colvact seic

```
    *)
```


GEOMETRIC CHARACTERIZATION OF EXTENSION PROPERTY FOR MODEL COMPACT SETS

A THESIS
SUBMITTED TO THE DEPARTMENT OF MATHEMATICS
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
Muhammed Altun
September 2000
$0 A$
322

- A. 48

2000

B053307
(c) Copyright 2000 by

Muhammed Altun

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Alexander Goncharov(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Ferhat Hüseyin

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Mefharet Kocatepe

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Bray
Director of Institute of Engineering and Sciences

ABSTRACT

GEOMETRIC CHARACTERIZATION OF EXTENSION PROPERTY FOR MODEL COMPACT SETS

Muhammed Altun
M. S. in Mathomatics
Advisor: Assist. Prof. Alcxander Goncharov
September 2000

In this work we examined the existence of a linear continuous extension operator for the space of Whitney functions given on sulbsets of the whole space. We studied the linear topological invariants, espectially an invariant which topologically characterizes the existence of an extension operator. Finally, we gave necessary and sufficient, conditions for the existence of an extension operator on some special lype compact sel,s.

Keywords and Phrases: l'réchet spaces, Extension operator, Whitney functions, Linear 'lopological Invariants.

ÖZET

BAZI MODEL KOMPAKT KÜMELER İÇİN GENİSLETME ÖZELLİĞíNİN GEOMETRİK KARAKTERİZASYONU

Muhammed Altun
Matcmatik Yuksck Lisans
Danışau: Doç. Dr. Alexauder Goncharov
Eyłül 2000

Bu çalsşmada vektörel bir uzaym alt kümelerinde tanmenmeş olan Whitney fonksiyon uzaylarma lineer sürekli bir genişletme operatörünün var olma durumlamm inceledik. Ayruca lineer topotojik invariantlar ïzerinde, özellikle bir genişlelme operalörünüu var olma durumunu karakterize eden bir iuvariant ̈̈zerinde çahsstak. Son olarak bazı özel kompakt, kümelerde lir genisletme operatörünïn var olma durumn için yeter ve gerek şartlan verdik.

Anahlar Kelimeler ve Ifadeler: Fréchet uzayları, Genişletme operalörü, Whitney fonksiyonlarr, Lincer topolojik invariant, dar.

ACHNOWLEDGMENTS

I would like to thank my supervisor Asst. Prof. Dr. Alexander Goncharov for his supervision, guidance, encouragement, help and critical comments while developing this thesis.

I am grateful to my family, especially to my mother Lefika. Altun, for their encouragement and support.

I would like to thank to my friends, who wore always together with me with l.heir prays and good wishes.

I would like to thank also to Saed Madak, who was my room mate and who encouraged me to go on staying here in Bilkent University and finish my thesis.

Finally, I would like thank to Kerim A. (iemil without, whom the life in Bilkent would be boring and who was more than a friend for me.

Contents

1 Introduction 2
1.1 Whitney's Extension theorem 6
1.2 Linear Topological Invariants 9
1.3 Topological Characterization of Extension Property 15
2 Review of Previous Results 17
3 Some Model Cases 21
4 Multidimensional Cantor type sets 31
4.1 Introduction 31
4.2 Cantor type sets in \mathbb{R}^{n} and the extension property 32

Chapter 1

Introduction

The development of differential calculus in the $20^{t h}$ century has its origin in the work of Whitncy on differentiable functions. The profound theorems proved during the last fifty years were motivated on the one hand by problems of Laurent Schwartz concerning division of distributions and differentiable functions, and on the other hand by the theory of singularitics of differentiable mappings, developed at first by Thom and Whitncy. Some of the most fundamental results are due to Schwartz's students Glaeser, Grothendick and Malgrange.

We will begin with an elementary theorem on differentable even functions, which introduces some important techniques and which provides a good illustration of the fundemental problems and the relationships among them.

Let U be an ojen set of \mathbb{R}^{n}. We denote by $\mathcal{E}^{m}(U)$ (respectively $\mathcal{E}(U)$) the algebra of m times continuously differential)le (rcspectively infinitely diffcrentiable) functions in U, with the topology of uniform convergence of functions and all their partial derivatives on compact sets. This is the topology defined by the seminorms

$$
|f|_{m}^{K}=\sup \left\{\left|\frac{\partial^{|k|} f}{\partial x^{k}}(x)\right|: x \in K,|k| \leq m\right\}
$$

where K is a compach subset of U (and mruns through \mathbb{N} in the C^{∞} case). Here $x=\left(x_{1}, \ldots, x_{n}\right), k$ denotes a multiindex $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n},|k|=k_{1}+\ldots+k_{n}$ and

$$
\frac{\partial^{|k|}}{\partial x^{k}}=\frac{\partial^{|k|}}{\partial x_{1}^{k_{1}} \ldots \partial x_{n}^{k_{n}}}
$$

We will sometimes use m for either a nonnegative integer or $+\infty$ and write

$$
\mathcal{E}^{+\infty}(U)=\mathcal{E}(U)
$$

Let $\mathcal{E}^{n}(\mathbb{R})_{\text {even }}$ be the closed subspace of $\mathcal{E}^{m}(\mathbb{R})$ consisting of even functions ($m \in \mathbb{N}$ or $m=+\infty$)

Theorem 1.1 If $f(x)$ is a $C^{2 m}$ even function of one variable ($m \in \mathbb{N}$ or $m=$ $+\infty)$, then there exists a C^{m} function $g(y)$ such that $f(x)=g\left(x^{2}\right)$. In fact there exists a continuous linear operator $L: \mathcal{E}^{2 m}(\mathbb{R})_{\text {even }} \longrightarrow \mathcal{E}^{m}(\mathbb{R})$ such that $f(x)=L(f)\left(x^{2}\right)$ for all $f \in \mathcal{E}^{2 m}(\mathbb{R})_{\text {even }}$

The first assertion is due to Whitney [25]. The second follows from the theorem of Seeley [20]. It, will be clear that an analogous result holds for functions of several variables that are cven in some of them.

The proof of the theorem cau be given by using the following elemantary but important lemma.

Lemma 1.2 (IIadamard's lemma) If $f(x)=f\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{p}\right)$ is a C^{m} function such that

$$
f\left(0,0, \ldots, 0, x_{n+1}, \ldots, x_{p}\right)=0
$$

then there exists C^{m-1} functions $g_{i}\left(x_{1}, \ldots, x_{p}\right), 1 \leq i \leq n$, such that

$$
f(x)=\sum_{i=1}^{n} x_{i} g_{i}(x)
$$

Proof: By the fundamental thcorm of calculus and the chain rule, we have

$$
f(x)=\int_{0}^{1} \frac{\partial f\left(t x_{1}, \ldots, l x_{n}, x_{n+1}, \ldots, x_{p}\right)}{\partial t} d l=\sum_{i=1}^{n} x_{i} g_{i}(x)
$$

where

$$
g_{i}(x)=\int_{0}^{1} \frac{\partial f}{\partial x_{i}}\left(t x_{1}, \ldots, t x_{n}, x_{n+1}, \ldots, x_{p}\right) d t
$$

It is clear that the g_{i} defined in the proof of Lemma 1.2 depend in a continuous linear way on f.

Hadamard's lemma is a very simple type of division theorem for differentiable functions. In the C^{∞} case, the assertion of the lemma is equivalent to the statement that the ideal in $\mathcal{E}\left(\mathbb{R}^{p}\right)$ generated by x_{1}, \ldots, x_{n} is closed. Malgrange [14] proved that, if U is an open subset of \mathbb{R}^{n}, then any ideal I in $\mathcal{E}(U)$ which is gencrated by finitely many analytic functions is closed. Malgrange's theorem has a
more concrete formulation: a C^{∞} function f on U belongs to I if and only if it "belongs formally to I ". "Belongs formally to I " means that the formal Taylor series of f at each point of U is the formal Taylor series of some element of I. In fact according to Whitney's spectral theorem [26], the closure of any ideal I in $\mathcal{E}(U)$ equals the ideal of C^{∞} functions which belong formally to I.

Proof of Theorem 1.1: Let $f(x)$ be a $C^{2 m}$ cven function. There is a unigue continuous function $g(y)$ defined in $[0, \infty)$ such that g is $C^{2 m}$ in $[0, \infty)$ and $f(x)=g\left(x^{2}\right)$. If $x \neq 0$, we have

$$
\frac{d g^{(k)}\left(x^{2}\right)}{d x}=2 x g^{(k+1)}\left(x^{2}\right) \quad 0 \leq k<2 m
$$

On the other hand we can use Itadamard's lemma to define $C^{2(m-k)}$ even functions h_{k} inductively as follows:

$$
\begin{aligned}
& h_{0}=\int \\
& h_{k}^{\prime}=2 x h_{k+1}, \quad 0 \leq k<m
\end{aligned}
$$

It follows that $h_{k}(x)=g^{(k)}\left(x^{2}\right)$ outside the origin, so that each derivative $g^{(k)}, 0 \leq$ $k \leq m$ can be continued up to the origin. We will prove that g is the restriction to $[0, \infty)$ of a C^{m} function defined on \mathbb{R}.

