new invariants in terms of synthetic neighborhoods [31, 32].
We will give here as an example the invariant # which was used by A. Goncharov
and M. Kocatepe [10] based on the Zahariuta’s method ol synthetic neighbor-
hoods.

Let X be a Iréchet space with a fundamental system ol neighborhoods (U,),

and let 1,7 € Ry. In what follows { — oo and 7 = 7(l) — 0. Given 0 < p <

g <r weset U=71U,NLU, then
B(r,t: Uy, Uy, Uy) = main{dim L : Ucu,+1},

where min(A) is the minimumn of the set A. We can sce that f(r,t) > [{n :
do(U,U,) > 1}, where d,, is the Kolimogorov diamcter.
Suppose X is a I'réchet space and (||.[[,,p = 1,2, ...) be a system of seminorms

generaling the topology of X. The following interpolation propertics define very
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important classes of I'réchet spaces. They are invariant under isomorphisims ancd
hence these LTT's are called Interpolational Invariants:
(DN) VeIr, C: |22 < Cllz|lpllell- = € X;
(€2) VpAg¥r3edC : |la'|l; < C(l2lI3) (l2ll7)' =" e X

Let us note that these notations are due to D.Vogt [16], V. Zahariuta uses the
notations Dy, vespectively. In this article we will generally use Vogt’s notation.

We shall reformulate (DN) in an equivalent way in the lollowing simple propo-
sitions.

Proposition 1.16 A [rcchel space [5 wilh an increasing fundamental system

(|-llx)kers of seminorms has the property (DN) if and only if the following holds:
A Vg Ye>0 I,C: ally < Cllll Nl (1.3)

Jorallx e Iv.

Proof: TIor ¢ = % the given condition obviously implies (DN). To prove the
converse, let p € N be so choosen that |||, is a dominating norm. If ¢ € N,
q > p, is given, then we defline rg := p, 7 1= ¢ and iteratively apply (DN) to find

P > 1, and €, > 0 such that

NallZ < Cullzllllzlls,,, forall @ € E.

T —

As ||.]l, is a norm, we have lor cach m € Nand all ¢ € I, © # 0 :

||:I"ll(l " < I——]m (‘1 ||:I:||7'lt+1 < (I—]m C ) .__II:E”T’"+1
< = =) Tl

el = ey,

t/m .
Defining D, := (ﬂ;:”:l 1,,.) / it then follows that

lzll, < DmH:L‘[[][)"'/”‘II:I:H'/'” forallz € I

Tm+1

If now 0 < ¢ < 1 is given, then we choose m € N with % < ¢ and obtain the

given condition which holds for r = 7,4y, Il ¢ > 1 then the condition trivially
holds. O
(1.3) can be stated also as [ollows :

Ip ¥g Ve> 0 InC [lafli < Cllalllall (14)

for all z € 14,
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Proposition 1.17 (DN) is equivalent to the following:
C
dp Vg 3n,C 2|l < Uzl + T”’I‘”, >0 (1.5)

Proof: Let (DN) holds. Then we have p as a dominaling norm, given ¢ € N
there exists » € N and C' > 0 such that

l2lly < Cllxlllel:
and by taking the square roots we get

n:zru,‘,“((u u 12 = () (el ) Ve 0

ally, <
< lt : Yi>0
< gl g Dl v
< ||, + —||:1:H,. Vi> 0,
For the prool of the converse take (2 = CHiH’—, then we get

2|2 < AC |zl
O
Proposition 1.18 ([.5) is equivalent Lo the following:
Jp IN>0 Vg InC:o =, < Y|, + T“:IZ“,. t>0 (1.6)

Proof: (1.5) = (1.6) is trivial. To prove the converse assume we have (1.6)

then we have p, 12 satislying the condition in (1.6).

Given g = qo, we find ¢4y 2 ¢ and C; > 0 such that

Cin )
el < Pl + = el 0<i< R-1

Using these 18 inequalitics we gel

t v - Y - \ (/R
llellpe < (74 CL 1+ GO 4 4 Cr a2l + =7 |2l
Then there exists C > C...Cp such that
v - Y Y - Y Y CR C
(" C U C Ol A Cr Cpea )4 ||,,+ ]y, < Rll-"lfllp+zﬁ||-'lfﬂqn
and hence we have
ll, < thlelly + ”"U”rm Vi>0
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Proposition 1.19 The following stalement is equivalent lo DN:
: C
3R >0Y¢3I,C>0:]], < "o+ ~llls, t>0 (1.7)

Proof: l'or the equivalence (1.6) & (1.7) see [4] O

1.3 Topological Characterization of Extension
Property

Let (L5, Ay)iez be a sequence of lincar spaces [; and lincar maps A; : I5; — iy,
The sequence is said Lo be exact al the position I5; in case I1¢(A;_;) = N(A;). IHere
R denotes image and N denotes the kernel of the map. The sequence is said to
be exact, il it is exact at each position. A short sequence 1s a sequence in which

al most three successive spaces are different [rom {0}. We then write
0— —" 1" —P ¢ —0

Remark 1.20 Lel I be a Iréchet space and I5 be a closed subspace of I'. Then
by Proposition 1.11 |, I5 and I'/ 5 ave likewise Iréchel spaces. If j : b — ' is

the inclusion and q : I' — I'[I4 is the quotient map, then

0— L—' ' —" F/E—0

is a shorl exacl sequence of I'réchel spaces.