The problem of extending g to a differentiable function is a very special instance of Whitney's extension problem: When is a function \int, defined in a closed subset X of \mathbb{R}^{n}, the restriction of a C^{m} function in \mathbb{R}^{n} ? ([27],[28]). In fact, we want to extend g in a contimous lincar way. The existence of such an extension in the C^{∞} case was first proved by Mityagin [17] and Seeley [20].

Let $\mathcal{E}^{n \prime}([0, \infty))$ denote the space of continuous functions g in $[0, \infty)$ such that g is C^{m} in $(0, \infty)$ and all derivalives of $g \mid(0, \infty)$ extend continuously to $[0, \infty)$. Then $\mathcal{E}^{m}([0, \infty))$ has the structure of a Frechet space defined by the seminorms

$$
|g|_{m}^{K}=\sup \left\{\left|y^{k}(y)\right|: y \in K,|k| \leq m\right\},
$$

where K is a compact, subset of $[0, \infty)$ (and m runs through \mathbb{N} in the C^{∞} casc), and where g^{k} denotes the continuation of $\left(d^{k} / d y^{k}\right)(g \mid(0, \infty))$ to $[0, \infty)$.

The following theorem completes the proof of theorem 1.1.
Theorem 1.3 There is a continuous linear cxtension operalor

$$
E: \mathcal{E}^{m}([0, \infty)) \longrightarrow \mathcal{E}^{m}(\mathbb{R})
$$

such that $E(g) \mid[0, \infty)=g$ for all $g \in \mathcal{E}^{m}([0, \infty))$.
Proof: Our problem is to define $E(y)(y)$ when $y<0$. If $m=0$ we can define $E(g)(y)$ by reflection in the origin : $E(g)(y)=g(-y), y<0$. If $m=1$ we can use a weighted sum of reflections. Consider

$$
E(g)(y)=a_{1} g\left(b_{1} y\right)+a_{2} g\left(b_{2} y\right), \quad y<0
$$

Where $b_{1}, b_{2}<0$. Then $E(g)$ determines a C^{1} extension of g provided that the limiting values of $E(g)(y)$ and $E(g)^{\prime}(y)$ agree with those of $g(-y)$ and $g^{\prime}(-y)$ as $y \longrightarrow 0-$; in other words if

$$
\begin{array}{r}
a_{1}+a_{2}=1 \\
a_{1} b_{1}+a_{2} b_{2}=1
\end{array}
$$

For distinct $b_{1}, b_{2}<0$ these equations have a unique solution a_{1}, a_{2}. This extension is due to Lichtenstein [13].

Hestenes [11] remarked that the same technique works for any $m<\infty$: a weighted sum of m reflections leads to solving a system of linear equations determined by a Vandermonde matrix.

If $m=\infty$, we can use an infinite sum of reflections [20]:

$$
E^{\prime}(g)(y)=\sum_{k=1}^{\infty} a_{k} \phi\left(b_{k} y\right) g\left(b_{k} y\right), \quad y<0
$$

where $\left\{a_{k}\right\},\left\{b_{k}\right\}$ are serfuences satisfying
(1) $b_{k}<0, b_{k} \longrightarrow-\infty$ as $k \longrightarrow \infty$;
(2) $\sum_{k=1}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{n}<\infty$ for all $n \geq 0$;
(3) $\sum_{k=1}^{\infty} a_{k} b_{k}^{n}=1$ for all $n \geq 0$
and ϕ is a C^{∞} function such that $\phi(y)=1$ if $0 \leq y \leq 1$ and $\phi(y)=0$ if $y \geq 2$. In fact condition (1) guarantees that the sum is finite for each $y<0$. Condition (2) shows that all derivatives converge as $y \longrightarrow 0-$,uniformly in each bounded set, and (3) shows that the limits agree with those of the derivatives of $g(y)$ as $y \longrightarrow 0+$. The continuity of the extension operator also follows from (2).

It is easy to choose sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$ satisfying the above conditions. We can take $b_{k}=-2^{k}$ and choose a_{k} using a theorem of Mittag Lefller: there exists an entire function $\sum_{k=1}^{\infty} a_{k} z^{k}$ taking arbitrary values (here $(-1)^{n}$) for a sequence of distinct points (here 2^{n}) provided that the sequence does not have a finite accumulation point.

It is clear that Secley's extension operator actually provides a simultancous extension of all classes of diferentiability.

In this article we will be concerned mainly with C^{∞} functions. Whitncy's theorem on even functions in the C^{∞} case is equivalent to the statement that the subalgebra of $\mathcal{E}(\mathbb{R})$ of functions of the form $g\left(x^{2}\right)$ is closed.

1.1 Whitney's Extension theorem

In this section we will examine the classical extension theorem of Whitney [27]. Let, U be an open subset of \mathbb{R}^{n}, and X a closed subset of U. Whitney's theorem asserts that a function F^{0} defined in X is the restriction of a C^{m} function in U $(m \in \mathbb{N}$ or $m=+\infty)$ provided there exists a sequence $\left(F^{k}\right)_{|k| \leq m}$ of functions defined in X which satisfics certain conditions that, arise naturally from Taylor's formula.

First, we consider $m \in \mathbb{N}$. By a jet of order m on X we mean a set of continuous functions $F^{\prime}=\left(F^{\prime k}\right)_{|k| \leq m}$ on X. Here k denotes a multiindex $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$. Let $J^{m}(X)$ be the vector space of jets of order m on X. We write

$$
|F|_{m}^{K}=\sup \left\{\left|F^{k}(x)\right|: x \in K,|k| \leq m\right\}
$$

if K is a compact subset of X, and $F^{\prime}(x)=F^{0}(x)$.
'Ihere is a linear mapping $J^{n}: \mathcal{E}^{n}(U) \longrightarrow J^{n}(X)$ which associates to cach $f \in \mathcal{E}^{m}(U)$ the jet

$$
J^{m}(f)=\left(\left.\frac{\partial^{|k|} f}{\partial x^{k}} \right\rvert\, X\right)_{|k| \leq m}
$$

For cach k with $|k| \leq m$, there is a lincar mapping $l)^{k}: J^{m}(X) \longrightarrow J^{m-|k|}(X)$ defined by $D^{k} F=\left(F^{k+l}\right)_{|||\leq n-|k|}$. We also denote by D^{k} the mapping of $\mathcal{E}^{n}(U)$ into $\mathcal{E}^{n-|k|}(U)$ given by

$$
D^{k} J=\frac{\partial^{|k|} J}{\partial x^{k}}
$$

This should cause no confusion since

$$
D^{k} \circ J^{m}=J^{m-|k|} \circ D^{k}
$$

If $a \in X$ and $F \in J^{m}(X)$, then the Taylor polynomial (of order m) of F at a is the polynomial

$$
T_{a}^{\prime \prime n} F(x)=\sum_{|k| \leq m} \frac{P^{2 k}(a)}{k!}(x-a)^{k}
$$

of degree $\leq m$. Here $k!=k_{1}!\ldots k_{n}!$. We define $R_{a}^{m} F=F-J^{m}\left(T_{a}^{m n} F\right)$, so that

$$
\left(l_{a}^{m} F^{\prime}\right)^{k}(x)=F^{\prime k}(x)-\sum_{|l| \leq m-|k|} \frac{F^{k+l}(a)}{l!} \cdot(x-a)^{l}
$$

if $|k| \leq m$.
Definition 1.4 A jet $F \in J^{m}(X)$ is a Whitney field of class C^{m} on X if for each $|k| \leq m$

$$
\begin{equation*}
\left(R_{x}^{m} F\right)^{k}(y)=o\left(|x-y|^{m-|k|}\right) \tag{1.1}
\end{equation*}
$$

$a s|x-y| \longrightarrow 0, x, y \in X$.
Let $\mathcal{E}^{m}(X) \subset J^{m}(X)$ be the subspace of Whitney fields of class $C^{m} . \mathcal{E}^{n}(X)$ is a Frechet space with the seminorms

$$
\left\|F^{\prime}\right\|_{m}^{K}=\left|F^{\prime}\right|_{m}^{K}+\sup \left\{\frac{\left|\left(R_{x}^{m} F\right)^{k}(y)\right|}{|x-y|^{m-|k|}}: x, y \in K, x \neq y,|k| \leq m\right\}
$$

where $K \subset X$ is compact.
There are two more type of norms used to identify the topology in $\mathcal{E}^{n}(X)$, where one of them is:

$$
\left\|F^{\prime}\right\|_{m}^{K}=\left|F^{\prime}\right|_{m}^{K}+\sup \left\{\sum_{|k| \leq m} \frac{\left|\left(R_{x}^{m} F^{\prime}\right)^{k}(y)\right|}{|x-y|^{m-|k|}}: x, y \in K, x \neq y\right\},
$$

and the other is

$$
\left\|F^{\prime}\right\|_{m}^{K}=\max \left\{|F|_{m n}^{K}, \sup \left\{\frac{\left|R_{x}^{m-|k|} F^{\prime k}(y)\right|}{|x-y|^{m-|k|}}: x, y \in K, x \neq y,|k| \leq m\right\}\right\}
$$

It is easy to sec that, topologies given by these system of norms are equivalent.

Remark 1.5 If $F \in J^{m}(U)$ and for all $x \in U,|k| \leq m$ we have

$$
\lim _{y \rightarrow x} \frac{\left|\left(R_{x}^{m} I\right)^{k}(y)\right|}{|x-y|^{m-|k|}}=0
$$

then there exists $f \in \mathcal{E}^{m}(U)$ such that $F=J^{m}(J)$. This simple converse of Taylor's theorem shows that the two spaces we have denoted by $\mathcal{E}^{m}(U)$ are equivalent. On $\mathcal{E}^{m}(U)$, the lopologics defincel by the seminorms $|\cdot|_{m i}^{K},\|\cdot\|_{m}^{K}$ are cquivalent (by the open mapping (heorem).

Theorem 1.6 (Whitney [27]) There is a continuous linear mapping

$$
W: \mathcal{E}^{m}(X) \longrightarrow \mathcal{E}^{m}(U)
$$

such that $D^{k} W\left(F^{\prime}\right)(x)=F^{k}(x)$ if $F \in \mathcal{E}^{m}(X), x \in X,|k| \leq m$, and $W\left(F^{\prime}\right) \mid(U-$ $X)$ is C^{∞}.

Remark 1.7 The condition (1.1) cannot be weakened to:

$$
\begin{equation*}
\lim _{y \rightarrow x} \frac{\left|\left(R_{x}^{m} F\right)^{k}(y)\right|}{|x-y|^{m-|k|}}=0 \tag{1.2}
\end{equation*}
$$

for all $x \in X,|k| \leq m$.
For example let A be the set of points (using one variable) $x=0,1 / 2^{s}$ and $1 / 2^{s}+1 / 2^{2 s}(s=1,2, \ldots)$. Set $\int(x)=0$ at $x=0$ and $1 / 2^{s}$ and $\int(x)=1 / 2^{2 s}$ at $x=1 / 2^{s}+1 / 2^{2 s}$.Sct $f^{1}(x) \equiv 0$ in Λ. 'The above condition is satisfice but there's no extension of $f(x)$ which has continuous first derivative.

For K a closed subset of \mathbb{R}^{n} and $m \in \mathbb{N}$. Whitney's extension theorem [27] gives an extension operator (a lincar continuous extension operator) from the space $\mathcal{E}^{m}(K)$ of Whitney jets on K to the space $C^{m}\left(\mathbb{R}^{n}\right)$. In the casc $m=\infty$ such an operator does not exist in general.

Definition 1.8 For $K \subset \mathbb{R}^{n}$, K has the Extension property if there exists a linear continuous extension operalor $L: \mathcal{E}(K) \longrightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$.

An example for a compact set which does not have the extension property is the set $K=\{0\} \subset \mathbb{R}$. To prove this fact assume that there exists such a continuous cxtension operator L for $K=\{0\}$. Hence we have

$$
\forall p \exists q, C:\left\|L F^{\prime}\right\|_{p} \leq C\|F\|_{q} \forall F^{\prime} \in \mathcal{E}(K) .
$$

Let $p=0$, then we have q, C^{\prime} satislying $\left\|L F^{\prime}\right\|_{0} \leq C\left\|F^{\prime}\right\|_{q} \forall F^{\prime} \in \mathcal{E}\left(K^{\prime}\right)$.
Let, $F^{\prime}=\left(F_{i}\right)_{i=0}^{\infty}$ with $F_{q+1}^{\prime}=1$ and $F_{i}^{\prime}=0$ for all $i \neq q+1$.
It is easy to see that $\|F\|_{q}=0$.
But of course $L h^{\prime} \neq 0$ since $L l^{\prime(q+1)}(0) \neq 0$.
'Jhen we get $0<\|L F\|_{0} \leq C\|F\|_{\eta}=0$ which is a contradiction.
We can similarly prove that $K=\{0\} \cup[a, b] \subset \mathbb{R} 0<a<b$ also does not have the extension properiy. Ceneralizing this, it is easy to see that if $K \subset \mathbb{R}^{n}$ has isolated points then K has no extension property.

1.2 Linear Topological Invariants

In this section we will introduce Fréchet spaces, Köthe spaces and linear topological invariants. We will denote by \mathbb{K} either of the fiedds \mathbb{R} or \mathbb{C}.

Definition $1.9 \wedge \mathbb{K}$-vector space F ', endowed with a metric, is called metric linear space, if in F addilion is uniformly conlinuous and scalar mulliplication is continuous.

A metric lincar space l ' is said to be locally convex if for cach $a \in l$ and each neighborhood V of a there exists a convex neighborhood U of a with $U \subset V$.

A complete, metric, locally convex space is called a Fréchet space.
Bevery normed space is a metric linear space and every Banach space is a Fréchet space; however there are liréchet spaces which are not Banach spaces. The next lemma gives an example of a Fréchet space which is not Banach. The proof can be found in [16] Lemman 5.17.

Lemma 1.10 Let $\left(E_{n}^{\prime},\|\cdot\|_{n}\right)_{n \in \mathrm{~N}}$ be a sequence of Banach spaces. A metric is defined on $E=\Pi_{n \in \mathbb{N}} E_{n}^{\prime}$ by

$$
d(x, y):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left\|x_{n}-y_{n}\right\|_{n}}{1+\left\|x_{n}-y_{n}\right\|_{n}}, \quad x=\left(x_{n}\right)_{n \in \mathbb{N}}, \quad y=\left(y_{n}\right)_{n \in \mathbb{N}} \quad \in E .
$$

Then $\left(E^{\prime}, d\right)$ is a l'réchel space. (E, d) is nol a Banach space if $E_{n} \neq\{0\}$ for infinilcly many $n \in \mathbb{N}$.

Using this lemma it is casy to sec that $C(U), C^{\infty}(U)$ are Fréchet spaces for U an open subset of \mathbb{R}^{n}, and the space of analytic functions on U which we denote by $\Lambda(U)$ is a Fréchet space when U is an open sulset of \mathbb{C}.
$C^{\infty}(U)$ for U an open subset, of $\mathbb{R}^{n}, C^{\infty}(\bar{U})$-the space of infinitely differential)le functions on an open bounded domain U which are uniformly continuous with all their derivalives, $\mathcal{E}(K)$ for K a compact subset of \mathbb{R}^{n} and $\Lambda(U)$ for U an open domain in \mathbb{C}^{n} are typical examples of Préchet spaces.

We now give a simple but useful property of fréchet spaces by the following proposition:

Proposition 1.11 F'or cvery Fićchel space E' and each closed subspace F of E, the spaces F' and E / F are Préchal spaces.

Definition 1.12 Lel E be a locally convcx space. A collection \mathcal{U} of zero neighborhoods in E is called a fundamental system of zero neighborhoods, if for every zero ucighborhood U there cxists a $V \in \mathcal{U}$ and an $\epsilon>0$ with $\subset V \subset U$.

A family $\left(\|.\|_{\alpha}\right)_{x \in A}$ of continuous scminorms on F is called a fundamental system of seminoms, if the sels

$$
U_{\alpha}:=\left\{x \in E:\|x\|_{\alpha}<1\right\}, \quad \alpha \in \Lambda,
$$

form a fundamental system of zcro neighborhoods.
Notation 1.13 Lel E' be a locally convex space which has a countable fundamental system of seminorms $\left(\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$. By passing over to $\left(\max _{1 \leq i \leq n}\|\cdot\|_{j}\right)_{n \in \mathbb{N}}$ one may assume that.

$$
\|x\|_{n} \leq\|x\|_{n+1} \forall: x \in B, n \in \mathbb{N}
$$

holds. We call $\left(\|.\|_{n}\right)_{n \in \mathbb{N}}$ an increasing fundamental system.
Definition 1.14 A sequence $\left(c_{j}\right)_{j \in \mathbb{N}}$ in a locally convex space E is called a Schauder basis of E, if for cach $x \in E$, there is a uniqucly delermincd scquence $\left(\xi_{j}(x)\right)_{j \in \mathbb{N}}$ in \mathbb{K}, for which $x=\sum_{j=1}^{\infty} \xi_{j}(x) c_{j}$ is true. The maps $\xi_{j}: B \longrightarrow \mathbb{K}, j \in \mathbb{N}$, are called the coefficient functionals of the Schauder basis $\left(e_{j}\right)_{j \in \mathbb{N}}$. They are linear by the uniqueness stipulations.

A Schauder basis $\left(e_{j}\right)_{j \in \mathbb{N}}$ of E is called an absolute basis, if for each continuous seminorm p on E there is a continuous seminorm q on E and there is $a C>0$ such that

$$
\sum_{j \leqslant \mathbb{N}}\left|\xi_{j}(x)\right| p\left(c_{j}\right) \leq C q(x) \quad \forall x \in E .
$$

Led, $A=\left(u_{i p}\right)_{i \in I, p \in M}$ be a matrix of real mumbers such that, $0 \leq a_{i p} \leq a_{i p+1}$. K öthe space, defincd by the matrix A, is said to be the locally convex space $K(A)$ of all sequences $\xi=\left(\xi_{i}\right)$ such that

$$
|\xi|_{p}:=\sum_{i \in I} a_{i p}\left|\xi_{i}\right|<\infty \quad \forall p \in \mathbb{N}
$$

with the topology, generated by the system of seminorms $\left\{\left.|\cdot|\right|_{p}, p \in \mathbb{N}\right\}$. The set of indices I is supposed to be comitable, but in general $I \neq \mathbb{N}$. This is convenient for applications, especially when multiple series are considered.