Definition 1.21 A seminorm p on a K-vector space Iv is called a lilbert semi-
norm, if there exisls a semi-scalar product {.,.) on It with p(z) = \/(z,z) for all

x el
A Iréchet-ilbert space is a [réchel space which has a fundamental system

of Hilbert seminorms.

The lolowing theorem of D. Vogt [rom [16] is lundamental in the structure theory
of I'réchet spaces.

Theorem 1.22 (Splitling theorem) Lel I5, I" and G be Iréchel-Ililbert spaces and
lel

0 — I['— G —1 F—0
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be a short evact scquence wilh conlinvous linear maps. If I has the property (DN)
and I' has the property (), then the sequence splits, ie., q has a conlinuous linear

right inverse and 3 has a continuous linear left inverse.

M. Tidten used the splitting theorem flor the prool of the next theorem which tells

that the extension property of A is equivalent to the property (DN) of E(IS).

Theorem 1.23 [22, Tidlen]A compacl sel K has the exlension properly iff lhe
space E(K) has the property (DN).

Proof: l'or the proof of the sulliciency part assume that E(I) has the property
(DN) and let L be a cube such that K C L°. Now consider the short exact
sequence |

0 — F(I,L)—" D(L)—7 E(K) — 0
where D(L) = C§°(L) is the space ol inflinitely differentiable functions on L,
where the Tunctions and all their derivatives vanish on the boundary of L, and
FUK,L) = { € D(I) - flx = 0).

By [22] we have that F(I{, L) has property (§2) V compact I C L°. lence
we can apply the splitting theorem. This means that there exists an operator
1, a continuous linear right inverse of ¢, 1 : E(I') — D(L) where obviously
(Y = [ for [ € E(K), that is the operator ¢ is an extension operator.

On the other hand il there exists an extension operator 1, then qop = Ide(ry
and 1oq is a continuous projection of D(L) onto E(K). We know that D(L) is
isomorphic to s, hence E(K) is a complemented subspace of s, therefore E(I)

has (DN), since the property (DN) is inherites by subspaces. O



Chapter 2

Review of Previous Results

Whitney’s extension theorem provides continuous linear extension operator [rom
the space of C™ Whitney ficlds (1m < 00) on a closed subset X of R, to the space
of C'™ functions on R™ Though C™ Whitney ficlds on X extend to C* [unctions
on R™, there does not exist a continuous lincar extension operator for every closed
subset X. Let £(X) be the Iréchet space of € Whitney fields on X. T'hen E(R™)
identifies with the space of C™ [unctlions on R™ The [olowing problem arises:
Under what conditious on X is there an extension operator I : E(X) — E(R™)?
Where we mean by an extension operator, a linear continuous operator such that
E(I)x = " for all I' € £(X). Sceley [20] shoved that an extension operator
exists if X is a closed hall-space H". We have described the prool of his {heorem
in the first chapter.

Mitiagin [17] presented an extension operator for a closed interval in R. Mi-
tiagin in his work proved the fact that the Chebishev Polynomials 1), (z) =

cos(ncos™! ) form a basis in the space C°[—1, ] ic., for W(l) € C®[-1,1] and

dx

l/l W(x) cos(n cos™ x)

b = 1 V1 —2z2

s

we have that

5 &) in Co1,1].

n=0

P ()

It is clear that a lincar translormation ol the argument sets up an isomorphism

between the spaces C™[—1, 1] and C™[a,b], —co < a,b < oo ; therefore the
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correspondingly translormed Chebishev polynomials form a basis in the space
C*[a, b].

Mitiagin coustructs in [17] special extensions 1} for the polynomials To(z)
and defines the operator M : C®[—1,1] — C*[-2,2] by

(M®)( Z Eu(x)(T))

n=1

and by using an infinitely differentiable function lo(t) on the whole straight line

such that
Lhit)y=1 lt]<land h(1)=0 [{|>1 -I-%

he defines the operator M’ : C[—1, [] — C*°(—00,00) by
(M'®)(z) = (M®)(2)lo()

which is a continuous linear extension operator from [—1, [Jlo(—o0, c0).

Now let us give the definition of Lipschitz domain.