Definition 1.15 Let E and F be locally convex spaces; let us define

$$
\begin{array}{r}
L\left(E, F^{\prime}\right):=\left\{\Lambda: E \longrightarrow F^{\prime}: A \text { is linear and continuous }\right\} \\
L(E):=L(E, E) \text { and } E^{\prime}:=L(E, \mathbb{K})
\end{array}
$$

$L^{\prime \prime}$ is called the dual space, of E.
A linear map $A: E \longrightarrow F$ is called an isomorphism, if A is a homomorphism. E and F are said to be isomorphic, if there exists an isomorphism A between E and F^{\prime}. Then we wrile $E \simeq F$.

It is well known that every Preched space with absolute basis is isomorphic to some Köthe space. More precisely, If E is a Fréchet space, $\left\{c_{i}\right\}_{i \in I}$ is an absolute basis in E, and $\left\{\|.\|_{p}\right\}_{p \in \mathbb{N}}$ is an increasing sequence of seminorms, generating the topology of E, then E is isomorphic to the Köthe space, defined by the matrix $\Lambda=\left(a_{i p}\right)$, where $a_{i p}=\left\|e_{i}\right\|_{p}$.

For example the space $C^{\infty}[-1,1]$ is isomorphic to the Köthe space $s=K\left(n^{p}\right)$ (see [17]), the space $A(\mathbb{D})$, where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, is isomorphic to $K(\exp (-n / p))$, the space $\Lambda(\mathbb{C})$ is isomorphic to $K(\exp (p n))$.

It is known $([3],[5],[22],[24],[3 ; 3])$ if the boundary of a domain D is smooth, Lipschitz or even Hölder, then the space $C^{n \infty}(\bar{D})$ is isomorphic to the space s.

To examine whether two given linear topological spaces are isomorphic or not it is useful to deal with some properties of linear topological spaces which are invariant under isomorphisms. More precisely, if Σ is a class of linear topological spaces, Ω is a set with a relation of equivalence \sim and $\Phi: \Sigma \longrightarrow \Omega$ is a mapping, such that,

$$
X \simeq Y \Rightarrow \Phi(X) \sim \Phi(Y)
$$

then Φ is called a Lincar Topological Invariant. We say that the invariant Φ is complete on the class Σ if for any $X, Y \in \Sigma$

$$
\Phi(X) \sim \Phi(Y) \Longrightarrow X \simeq Y
$$

First lincar topological invariants connected with isomorphic classification of Fréchet spaces are due to A.N. Kolmogorov [12] and A. Pelczynski [19]. They introduced linear topological invariants called approximative dimension and proved by their help that $A(D)$ is not isomorphic to $A(C)$ if $D \subset \mathbb{C}^{n}, G \subset \mathbb{C}^{n}, m \neq n$ and $A\left(\mathbb{D}^{p}\right)$ is not isomorphic to $A\left(\mathbb{C}^{n}\right)$, where \mathbb{D}^{y} is the unit polydisc in \mathbb{C}^{n}. Later C. Bessaga, A. Pelczynsky, S. Rolewics [2] and B. Mitiagin [17] considered other lincar topological invariants called diametral dimension, which turns out to be stronger and more convenicnt than the approximative dimension. V.Zahariuta [29, 30], introduced some general characteristics as generalizations of Mitiagin's iuvariants and some new invariauts in terms of synthetic neighborhoods [31, 32]. We will give here as an example the invariant β which was used by Λ. Goncharov and M. Kocatepe [10] based on the Zahariuta's method of synthetic neighborhoods.

Let X be a lreechet space wilh a fundamental system of neighborhoods $\left(U_{p}\right)$, and let $l, \tau \in \mathbb{R}_{+}$. In what follows $l \longrightarrow \infty$ and $\tau=\tau(l) \longrightarrow 0$. Given $0 \leq p<$ $q<r$ we set $\tilde{U}=\tau U_{p} \cap l U_{r}$ then

$$
\beta\left(\tau, L: U_{p}, U_{\eta}, U_{r}\right)=\min \left\{\operatorname{dim} L: \tilde{U} \subset U_{q}+L\right\}
$$

where $\min (\Lambda)$ is the minimum of the set Λ. We can sec that $\beta(\tau, t) \geq \mid\{n$: $\left.d_{n}\left(\tilde{U}, U_{q}\right)>1\right\} \mid$, where d_{n} is the Kolmogorov diameter.

Suppose X is a Frechet space and $\left(\|\cdot\|_{p}, p=1,2, \ldots\right)$ be a system of seminorms generating the topology of X. The following interpotation properties define very
important classes of Fréchet spaces. They are invariant under isomorphisms and hence these LTI's are called Interpolational Invariants:

$$
\begin{align*}
& \exists p \forall q \exists r, C:\|x\|_{q}^{2} \leq C\|x\|_{p}\|x\|_{r} \quad x \in X ; \tag{DN}\\
& \forall p \exists q \forall r \exists \epsilon \exists C:\left\|x^{\prime}\right\|_{q}^{*} \leq C\left(\left\|x^{\prime}\right\|_{p}^{*}\right)^{\epsilon}\left(\left\|x^{\prime}\right\|_{r}^{*}\right)^{1-\epsilon} \quad x^{\prime} \in X^{\prime} ;
\end{align*}
$$

Let us note that these notations are due to D. Vogt [I6], V. Zahariuta uses the notations D_{1}, Ω_{1} respectively. In this artiele we will generally use Vogi's notation.

We shall reformulate ($D N$) in an equivalent way in the following simple propositions.

Proposition 1.16 A Fréchet space E with an increasing fundamental system $\left(\|.\|_{k}\right)_{k \in H}$ of seminorms has the property $(D N)$ if and only if the following holds:

$$
\begin{equation*}
\exists p) \forall q \forall \epsilon>0 \quad \exists r, C: \quad\|x\|_{T} \leq C\|x\|_{p}^{1-\epsilon}\|x\|_{r}^{c} \tag{1.3}
\end{equation*}
$$

for all $x \in E$.
Proof: For $\epsilon=\frac{1}{2}$ the given condition obviously implies ($D N$). To prove the converse, let $p \in \mathbb{N}$ be so choosen that $\|.\|_{p}$ is a dominating norm. If $q \in \mathbb{N}$, $q \geq p$, is given, then we define $r_{0}:=p, r_{1}:=q$ and iteratively apply ($D N$) to find $r_{\mu+1}>r_{\mu}$ and $C_{\mu}>0$ such that

$$
\|x\|_{r_{n}}^{2} \leq C_{\mu}\|x\|_{p}\|x\|_{r_{\mu+1}} \text { for all } x \in E \text {. }
$$

$\Lambda s\|\cdot\|_{p}$ is a norm, we have for cach $m \in \mathbb{N}$ and all $x \in E, x \neq 0$:

$$
\left(\frac{\|x\|_{q}}{\|x\|_{p}}\right)^{m} \leq \Pi_{\mu=1}^{m} C_{\mu} \frac{\|x\|_{r_{\mu+1}}}{\|x\|_{r_{\mu}}} \leq\left(\Pi_{\mu=1}^{m} C_{\mu}\right) \frac{\|x\|_{r_{m+1}}}{\|x\|_{p}}
$$

Defining $D_{m}:=\left(\Gamma_{\mu=1}^{m} C_{n}\right)^{1 / m}$, it then follows that

$$
\|x\|_{q} \leq D_{m}\|x\|_{p}^{1-1 / n}\|x\|_{r_{m+1}}^{1 / m} \text { for all } x \in E
$$

If now $0<\epsilon<1$ is given, then we choose $m \in \mathbb{N}$ with $\frac{1}{m}<\epsilon$ and obtain the given condition which holds for $r=r_{m+1}$. If $\epsilon \geq 1$ then the condition trivially holds.
(1.3) can be stated also as follows:

$$
\begin{equation*}
\exists p \forall q \forall c>0 \quad \exists r, C:\|x\|_{q}^{1+\epsilon} \leq C\|x\|_{p}\|x\|_{r}^{\epsilon} \tag{1.4}
\end{equation*}
$$

for all $x \in l$.

Proposition $1.17(D N)$ is equivalent to the following:

$$
\begin{equation*}
\exists p \forall q \exists r, C: \quad\|x\|_{q} \leq t\|x\|_{p}+\frac{C}{t}\|x\|_{r} \quad l>0 \tag{1.5}
\end{equation*}
$$

Proof: Let ($D N$) holds. Then we have p as a dominating norm, given $q \in \mathbb{N}$ there exists $r \in \mathbb{N}$ and $C>0$ such that

$$
\|x\|_{q}^{2} \leq C\|x\|_{p}\|x\|_{r}
$$

and loy taking the square roots we get

$$
\begin{aligned}
\|x\|_{q} & \leq\|x\|_{p}^{1 / 2}\left(C\|x\|_{r}\right)^{1 / 2}=\left(l\|x\|_{p}\right)^{1 / 2}\left(\frac{C}{l}\|x\|_{r}\right)^{1 / 2} \quad \forall l>0 \\
& \leq \frac{1}{2} l\|x\|_{p}+\frac{1}{2} \frac{C}{l}\|x\|_{r} \quad \forall l>0 \\
& \leq l\|x\|_{p}+\frac{C}{l}\|x\|_{r} \quad \forall t>0
\end{aligned}
$$

For the prool of the converse take $t^{2}=C \frac{\|x\| r}{\|x\|_{p}}$, then we get

$$
\|x\|_{g}^{2} \leq 1 C\|x\|_{p}\|x\|_{r}
$$

Proposition 1.18 (1.5) is equivalent to the following:

$$
\begin{equation*}
\exists p \exists R>0 \forall q \quad \exists r, C: \quad\|x\|_{q} \leq l^{R}\|x\|_{p}+\frac{C}{l}\|x\|_{r} \quad l>0 \tag{1.6}
\end{equation*}
$$

Proof: (1.5) $\Longrightarrow(1.6)$ is trivial. To prove the converse assume we have (1.6) then we have p, R satislying the condition in (1.6).

Given $q=q_{0}$, we find $q_{i+1} \geq q_{i}$ and $C_{i}>0$ such that

$$
\|x\|_{y_{i}} \leq l^{R}\|x\|_{p}+\frac{C_{i+1}}{l}\|x\|_{\eta_{i+1}} \quad 0 \leq i \leq R-1
$$

Using these R inequalities we get

$$
\|x\|_{y_{0}} \leq\left(l^{R}+C_{1} t^{R-1}+C_{1} C_{2} t^{R-2}+\ldots+C_{1} \ldots C_{R-1} t\right)\|x\|_{p}+\frac{C_{1} \ldots C_{R}}{t^{R}}\|x\|_{q_{R}}
$$

Then there exists $C>C_{1} \ldots C_{R}$ such that $\left(l^{R}+C_{1} t^{R-1}+C_{1} C_{2} t^{R-2}+\ldots+C_{1} \ldots C_{R-1} t\right)\|x\|_{p}+\frac{C_{1} \ldots C_{R}}{t^{R}}\|x\|_{I_{R}} \leq t^{R}\|x\|_{p}+\frac{C}{t^{R}}\|x\|_{q_{R}}$ and hence we have

$$
\|x\|_{4} \leq l\|x\|_{p}+\frac{C}{l}\|x\|_{q_{n}} \quad \forall l>0
$$

Proposition 1.19 The following stalement is equivalent to DN:

$$
\begin{equation*}
\exists R>0 \forall q \exists r, C>0:|\cdot|_{q} \leq t^{R}|\cdot|_{0}+\frac{C}{t}\|\cdot \cdot\|_{r}, \quad t>0 \tag{1.7}
\end{equation*}
$$

Proof: For the equivalence (1.6) $\Leftrightarrow(1.7)$ see [4]

1.3 Topological Characterization of Extension Property

Let $\left(E_{i}, \Lambda_{i}\right)_{i \in \mathbb{Z}}$ be a sequence of lincar spaces E_{i} and lincar maps $A_{i}: E_{i} \longrightarrow E_{i+1}$. The sequence is said to be exact al the position E_{i} in case $R\left(A_{i-1}\right)=N\left(A_{i}\right)$. Here R denotes image and N denotes the kernel of the map. The sequence is said to be exact, if it is exact at each position. A short sequence is a sequence in which at most three successive spaces are different from $\{0\}$. We then write

$$
0 \longrightarrow E \longrightarrow \longrightarrow^{A}{ }^{\prime} \longrightarrow^{B} \quad G \longrightarrow 0
$$

Remark 1.20 Let F be a F'réchet space and E be a closed subspace of F. Then by Proposition 1.11, E and F / E are likewise Fréchet spaces. If $j: E \longrightarrow F$ is the inclusion and $q: F \longrightarrow F / E$ is the quotient map, then

$$
0 \longrightarrow E \longrightarrow \longrightarrow^{j} \longrightarrow^{\eta} \quad F / E \longrightarrow 0
$$

is a short exact sequcnce of Fivéchet spaces.
Definition 1.21 A seminorm p on a \mathbb{K}-vector space E is called a lillbert seminorm, if there extists a semi-scalar product $\langle.,$.$\rangle on E$ with $p(x)=\sqrt{\langle x, x\rangle}$ for all $x \in E$.

A Préchet-IIilbert space, is a Fréchel space which has a fundamental system of IItleert seminorms.

The folowing theorem of D. Vogt from [16] is fundamental in the structure theory of Fircecher spaces.

Theorem 1.22 (Splitling (heorem) Let E, F and G be Fréchet-Ifilbert spaces and lct.

$$
0 \longrightarrow F \longrightarrow \longrightarrow^{i} G \longrightarrow 0 \quad E \longrightarrow 0
$$

be a short exact sequence with continuous linear maps. If E has the property (DN) and F ' has the property ((Ω), then the sequence splits, ic., q has a continuous linear right inverse and j has a continuous linear left inverse.
M. Tidten used the splitting theorem for the proof of the next theorem which tells that the extension property of K is equivalent to the property ($D N$) of $\mathcal{E}(K)$.

Theorem 1.23 [2Q, Tidlen] $\operatorname{compact~sel~} K$ has the extension property iff the space $\mathcal{E}(K)$ has the property (DN).

Proof: For the proof of the sulficiency part assume that $\mathcal{E}(K)$ has the property (IDN) and let L be a cube such that $K \subset L^{\circ}$. Now consider the short exact sequence

$$
0 \longrightarrow \mathcal{F}(K, L) \longrightarrow \longrightarrow^{i} \mathcal{D}(L) \longrightarrow^{q} \mathcal{E}(K) \longrightarrow 0
$$

where $\mathcal{D}(L)=C_{0}^{\infty}(L)$ is the space of infinitely differentiable functions on L, where the functions and all their derivalives vanish on the boundary of L, and $\mathcal{F}(K, L)=\left\{\int \in \mathcal{D}(L):\left.f\right|_{K} \equiv 0\right\}$.

By [22] we have that $\mathcal{F}(K, L)$ has property $(\Omega) \forall$ compact $K \subset L^{\circ}$. Heuce we can apply the spliting theorem. This means that there exists an operator ψ, a continuous linear right inverse of $q, \psi: \mathcal{E}(K) \longrightarrow \mathcal{D}(L)$ where obviously $\left.(\psi f)\right|_{K}=f$ for $f \in \mathcal{E}(K)$, wat is the operator ψ is an extension operator.

On the other hand if there exists an extension operator ψ, then qo $\psi=I d_{\mathcal{E}(K)}$ and $\psi o q$ is a continuous projection of $\mathcal{D}(L)$ onto $\mathcal{E}(K)$. We know that $\mathcal{D}(L)$ is isomorphic to s, hence $\mathcal{E}\left(K^{\prime}\right)$ is a complemented subspace of s, therefore $\mathcal{E}(K)$ has ($D N$), since the property ($D N$) is inherites by subspaces.

Chapter 2

Review of Previous Results

Whitney's extension theorem provides continuous linear extension operator from the space of C^{m} Whitney ficlds ($m<\infty$) on a closed subset X of \mathbb{R}^{n}, to the space of C^{m} functions on \mathbb{R}^{n}. Though C^{∞} Whitney fields on X extend to C^{∞} functions on \mathbb{R}^{n}, there does not exist a continuous linear extension operator for every closed subset X. Let $\mathcal{E}(X)$ be the litechet space of C^{∞} Whitney fields on X. Then $\mathcal{E}\left(\mathbb{R}^{n}\right)$ identifies with the space of C^{∞} functions on \mathbb{R}^{n}. The folowing problem arises: Under what conditions on X is there an extension operator $E: \mathcal{E}(X) \longrightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)$? Where we mean by an extension operator, a linear continuous operator such that $\left.E\left(F^{\prime}\right)\right|_{X}=r^{\prime}$ for all $F^{\prime} \in \mathcal{E}(X)$. Secley [20] shoved that an extension operator cxists if X is a closed half-space \mathbb{F}^{n}. We have described the proof of his theorem in the first chapter.

Mitiagin [17] presented an extension operator for a closed interval in \mathbb{R}. Mithagin in his work proved the fact that the Chebishev Polynomials $T_{n}(x)=$ $\cos \left(n \cos ^{-1} x\right)$ form a basis in the space $C^{\infty}[-1,1]$ ic., for $\Psi(l) \in C^{\infty}[-1,1]$ and

$$
\xi_{n}=\frac{1}{\pi} \int_{-1}^{1} \frac{\Psi(x) \cos \left(n \cos ^{-1} x\right)}{\sqrt{1-x^{2}}} d x
$$

we have that

$$
\Phi(x)=\sum_{n=0}^{\infty} \xi_{n} T_{n}(x) \text { in } C^{\infty}[-1,1] .
$$

It is clear that a lincar transformation of the argument sets up an isomorphism between the spaces $C^{\infty}[-1,1]$ and $C^{\infty}[a, b],-\infty<a, b<\infty$; therefore the
correspondingly transformed Chebishev polynomials form a basis in the space $C^{\infty}[a, b]$.