Definition 2.1 Let ¢ : R*™' — R be a funclion which salisfies the Lipschitz

condition of ordery, 0 <y < 1, ie there is a constant M > 0 such thal
1B(x) — d(a")] < Mz — "

for all x,2" € R* 1. We consider poinls in R™ as pairs (z,y), x € R*!, y € R.
The open subsel

{(z,y) ER™ 1y > 4(x)}
is called a special Lipschitz domain of class Lip . A rolalion around y axis of
such a domain will also be called a special Lipschilz domain.

Lel 2 be an open subscl of R™, and S ils boundary. We say more gencrally
that 2 is a Lipschitz dowmain if for each point a in J5), there exisls an open
neighborhood U, of a in R™, and a special Lipschilz domain 2, such that QNU, =
Qo VU, If cach §y is of class Lip v (independent of «), then we say Q is a

Lipschitz domain of class Lip .

The following theorem is due to Stein [21]
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Theorem 2.2 If X s the closure of a Lipschitz domain Q0 of class 1, then there

cxists an exlension operalor
Ir: E(X) — E(R™)

Stein’s result is extended by Bierstone [3] to the case of a domain with boundary
which is Lipschitz ol any class, in other words; with boundary of IIolder type. The
main result of Bierstone [3], where he used Ilironaka’s desingularization theorem,
is that an extension operator exists if X is a fat closed subanalytic subset of R™

The extension property of K =  for a domain  with boundary of Holder
type was proved also by Tidten [22] using the property (DN) and by Goncharov
[5] who proved that in this case C*°({2) is isomorphic to s.

M. Tidten in [23] introduced a geometric property of compact sets in R which
could help to give a geometric characterization for the extension property. Here

we define this geometric property.

Definition 2.3 Lel o > 1. A compacl set K C R s said to belong to the class
(o) if there exisls &g > 0 and C > 0 such that, for any point y € K, there is a

sequence (x;) in I with the following properties:

(1) ly—=ll0
(2)  ly—ail=d
(3) Cly —xj| 2 |y — 2" for all §

Tidten proved that
K € (1) = I has the extension property = I € («)

and gave an example of K ¢ (1) with the extension property. Later Goncharov
in [9] shoved that belonging to some class (o) can not be in gencral a geometric
characterization of the extension property for I C R.

A. Goncharov and M. Kocatepe in [10] considered compact sets of the follow-
ing type. For two sequences (a,), (by) such that 0 < ... < byqy < @ < by < ... <
by < 1, let I, = [an, by] and I = {0} UUZ [,,. By %, denote the length of I,;

By = @y, — bpy is the distance between [, and Iy and let

o
p—
~—

P N0, D N O,y Sy, m€EN (2.
JQeN:h, > b,%_l, n €N

~—~
S\D
[\

~—
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They shoved that £(L) has property DN il and only il
AM, Yn, thapy > AN

It is shown in Chapter 3 that the condition (2.2) can be omitted in the case J,
is bounded, where J,, = min{7 : byy; < b}

A. Goncharov in [9] considered Cantor type sets in R and has given the nec-
essary and suflicient conditions ol extension property for those type of compact
scbs. In Chaptler 4 we will see these results and prove that the necessary and
sufficient conditions for the extension property of mullidimmensional cantor type
sets 1s similar to the case one dimensional cantor type sets.

In [t] B. Arslan, A. Goncharov and M. Kocatepe considered gencralized Can-
tor type sets, where the generalized Cantor type sets are produced by removing
more than one intervals from all intervals in cach step.

Pawlucki and Plesniak [18] by using the Lagrange interpolational polynomials
constructed an extension operator for compact sets satislying the Markov prop-
erty. - In general Markov property is not equivalent to the IExtension property.
A Goucharov [6] gave an example ol a sct with an extension opcrator but not

salislying the Markov property.



Chapter 3

Some Model Cases

Let N = {1,2,...}. We will consider compact sets ol the following type. For
two sequences (ay,), (by) such that 0 <0 < by < @ < by < o0 < by < 1,
let 1, = [an,b,) and K = {0} U U, T,. By %, we denote the length of I,

n=1
My = @y — by s the distance between I, and 4. In what follows we restrict

ourselves to the case

7/)n \ 07 Do, \n 0, 7/’n < hn, n €N (3.1)

IQeN:h, 202, neN (3.2)
An cquivalent form of (3.2) is
3QeN:h, > 0¥ neN (3.3)

Let us give some identities about the remainder of the Taylor polynomials that

will be used in this chapter. Proofls can be found in [15]:

(x—y)y™ (3.4)

q
(11 1)) = 157 [0 w) = JO Z
It [ € Ca,b] and z,y € [a,b], then for some &, € [a, ] we have

¢ — )71t o — )i+l
(1?" /) ( ) = (/('1 (€) - ‘/-((7)(y))(‘TI_‘/3T - f(qvl-l)(n)(—(q—_'f)—l_—l)j— (3.5)

“The next two lemmas are from [10].