Mitiagin constructs in [17] special extensions \tilde{T}_{n}^{\prime} for the polynomials $T_{n}^{\prime}(x)$ and defines the operator $M: C^{\infty}[-1,1] \longrightarrow C^{\infty}[-2,2]$ by

$$
(M \Phi)(x)=\sum_{n=1}^{\infty} \xi_{n}(x)\left(\tilde{T}_{n}^{\prime}\right)(x)
$$

and by using an infinitely differentiable function $l_{0}(t)$ on the whole straight line such that

$$
l_{0}(t) \equiv 1 \quad|t| \leq 1 \text { and } l_{0}(t) \equiv 0 \quad|t| \geq 1+\frac{1}{4}
$$

he defines the operator $M^{\prime}: C^{\infty}[-1,1] \longrightarrow C^{\infty}(-\infty, \infty)$ by

$$
\left(M^{\prime} \Phi\right)(x)=(M \Phi)(x) l_{0}(x)
$$

which is a continuous linear extension operator from $[-1,1] \operatorname{lo}(-\infty, \infty)$.
Now let us give the definition of Lipschitz domain.
Definition 2.1 Let $\phi: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$ be a function which salisfies the Lipschitz condition of order $\gamma, 0<\gamma \leq 1$; ie there is a constant $M>0$ such that

$$
\left|\phi(x)-\phi\left(x^{\prime}\right)\right| \leq M\left|x-x^{\prime}\right|^{\gamma}
$$

for all $x, x^{\prime} \in \mathbb{R}^{n-1}$. We consider poinls in \mathbb{R}^{n} as pairs $(x, y), x \in \mathbb{R}^{n-1}, y \in \mathbb{R}$. The open subset

$$
\left\{(x, y) \in \mathbb{R}^{n}: y>\phi(x)\right\}
$$

is called a special Lipschitz domain of class Lip γ. A rolation around y axis of such a domain will also be called a special Lipschilz domain.

Let S be an open subsel of \mathbb{R}^{n}, and $\partial \Omega$ its boundary. We say more gencrally that Ω is a Lipschitz domain if for each point a in $\partial \Omega$, there exists an open neighborhood U_{a} of a in \mathbb{R}^{n}, and a special Lipschitz domain Ω_{a} such that $\Omega \cap U_{a}=$ $\Omega_{a} \cap U_{a}$. If each Ω_{a} is of class Lip γ (independent of a), then we say Ω is a Lipschitz domain of class Lip γ.

The following theorem is due to Stecin [21]

Theorem 2.2 If X is the closure of a Lipschitz domain Ω of class 1 , then there exists an extension operator

$$
E: \mathcal{E}(X) \longrightarrow \mathcal{E}\left(\mathbb{R}^{n}\right)
$$

Stein's result is extended by Bierstone [3] to the case of a domain with boundary which is Lipschitz of any class, in other words; with boundary of Hölder type. The main result of Bierstone [3], where he used Itironaka's desingularization theorem, is that an extension operator exists if X is a fat closed subanalytic subset of \mathbb{R}^{n}.

The extension property of $K=\bar{\Omega}$ for a domain Ω with boundary of Hölder type was proved also by Tidten [22] using the property ($D N$) and by Goncharov [5] who proved that in this case $C^{\infty}(\bar{\Omega})$ is isomorphic to s.
M. Tidten in [23] introduced a geometric property of compact sets in \mathbb{R} which could help to give a geometric characterization for the extension property. Here we define this geometric property.

Definition 2.3 Lel $\alpha \geq 1$. A compacl set $K \subset \mathbb{R}$ is said to belong to the class (α) if there exists $\delta_{0}>0$ and $C>0$ such that, for any point $y \in K$, there is a sequence $\left(x_{j}\right)$ in K with the Jollowing propertics:
(1) $\left|y-x_{j}\right| \downarrow 0$
(2) $\left|y-x_{1}\right| \geq \delta_{0}$
(3) $\quad C\left|y-x_{j+1}\right| \geq\left|y-x_{j}\right|^{\alpha}$ for all j

Tidten proved that

$$
K \in(1) \Longrightarrow K \text { has the extension property } \Longrightarrow K \in(\alpha)
$$

and gave an example of $K \notin(1)$ with the extension property. Later Goncharov in [9] shoved that belonging to some class (α) can not be in general a geometric chatacterization of the extension properly for $K \subset \mathbb{R}$.
Λ. Goncharov and M. Kocatepe in [10] considered compact sets of the following type. For two sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that $0<\ldots<b_{n+1}<a_{n}<b_{n}<\ldots<$ $b_{1}<1$, let $I_{n}=\left[a_{n}, b_{n}\right]$ and $K=\{0\} \cup \cup_{n=1}^{\infty} I_{n}$. By ψ_{n} denote the length of I_{n}; $h_{n}=a_{n}-b_{n+1}$ is the distance between I_{n} and I_{n+1} and let

$$
\begin{align*}
\psi_{n} \searrow 0, h_{n} \searrow 0, \psi_{n} \leq h_{n}, & n \in \mathbb{N} \tag{2.1}\\
\exists Q \in \mathbb{N}: h_{n} \geq b_{n+1}^{Q}, & n \in \mathbb{N} \tag{2.2}
\end{align*}
$$

'They shoved that $\mathcal{E}(K)$ has property $D N$ if and only if

$$
\exists M, \quad \forall n, \quad \psi_{n+1} \geq h_{n}^{M}
$$

It is shown in Chapter 3 that the condition (2.2) can be omitted in the case J_{n} is bounded, where $J_{n}=\min \left\{j: b_{n+j} \leq \psi_{n}\right\}$.
A. Goncharov in $[9]$ considered Cantor type sets in \mathbb{R} and has given the necessary and sufficient conditions of extension property for those type of compact sets. In Chapter 4 we will see these results and prove that the necessary and sufficient conditions for the extension property of multidimensional cantor type sets is similar to the case one dimensional cantor type sets.

In [1] B. Arslan, A. Goncharov and M. Kocatepe considered generalized Cantor type sets, where the generalized Cantor type sets are produced by removing more than one intervals from all intervals in each step.

Pawlucki and Pleśniak [18] by using the Lagrange interpolational polynomials constructed an extension operator for compact sets salislying the Markov property. In general Markov property is not equivalent to the Extension property. A Goucharov [6] gave an example of a set with an extension operator but not satisfying the Markov property.

Chapter 3

Some Model Cases

Let $\mathbb{N}=\{1,2, \ldots\}$. We will consider compact sets of the following type. For two secpucnces $\left(a_{n}\right),\left(b_{n}\right)$ such that $0<\ldots<b_{n+1}<a_{n}<b_{n}<\ldots<b_{1}<1$, let $I_{n}=\left[a_{n}, b_{n}\right]$ and $K=\{0\} \cup \cup_{n=1}^{\infty} I_{n}$. By ψ_{n} we denote the length of I_{n}; $h_{n}=a_{n}-b_{n+1}$ is the distance between I_{n} and I_{n+1}. In what follows we restrict ourselves to the case

$$
\begin{array}{rr}
\psi_{n} \searrow 0, h_{n} \searrow 0, \psi_{n} \leq h_{n}, & n \in \mathbb{N} \\
\exists Q \in \mathbb{N}: h_{n} \geq b_{n+1}^{Q}, & n \in \mathbb{N} \tag{3.2}
\end{array}
$$

An equivalent form of (3.2) is

$$
\begin{equation*}
\exists Q \in \mathbb{N}: h_{n} \geq b_{n}^{Q}, \quad n \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

Let us give some identities about the remainder of the 'Taylor polynomials that will be used in this chapter. Proofs can be found in [15]:

$$
\begin{equation*}
\left(R_{y}^{q} f\right)^{(i)}(x)=l_{y}^{q-i} f^{(i)}(x)=f^{(i)}(x)-\sum_{j=i}^{q} \frac{f^{(j)}(y)}{(j-i)!}(x-y)^{j-i} \tag{3.4}
\end{equation*}
$$

If $f \in C^{q+1}[a, b]$ and $x, y \in[a, b]$, then for some $\xi, \eta \in[a, b]$ we have

$$
\begin{equation*}
\left(R_{y}^{q} f\right)^{(i)}(x)=\left(f^{(q)}(\xi)-f^{(q)}(y)\right) \frac{(x-y)^{q-i}}{(q-i)!}=f^{(q+1)}(\eta) \frac{(x-y)^{q-i+1}}{(q-i+1)!} \tag{3.5}
\end{equation*}
$$

The next, two lemmas are from [10].