21
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Lemma 3.1 Lel I be any closed interval in R with length(l) > & and lel p <

k <7 be given. Then there exists lwo conslants Cy, Cy such that
[P ()] < CLo™|f], + Co8™ ||, V[ € CT(1), VS€ (0,8], Vuel

Lemma 3.2 Given posilive inlegers Nop, k such thal k < pN, there is a constanl
C(N,p, k) with the following propertics: For any closed inlerval 1 C R wilh
lenglh(1) = 6y and for any scl of poinls ay,...,an € I, let G(2) = NN, (z — a,)”.
Then

IGR(2)| < C(N, p, )N Ve el

FFor each n, we define J,, = min{j : byy; < 1y}
We have the [ollowing result {rom [10]. When K satisfics both the conditions

(3.1) and (3.2) in the cases cither (J,) is bounded or J,, — 00 as n — oo K

has the extension property il and only if
Hﬂ/la V”a 7/’n+l Z /1'7}:,4

In the following theorcm arguing as in [L0] we see that the same result holds

without having the condition (3.2) when (.J,,) is bounded.

Theorem 3.3 Let Jy < J for each n. I is a compacl sel as il is described in
this chapler satisfying condilion (3.1). Then E(K) has properly DN if and only

of
M, Yn, Py > /1.7]1'[
" Proof: (Necessily) We have p from DN. We let ¢ = (2J + 1)(p + 1) and find
r, C according to DN. We fix n and define
F=7 (x =1 (g — )P 2 < b,
M) o T2 Uy

Since by, < 9, we have by < 9, lor all n. Because f is a polynowmial of
degree q on [0,b,] we have |[fll, = |[ls = [/ = ¢! Now let us find upper

bounds for || f]l, and || f]|»
To find the upper bound for || f|[, let @ < byyy . Then f(z) = 2P 'G(x) where

G(z) is the product of the other terms. Tor & < p,

FO@I AT =Gt (36)
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If @ < b, 405 then
SP @) < Aubhias" (3.7)

fzel, n<I<n-+2J—1 then

S (@) < AupP*t* (3.8)
We therelore have l‘/'(k)(w)l SAhppile <byppgorzel; n<I<n42J-1
Next consider A, = I(lli'_fz)/(l,')_(,')' gyl a#y 1 <p

W2,y <bypoyorayy €y (n <1 <n+2J—1) then by (3.5) we have
Ap < 20,
Heelhandyel, (n<lm<n+2J—1) then
lv —y| > max{hy, b} > maz{t, 1}

and [rom (3.8) we sec that
Ap < Adnthn
Clearly the same estimate holds il { > n,m <n — 1.
e <byegandy €L, n<m<n+J—1then |t—y| > hp+J =12 byyas

and so (3.7) implics

[0(e ays
T — )7L+'2J

Clearly the estimate holds il @ < byyoy and y € I, m <n
Now there is only one remaining case to consider which is ¢ < b,42s and

yel, n+J<m<n+2J~-1
But then 2,y < by and then by (3.5) we have

) . p—1i
1 10(z) = (79() - fO ) E=LE
v (p—)!
where 0 < € < b,4+; and therelore

Ap S 2/\n7/)n

lence we have that || /], < 5Auh, < apy, for n > ny, since A, — 0
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Upper bound for ||ffl, : by Lemma 3.2 |[fF)(x)] < C(2J + 1,p, k)bi=* for

k < q and 0 otherwise. Thus
[/r <maxC(J +1,p,k) = C,
k<q

Clearly 12 f(x) = 0 when @,y < b,. If cither @ > a,_y or y > a,_; then since
|o —y| > hyoy by (3.4) we have

<AC,hIT,

[CHLTTP .

v —y|r— I~ul

Thus |[f]], <5Ch;",
Now replacing [ by f, in DN , we obtain

C 1
q! < lap,, F ——)C ol <, 4 T

‘n—1

. . . -1 . .

for large enough n and arbitrary [. Let ¢ = hZ77'. Since ¢ > 2 we obtain
& n— l

MM <4y, for n large enough.M > » 4 1 increasing the value of M if necessary

we get b <ap,Vn
(Sufficiency) Let p =0 R =TM +3 [or given ¢ > 1. Let » = 3¢. It is enough

to prove the implication

Wil <7 = [~

1/l <t } = |l/]l, <1

For any ¢ s.t. (* > ﬁl— Find n st by <2< by,
Let us first estimate I3 = I‘/'(k)(z)[/,'z(”“k) z€ K k<3¢l z2> anyq apply

Lemma 3.1,
]} S ((j]’l/)n—{-llflo *_ 011/)11 }—l,fl )[2 - k
< (C}lL?A”\L_Rq + (jzt_ (- k)lq)[ (q—k)
< O™t L Cot™1 < Gyt