Lemma 3.1 Let I be any closed interval in. \mathbb{R} with longlh $(I) \geq \delta_{0}$ and let $p \leq$ $k \leq r$ be given. Then there exists two constants C_{1}, C_{2} such that

$$
\left|f^{(k)}(x)\right| \leq C_{1} \delta^{-k+p}\left|\int\right|_{p}+C_{2} \delta^{r-k}\left|\int\right|_{r} \quad \forall f \in C^{r}(I), \quad \forall \delta \in\left(0, \delta_{0}\right], \quad \forall x \in I
$$

Lemma 3.2 Given positive integers N, p, k such that $k \leq p N$, there is a constant. $C(N, p, k)$ with the following propertics: For any closed interval $l \subset \mathbb{R}$ with lenglh $(I)=\delta_{0}$ and for any sel of points $a_{1}, \ldots, a_{N} \in I, \operatorname{let} G(x)=\Pi_{s=1}^{N}\left(x-a_{s}\right)^{p}$. Then

$$
\left|G^{(k)}(x)\right| \leq C(N, p, k) s_{0}^{p N-k} \quad \forall x \in I
$$

For each n, we define $J_{n}=\min \left\{j: b_{n+j} \leq \psi_{n}\right\}$
We have the following result from [10]. When K satisfics both the conditions (3.1) and (3.2) in the cases either $\left(J_{n}\right)$ is bounded or $J_{n} \longrightarrow \infty$ as $n \longrightarrow \infty K$ has the extension property if and only if

$$
\exists M, \quad \forall n, \quad \psi_{n+1} \geq l_{n}^{M}
$$

In the following theorem arguing as in [10] we see that the same result holds without having the condition (3.2) when $\left(J_{n}\right)$ is bounded.

Theorem 3.3 Let $J_{N}<J$ for each n. K is a compact set as it is described in this chapler satisfying condition (3.1). Then $\mathcal{E}(K)$ has property $D N$ if and only if

$$
\exists M, \quad \forall n, \quad \psi_{n+1} \geq h_{n}^{M}
$$

Proof: (Necessily) We have p from $D N$. We let $q=(2 J+1)(p+1)$ and find r, C according to $D N$. We fix n and define

$$
f=\int_{n}= \begin{cases}\left(x \Gamma_{s=n}^{n+2 J-1}\left(x-a_{s}\right)\right)^{p+1} & x \leq b_{n} \\ 0 & x \geq a_{n-1}\end{cases}
$$

Since $b_{n+, J_{n}} \leq \psi_{n}$ we have $b_{n+J} \leq \psi_{n}$ for all n. Because f is a polynomial of degree q on $\left[0, b_{n}\right]$ we have $\|J\|_{q} \geq|f|_{q} \geq\left|f^{(q)}\right|_{0}=q$! Now let us find upper bounds for $\|f\|_{p}$ and $\|f\|_{r}$

To find the upper bound for $\|f\|_{p}$ let $x \leq b_{n+J}$. Then $f(x)=x^{p+1} G(x)$ where $G(x)$ is the product of the other terms. For $k \leq p$,

$$
\begin{equation*}
\left|f^{(k)}(x)\right| \leq \lambda_{n} b_{n+J}^{p+1-k} \quad \lambda_{n}=C_{p} b_{n}^{(p+1) J} \tag{3.6}
\end{equation*}
$$

If $x \leq b_{n+2 J}$ then

$$
\begin{equation*}
\left|f^{(k)}(x)\right| \leq \lambda_{n} b_{n+2 J}^{p+1-k} \tag{3.7}
\end{equation*}
$$

If $x \in I_{l} \quad n \leq l \leq n+2 J-1$ then

$$
\begin{equation*}
\left|f^{(k)}(x)\right| \leq \lambda_{n} \psi_{l}^{p+1-k} \tag{3.8}
\end{equation*}
$$

We therefore have $\left|f^{(k)}(x)\right| \leq \lambda_{n} \psi_{n}$ if $x \leq b_{n+2 J}$ or $x \in I_{l} \quad n \leq l \leq n+2 J-1$.
Next consider $A_{p}=\frac{\left|\left(l l_{j}^{p}, f\right)^{(i)}(x)\right|}{|x-y|^{p-i}} \quad x, y \in K \quad x \neq y \quad i \leq p$
If $x, y \leq b_{n+2 . l}$ or $x, y \in I_{l}(n \leq l \leq n+2 J-1)$ then by (3.5) we have

$$
A_{p} \leq 2 \lambda_{n} \psi_{n}
$$

If $x \in I_{l}$ and $y \in I_{m}(n \leq l, m \leq n+2 J-1)$ then

$$
|: x-y| \geq \max \left\{h_{l}, h_{m}\right\} \geq \max \left\{\psi_{l}, \psi_{m}\right\}
$$

and from (3.8) we see that

$$
\Lambda_{p} \leq 4 \lambda_{n} \psi_{n}
$$

Clearly the same estimate holds if $l \geq n, m \leq n-1$.
If $x \leq b_{n+2 J}$ and $y \in I_{m} \quad n \leq m \leq n+J-1$ then $|x-y| \geq h_{n}+J-1 \geq b_{n+2 J}$ and so (3.7) implics

$$
\frac{\left|f^{(i)}(x)\right|}{|x-y|^{p-i}} \leq \lambda_{n} \frac{b_{n+2 . J}^{p+1-i}}{b_{n+2 J}^{p-i}}=\lambda_{n} b_{n+2 J} \leq \lambda_{n} \psi_{n}
$$

Clearly the estimate holds if $x \leq b_{n+2 J J}$ and $y \in I_{m} m \leq n$
Now there is only one remaining case to consider which is $x \leq b_{n+2 J}$ and $y \in I_{m} n+J \leq m \leq n+2 J-1$

But then $x, y \leq b_{n+J}$ and then by (3.5) we have

$$
R_{y}^{p} f^{(i)}(x)=\left(f^{(p)}(\xi)-f^{(p)}(y)\right) \frac{(x-y)^{p-i}}{(p-i)!}
$$

where $0<\xi<b_{n+, J}$ and therefore

$$
\Lambda_{p} \leq 2 \lambda_{n} \psi_{n}
$$

Hence we have that $\|/\|_{p} \leq 5 \lambda_{n} \psi_{n} \leq \psi_{n}$ for $n \geq n_{p}$ since $\lambda_{n} \rightarrow 0$

Upper bound for $\|f\|_{r}$: by Lemma $3.2\left|f^{(k)}(x)\right| \leq C(2 J+1, p, k) b_{n}^{\rho-k}$ for $k \leq q$ and 0 otherwise. Thus

$$
|f|_{r} \leq \max _{k \leq q} C(J+1, p, k)=C_{q}
$$

Clcarly $R_{y}^{r} f(x) \equiv 0$ when $x, y \leq b_{n}$. If cither $x \geq a_{n-1}$ or $y \geq a_{n-1}$ then since $|x-y| \geq h_{n-1}$ by (3.4) we have

$$
\frac{\left|\left(R_{y}^{r} f\right)^{(i)}(x)\right|}{|x-y|^{r-i}} \leq|/|_{r}\left(1+\sum_{j=i}^{r} \frac{1}{(j-i)!}\right) \frac{1}{|x-y|^{r}} \leq 4 C_{q} h_{n-1}^{-r}
$$

Thus $\|f\|_{r} \leq 5 C_{q} h_{n-1}^{-r}$
Now replacing f by f_{n} in $D N$, we obtain

$$
q!\leq l \psi_{n}+\frac{C}{t} 5 C_{q} h_{n-1}^{-r} \leq t \psi_{n}+\frac{1}{t h_{n-1}^{r+1}}
$$

for large enough n. and arbitrary 1 . Let $l=h_{n-1}^{-r-1}$. Since $q \geq 2$ we obtain $h_{n-1}^{M} \leq \psi_{n}$ for n large cnough. $M \geq r+1$, increasing the value of M if necessary we get $h_{n-1}^{M} \leq \psi_{n} \forall n$
(Sufficiency) Let $p=0 \quad R=7 M+3$ for given $q \geq 1$. Let $r=3 q$. It is enough to prove the implication

$$
\left.\begin{array}{l}
\|\cdot /\|_{0} \leq \tau=l^{-R_{q}} \\
\|\cdot\|_{r} \leq l^{q}
\end{array}\right\} \Longrightarrow\left\|\int\right\|_{\eta} \leq 1
$$

For any t s.l. $l^{2}>\frac{1}{h_{1}}$. Find n s.l. $h_{n+1} \leq l^{-2}<h_{n}$
Let us first estimate $B=\left|f^{(k)}(z)\right|^{2(\eta-k)} \quad z \in K \quad k \leq 3 q$ If $z \geq a_{n,+1}$ apply Lemma 3.1,

$$
\begin{aligned}
B & \leq\left(C_{1}^{r} \psi_{n+1}^{-k}|f|_{0}+C_{2} \psi_{n+1}^{r-k}\left|\int\right|_{r}\right) t^{2(q-k)} \\
& \leq\left(C_{1} l^{2 M k} l^{-R q}+C_{2} l^{-2(R-k-k)} l^{q}\right) t^{2(q-k)} \\
& \leq C_{1} l^{-M q-q}+C_{2} l^{-q} \leq C_{3} l^{-q}
\end{aligned}
$$