If 2 = b, then consider taylor expansion of I* at the point @ = @,y

il z— (l) -k

= 2SN T ) e)
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“Therclore for By = [[f®¥)(2)[t2(=F) k < 24 we have

]jk S CC(}[;_q + ”j‘”BqL—Z(Bq—k)
< eCul™ +17T < (el + DT = Ot ™"

Aund for 2¢ < k < 3q we have

Bk — ,‘/‘(k)(z)lt'Z(q—k) S t(]+2q-—2k S [3(]—4(] — 1

Hencee for z = b4 we have Bp(z) < Cim7 0 <k < 3¢

Il 2 = a,q9 then consider taylor expansion of f* at the point ¢ = yy2

(k _Sq (i) (2 —a)F 3q (K
JB) =3t )(ft)*m— + (B2 )®)(2)

1=k

Therelore for By, = | f® ()42 | < 2q we have

B < eCyl™ + ”‘/~”3qt—2(3q—k)
= GCIIL_‘] + L S_(CC’,I + I)t—q = Cs/:_fl

And for 2¢ < k < 3¢ we have

By = lf(k)(z)th(q—k) < Lq—{-?q-2k < (3111 — T

Hence for z = byya we have By(2) < Cst™ 0 < k < 3¢ Now it is ecasy to see
that we can find an inequality for Bi(z) for z € {but2, Gni2, bngsy @ty oy by}

[or every clement in the sequence using the inequality for the previous clement.

]3k({)n+m) S C’Zml'_q 2 S m S J
Ijk(“n-i-m') < C2m+lt_q 2 S m .<_ J —1

Where C,, has the recurrence relation C,, = eC,,—1 + 1 Using this recurrence
relation we get C,, = €™ 3Cy + ™ + ...+ e+ L. It is easy to sce that (Cp,) is
lcreasing.

Il 2 € [antms bngm] 2 <m < J =1 then by considering the Taylor expansion

of [* al a = by we oblain

jjk(z) S cc’lml'_q -+ L_q = C?m-{-lt_q S C‘12J+lt__q
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Il 2 < byyy then consider taylor expansion of f* at the point @ = b,y
3q i—k
. of 1 zZ — < . .
F9e) = 3 00 B o (i)

i=k

and since |z — a] < bpyy < hyyy <072 we have

Bi(z) < eCopt™ + 177 = Coyqyl™?

Hence we have proved that

Bi(z) < Coplt™?" Vze K k<3q (3.9)
a.n(llflq S (JYQ_].{.lt_q
Next we estimate A, = 0@D0@10 C oAy i at -2 4
cxt we estimate Ay = “250E= z,ye z#y ¢ <pllje—y|> ("% then

by (3.4) and (3.9) we have

f U
A‘I < ,.[(i)(:l,‘)”:v — y/li"q + ZI: |f(k)(y)||'c—y,.___q
() ([ 200=1) . ¢ , ¢2(1-1) Cs(e + 1)
< |9 ()|elem) 4 ,;lf(k)(y)l(/g_i)! < .

I v —y] <172, then

' r — )1t T — ) .
(y0@) = 10 EI Ly g =D (g

and using this Jast cquation and (last) we get
4—2 -2q

Y —1, l =1 {' . 4
CzJ+1(l ]+2m +... 4! lFqu) + ”/”20{' &

< Cogprel™T+ 177 = Cogyal™

IN

A‘I

4

Therefore for large enough ¢ we obtain ||f]], <1 O

Now we will consider compact scts K C R? of the following type.lor two
sequences (an), (by) such that 0 < ... < bpyy <@, < b, < ... < by <llet e, =
%(an +b,),let Dy, be the closed disc with center (¢, 0) and radius 7, = %(bn —ay)
then K = {0}US2, D,,. By 1, = 2r, we denote the diamncter of Dy; hy = ap—bnyy

n=1
is the distance hetween D, and D,y . We restrict ourselves to the case where

(3.1) and (3.2) hold.
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E(I) is equipped with the topology defined by the sequence of norms

i i 1y (%) (o
17 = 151y s { B o € i < i}
ERlk
l/\,l = /’L'l "{- /\':2
q¢=0,1,..., where | f], = sup{|/®(2)] : « € K, k| < ¢} and
. g : J®(y .
1 f(x) = [(x) - T (x) = [(x) - II% —/»_1%2')(“ — g/l)k‘ (xy — .1/2)"2
1<q

is the Taylor remainder.

Let 2 be a bounded domain in R?* § > 0. For a point @ € Q we denote
x € Q(6) il @ represents a point of a square, situated in 2, with the side of the
length 6. The next lemma is [rom [8].

Lemma 3.4 Lel [ € C*(Q), k€ Z%, p < |k| <5, 2 € Q(5). Then
l/(k)(l')l S (J(S-é—lkl—ﬂ)lflp + C«l"ss_lkll./.ls
Theorem 3.5 Lel the compacl sel K C R? be as it is described. Then E(K) has
(DN) if and only +f
AM >0 ¢ ap, > M (3.10)
Proof: (Necessily) 1t is casy Lo see that under conditoin (3.2) the statement (3.10)
is equivalent to the following:

IM >0 @ o, > hM

We have p [rom (DN). Let ¢ =p+ 1, and et
. _ ) (er—an)'/ql ifz €Dy
Jwnwe) = fulw,m) = { 0 otherwise

Clearly ||/, = 1. We shall estimate || /]|, and ||f]]; [rom above. We have

(72 /) ()]

11l = 1/1p + sup |z — y[p-T



CHAPTER 3. SOMIZ MODIL CASES 28

(Rg_f)(i)(:v) =0 [or 7, > 0 so let i, = 0.

For @,y € D, we have

[90)

T — Y, J1—1 T3 — Yo Ja—12
j>i)il<p (] _7)'( ) ( )

SO )

1y )N e) = firO(a) -

j'(il’o)(.’b‘) _ (,” — )71—1'1
admen (=)t
. ptl—1t
= ‘/'(7"“'”)(7/)(r{"l ) for some n € D, using (3.5)

(p-+1—=1)!

Then we have )
DO el
I:L- — "]/lp_lll - (7} + J _— 1)'

Ap,i =
For . € D,,y ¢ D, we have

(12 )0 ) = [ w) = (2 = @)™ /(g = )

[ence A, ; < 1y,
Forye D,,x ¢ D, we have
f(ll,())(7/) Jl . an '1 71(”1 _ Ul)?l 1
ll)])/ 1],() ) = — _7/ 71 1 —
T 2 (]1—71)( o =2 (¢ = 70! =)t

u<n<p

So we have A,; < e, in this case, il is clear that |f], < 4. Hence we have

Il[“D < Ay

By doing a similar work we sce that || [l < 4h;"

Combining all these estimations in (DN) for ¢ = 8Ch," we oblain I <
64C h" 4, hence there exists M > 0 such that 7/)”. > hM,

(Sufficiency) Let p =0 and 1t = 2MQ + | where for a given ¢ 2 Llet r = 3q

and m = Mg+ L. It is cnough to prove the implication

o <7y (Il < b= If1ly < 1

where 7 = g
For any t such that (> > ﬁ find n such that b4y <72 < b,. Then

Il
/l.n Z [) > L_ZTJ
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and by the hypothesis, we have

I

It is clear that §¢2 <1 and &£ <1

Let us [irst estimate
Bi(z) := | [0 ()20 W) 2 = (21,2) € K |k] < 3¢
Il z) > d@pqq then one can apply Lemma 3.4 for k| < ¢

By(z)

IA

((/Yl(s_lkll_/‘l() +- 0267""]»','./-[7‘) tZ(q—]kI)
(€167 W7 4 Gy 1) 20710 = ¢y (512)7= Mg 4 Cpr2a=)!
< O Oyt ™21 < Gyt for some Cy > 1

IN

T'he same estimation already holds for ¢ < &k < 3¢

I[ z; < buys then we consider the Taylor expansion of f®) at the point a =
(tnt1,0)

(1 (1 (Zl - Qy i)il_kl (22 - 0)i2_k2 3 k
(k) () = (g + (3 YR

i>k,i|<3q

We apply Lemma 3.4 to the terms j'(i)(a). Since |21 — appy] < anpy < bpyy < 72

and |za — 0] < thnya < byya < {~? we have

1= 2(lil= 1K)

Be(z) < B;(a) 2=k _ + £ $=2(30-[K))
( ) i?_k%f&l ( ) (‘I,J_ - 1&71)!(12 - 1»2)' 1
o I}L((Iy) P
< . — + 177 for |k| <2
S D) E)N(E — k) Ik < 29
< Cst™ 7 for k| < 2¢
< Cyt™ for some Cy > 1

[Ience we have reached to the resull

T ()2 < 0l 2 e K, k| < g (3.11)

henee |f], < Cyt™!
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Next we estimate

(R )9()

1, =

oy SYEhR @ #y, il <q

Il Jx —y| < (72, then

ky—iy (. ky—1y
(i dh L (i Tk T — Y Xq — Y
(N9 = (O + Y )T (e = v
[k=q+1 k> (1\1 - 1'1)-(_/"2 - 1,2).

(i . l
< (/{,;H-‘j)(l)(;z:) S L e — y |t | |
J ; |’~‘I=qz+;,kzi (ky — 21) (kg — 12)!

< (RO (@) + | f]grr. | — ylrH

and it follows that

Aq < (“f“r1+l + Czt.f|q+l)|‘v - y| < gtg

Il | —y| > (72 then we will use the identity

(e NI (w) = [ ()= >

izidiige U1 = 1)1z = 22)!
and (3.10), then we have

|z — gl

Ay < @) =yl 30 /9y

i>ilil<e (71— t)(J2 — 12)!
(1) 2(q-lil) () ¢2(a=liD)
< O P Wl
/, (

Jr—1)Hj2 —12)!
Therelore [or large enough ¢ we obtain |[f][; £1 O

71— 1)l(J2 — @)

) < %(1, +e?) < 1%

{

IN



Chapter 4

Multidimensional Cantor type

sets

We concider a problem of the existence of a linear continuous extension opera-
tor for the space of Whitney [unctions given on a generalized multidimensional
‘Cantor sct.

4.1 Introduction

In what follows we will consider only C*°-determining compact sets. A compact
set [ € R™is called C*®-delermining il for each f € C*(R"), flx = 0 implies
T® e =0 for all k € N*. Therelore we can consider not jets but functions.

Let (1,)2 be a scquence such that Iy = 1,0 < 20,4y < l,,n € N.Let K be
the Cantor set associated with the sequence (,) that is K = N2 K,, where
Iy = Iy = [0, 1],1, is a wnion of 2" closed intervals I, x of length [, and K4y
is obtained by deleting the open concentric subinterval of length [, — 24,4, from
cach Ly, k=1,2,...,2"

Iix o > 1 and I} < 1/2 with 287" < 1.We will denote by K the Cantor set

. . P 1)
associaled with the sequence (1,),where [y = 1,4 =18 = ... = 1§ ,n > 0.

Theorem 4.1 [9, Goncharov]lf o > 2 then K does not have the extension

properly.

Theorem 4.2 [9, Goncharov] If 1 < a < 2 then (%) has the extension property.

31
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4.2 Cantor type sets in R* and the extension
property

We see that the critical point for the one dimensional Cantor sets is o = 2. We
~want Lo find the critical point for the set K1) x K@) » x [ Let for
i < n [loed denote the set K1) x (02) x| x K@) Tiop simplicity we will

usc Lhe folowing notation:

Notation 4.3 || /|| denotes the ¢ norm of [ € E(I ey i e N.
For o = (z),...,x,) € Kleveman] gpd k= (kyy.oykn) € N* let
T = (x1,..,2,)
i o= (ai...,2)
T = (T, )
ko= klky)
o= ahak
T2y & a2y Vi<n
=y & z;=y Viln
>y & 27 and TH#7
Lemma 4.4 Let [ € E(IClmenl) Jior n > 2 fiv ¢ € Kozl gnd let f.(z) =

f(z,¢),x € K@) then ||‘/'|]£l”) > ||_/'c||{(l')
Proof:

|f|(” = 3111){|j'(")(:1:)|} = sup{| /i) (@, o w,)| € KO, 7] < ¢}

sn|){|/ s U)(ql, )y e K e e Klozmend 50 < )

11171

= sup{]/YU(xy)] 12 €R,Gy < ¢} = ‘fcI;

v

On the other hand

I/ '
Sy = sup {|( )" (~|)| wyy € Kl iy oty L] < q}

Ty, |7, - J|q

t oy — —()(72 _ i — in—tn
I[ (,I) E( f)] ; (Tl 'l/l)]l 1 (mn ?/n,)] I

J1—11)! (711"111)

lw — yo- i

= sup
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I 7O ;
1601, ¢) — 2 LG o — )]

(11—11) .
i nr

\
w0
—
=

o

xy,yper(e1)

= Lory Lo ey,
- ‘Sr] (/c) for ¢ & ]X[ 2 ]

henee [IFI§ = 7182 + S7(1) 2 1el§ + S;(0e) = 1L
O

Lemma 4.5 Lel [ € E(Klvwl) [orn > 2 fiv ¢ € K and let [O(y) =
d'—il;-: ‘(3/, ) Yy € K [egyeesen—1] then ”/Ilqn > “/ “q” 1)

Proof
Ior the proof of this inequality we will use a strategy similar to the one in the

proofl of the previous lemma.

|f|,(l") = sup{]_/'(j)(:v)| cx e Klovond 151 < g} = sup{|fU i) @y, o 2))
"1"7.7

1)
— I/ In) an i

On the other hand

B Il
Sq(J) = sup |(—j)—,(—)| yy € Ilerend g oLy i < g (4.1)
& — y[o=H
. G(s . in—1in
- |/ i ( ) E G nf J !(;7}1_1__”) (Ll —_ Jl)“ i (-’Ln _ yn)] i ]
- [ — o1
i ) (s f(']‘“_l'in)(rn— :€) = = 7 —1
S - Ij( n—1 )(a"”_lvc)—zf-n—-lZ;u—lvﬁn—llsq—iu (jl__'])!_“(J"__Jl _l:l_l)!(xn——l":‘/n—l)]n—l n—1
==l |.'l'7n_1—y'”_|(q_i’l_l;vl—l|
P -1, Yn-1 € [&’[(le--y(-\'n—l], Ty 7£ Yn—1, Izn—ll < q— in} for fixed 7,

= ]

S (J5)

hence [JII8 = 1115V + Sp()) 2
D

(n=1) n n—1)
q : -f_ 9(1 11(- ) ”j ”q 1
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Theorem 4.6 K1l has the extension property for | < a; < 2,4 =1,...,n

Proof
We will prove by induction on n. We know the statement is true for k =

Now suppose the statement is true for & < n — 1. Then take
29 = (w0, 90) € Klv0m)

where xg € Kvmenal qnd gy € I (em)
ix [ € 6'([\'[“'1""""”]) fix ¢.Given 12 > 0 Now fix k; < ¢
Let gy(2) := fO%) (2, o). Then gi(z) € E(ITren=il)
Therlore by proposition 1.19 and by our induction assumption

3,0 > 02 gy | < lgal )+ Dl i, 1> 0

So Vk; € N*= s.t. k] < g — kg we have

FER ) <1 sup (o) + i), >0 (42)

Lel\"l’-’l vengy ]

Now let go(y) := f(x,y) then go(y) € E(K)) using our assumption again,

if we fix x we will have

, C
SO e, go)] < " sup [ (2,9)] + gl d >0

yel(an)
then
. C
swp O gl < s (@ s )]+ o i)
zek1man—] sekimen—tl - yeR (o) ¢

P sup 1)+ 5 supllgall$) V> 0

(2,v)

IN

By Lemma 4.4
g2/l < (/117"

and by Lemma 4.5
g1 < NI < 1Y
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then

(E & ¢ Ciie
| fER) (o) < P fo + = s+ 211 1

Now let d = ¥+ {hen
| SR ()] < L2 f —IIme‘W >0

O

Lemma 4.7 Let [ € E(Kmed)y 54 [(2) = f(xy, . 2n) = Fay), F(z)) €
E(K)Y that is, [ depends only on Lhe first vanablc.lhen NG = | )0

Proof: Since 1*’(k1'E2)(3;1) =0 for k3 > 0 we have

|./.|((In) — 'S”])“’lvfzvkl,@{|j'(k1’k2)(~m""i:2)| sk - [l::zl L g,z € K(m)’i:2 c K[az,...,a,,]}
= Sl‘l’xl,k,,;}z{|-F(kl'k2)($1)| tky o+ ko] < g0 € K0}
= SUPwi {lj;‘(kl)(xl)l : kl < 7,y € [&’(OII)}
alle
|17

On the other hand we have
1i1J2) "

! l yz" ar ( ) l v _.n—in — . =
I “ 23(-L1)—Z]>z]7|<q Gimi1) o (n—in)! (=) (e =y ) =0foriy >0
and ['0092)(z) = 0 for j; > 0 therefore

s ([ (e f
o ‘Z“),’!' ]

6)) .
| 7>z l71<q { lt)l (:""'y)]_ll

(l'-)y e I([ﬂl""'a"],:l; 75 y’ |7l S q}

= sup

|z — ylo=H

I (“ 72) 1. n)gylk(‘q’ :l/)J_zl

Z]>1v|7|<(l (7—1)!
|.L —_ Jl'l ld]

( J(31.2)
{“’ () () 2 20l Gy e =)= @)
= sup

= sup

11>l1.J220,|J|<9 (51—t1)ly
v —ylo—

xvyvll

for 14 <gq

,]«‘ ZM( _Jl)“ 11'

(21—=11) 1 .
rx #F Y1 < g
Ll - Jl + .+ (Un, - 3/71.)2)7*”

= sup
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|60 () — Zﬂ(y_ll( =y )

(J1—i -
1 lq : ;U17y1€R,.’L‘17éy1,7,1§(]
w1 — |0

= sup
1
S, (1)

lHence we get || /]|t = |17V ©

Theorem 4.8 Kevl does nol have the exlension properly if al least one of

the «;’s s grealer than 2.
Proof: Suppose wlog a; > 2 .By the prool of Theorcmn 2 in [9] we have

1[I0
[T I

Now define gm (@1, ...y 2n) = fu(e1) By Lemma 4.7 ”gm”((]") = ||fm”f]‘)

IHence we have

0 as n — 0

Vp 3c 3¢ Vr>q 3(fu) C EI)):

g 152 g [1)¢
||‘(]m' H((I‘!l) I-+e

— 0 as n — oo

V]) e 3(] Yr > q 3(.(]m) C 5( ]'\’[0’1 ,,,,, c\',,]) .

which shows the negation of (1.4)
O
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