If $z=b_{n+2}$ then consider taylor expansion of f^{k} at the point $a=a_{n+1}$

$$
f^{(k)}(z)=\sum_{i=k}^{3 q} f^{(i)}(a) \frac{(z-a)^{i-k}}{(i-k)!}+\left(R_{a}^{3 q} f\right)^{(k)}(z)
$$

'Therefore for $B_{k}=\left|f^{(k)}(z)\right| t^{2(q-k)} k \leq 2 q$ we have

$$
\begin{aligned}
B_{k} & \leq e C_{3} t^{-q}+\left\|\int\right\|_{3 q} t^{-2(3 q-k)} \\
& \leq e C_{3} t^{-q}+t^{-q} \leq\left(e C_{3}+1\right) t^{-q}=C_{4} t^{-q}
\end{aligned}
$$

Aud for $2 q \leq k \leq 3 q$ we have

$$
B_{k}=\left|f^{(k)}(z)\right| l^{2(q-k)} \leq l^{q+2 q-2 k} \leq l^{3 q-4 q}=l^{-q}
$$

Hence for $z=b_{n+2}$ we have $B_{k}(z) \leq C_{4} l^{-q} \quad 0 \leq k \leq 3 q$
If $z=a_{n+2}$ then consider taylor expansion of f^{k} at the point $a=b_{n+2}$

$$
f^{(k)}(z)=\sum_{i=k}^{3 q} f^{(i)}(a) \frac{(z-a)^{i-k}}{(i-k)!}+\left(R_{a}^{3 q} f\right)^{(k)}(z)
$$

Therefore for $B_{k}=\left|f^{(k)}(z)\right| t^{2(q-k)} k \leq 2 q$ we have

$$
\begin{aligned}
B_{k} & \leq c C_{4} t^{-q}+\|J\|_{3 q} t^{-2(3 q-k)} \\
& \leq e C_{4} t^{-q}+t^{-q} \leq\left(c C_{4}+1\right) t^{-q}=C_{5} t^{-q}
\end{aligned}
$$

And for $2 q \leq k \leq 3 q$ we have

$$
B_{k}=\left|f^{(k)}(z)\right| t^{2(q-k)} \leq t^{q+2 q-2 k} \leq t^{3 q-4 q}=t^{-q}
$$

Hence for $z=b_{n+2}$ we have $B_{k}(z) \leq C_{5} t^{-q} \quad 0 \leq k \leq 3 q$ Now it is easy to see that we can find an inequality for $B_{k}(z)$ for $z \in\left\{b_{n+2}, a_{n+2}, b_{n+3}, a_{n+3}, \ldots, b_{n+J}\right\}$ for every element in the sequence using the inequality for the previous element.

$$
\begin{aligned}
& B_{k}\left(b_{n+m}\right) \leq C_{2 m} l^{-q} 2 \leq m \leq J \\
& B_{k}\left(a_{n+m}\right) \leq C_{2 m+1} l^{q} 2 \leq m \leq J-1
\end{aligned}
$$

Where C_{n} has the recurrence relation $C_{n}=e C_{m-1}+1$ Using this recurrence relation we get $C_{m}=e^{m-3} C_{3}+e^{m-1}+\ldots+e+1$. It is easy to see that $\left(C_{m}\right)$ is increasing.

If $z \in\left[a_{n+m}, b_{n+m}\right] 2 \leq m \leq J-1$ then by considering the Taylor expansion of f^{k} at $a=b_{n+m}$ we obtain

$$
B_{k}(z) \leq c C_{2 m} l^{-q}+t^{-q}=C_{2 m+1} l^{-q} \leq C_{2 . J+1} t^{-q}
$$

If $z \leq b_{n+J}$ then consider taylor expansion of \int^{k} at the point $a=b_{n+J}$

$$
f^{(k)}(z)=\sum_{i=k}^{3 q} f^{(i)}(a) \frac{(z-a)^{i-k}}{(i-k)!}+\left(l_{a}^{3 q} f\right)^{(k)}(z)
$$

and since $|z-a| \leq b_{n+J} \leq h_{n+1} \leq t^{-2}$ we have

$$
B_{k}(z) \leq e C_{2 J} l^{-q}+l^{-q}=C_{2 J+1} l^{-q}
$$

Hence we have proved that

$$
\begin{align*}
B_{k}(z) & \leq C_{2, J+1} t^{-q} \quad \forall z \in K \quad k \leq 3 q \tag{3.9}\\
\text { and }|f|_{q} & \leq C_{2, J+1} t^{-q}
\end{align*}
$$

Next, we estimate $\Lambda_{q}=\frac{\left|\left(R_{y}^{q} f\right)^{(i)}(x)\right|}{|x-y|^{q-i}} \quad x, y \in K \quad x \neq y \quad i \leq p$ If $|x-y|>t^{-2}$, then by (3.4) and (3.9) we have

$$
\begin{aligned}
A_{q} & \leq\left|f^{(i)}(x)\right||x-y|^{i-q}+\sum_{k=i}^{q}\left|f^{(k)}(y)\right| \frac{|x-y|^{k-q}}{(k-i)!} \\
& \leq\left.\left|f^{(i)}(x)\right|\right|^{2(q-i)}+\sum_{k=i}^{q}\left|f^{(k)}(y)\right| \frac{l^{2(q-i)}}{(k-i)!} \leq \frac{C_{5}(e+1)}{t^{q}}
\end{aligned}
$$

If $|x-y| \leq t^{-2}$, then

$$
\left(R_{y}^{q} f\right)^{(i)}(x)=f^{(q+1)}(y) \frac{(x-y)^{q+1-i}}{(q+1-i)!}+\ldots+f^{(q+q)}(y) \frac{(x-y)^{2 q-i}}{(2 q-i)!}+\left(R_{y}^{2 q} f\right)^{(i)}(x)
$$

and using this last equation and (last) we get

$$
\begin{aligned}
A_{\eta} & \leq C_{2 J+1}\left(l^{-q+2} \frac{t^{-2}}{(q+1-i)!}+\ldots+l^{-q+2 q} \frac{l^{-2 q}}{(2 q-i)!}\right)+\|J\|_{2 q} l^{-2 \eta} \\
& \leq C_{2 J+1} c l^{-q}+l^{-q}=C_{2, J+2} l^{-q}
\end{aligned}
$$

Therefore for large enough t we obtain $\left\|\int\right\|_{q} \leq 1$
Now we will consider compact sets $K \subset \mathbb{R}^{2}$ of the following type. For two sequences $\left(a_{n}\right),\left(b_{n}\right)$ such that $0<\ldots<b_{n+1}<a_{n}<b_{n}<\ldots<b_{1}<1$ let $c_{n}=$ $\frac{1}{2}\left(a_{n}+b_{n}\right)$, let D_{n} be the closed disc with center $\left(c_{n}, 0\right)$ and radius $r_{n}=\frac{1}{2}\left(b_{n}-a_{n}\right)$ then $K=\{0\} \cup_{n=1}^{\infty} D_{n}$. By $\psi_{n}=2 r_{n}$ we denote the diameter of $D_{n} ; h_{n}=a_{n}-b_{n+1}$ is the distance between D_{n} and D_{n+1}. We restrict ourselves to the case where (3.1) and (3.2) hold.
$\mathcal{E}(K)$ is equipped with the topology defined by the sequence of norms

$$
\begin{aligned}
& \left.\left\|\int\right\|_{q}=|f|_{q}+\sup \right)\left\{\frac{\left|\left(R_{y}^{q} f\right)^{(k)}(x)\right|}{|x-y|^{q-|k|}}: x, y \in K, x \neq y,|k| \leq q\right\} \\
& |k|=k_{1}+k_{2} \\
& q=0,1, \ldots, \text { where }|f|_{q}=\sup \left\{\left|J^{(k)}(x)\right|: x \in K,|k| \leq q\right\} \text { and } \\
& \quad I R_{y}^{q} f(x)=f(x)-I_{y}^{\prime \prime} f(x)=f(x)-\sum_{|k| \leq q} \frac{f^{(k)}(y)}{k_{1}!k_{2}!}\left(x_{1}-y_{1}\right)^{k_{1}}\left(x_{2}-y_{2}\right)^{k_{2}}
\end{aligned}
$$

is the Taylor remainder.
Let, Ω be a bounded domain in $\mathbb{R}^{2}, \delta>0$. For a point $x \in \Omega$ we denote $x \in Q(\delta)$ if x represents a point of a square, situated in Ω, with the side of the length δ. The next lemma is from [8].

Lemma 3.4 Lel $f \in C^{\infty}(\bar{\Omega}), k \in \mathbb{Z}_{+}^{2}, p \leq|k| \leq s, x \in Q(\delta)$. Then

$$
\left|f^{(k)}(x)\right| \leq C_{3} \cdot \delta^{-|k|+p}|f|_{p}+C_{1} \cdot \delta^{s-|k|}\left|\int\right|_{s}
$$

Theorem 3.5 Lel the compach set $K \subset \mathbb{R}^{2}$ be as it is described. Then $\mathcal{E}(K)$ has (DN) if and only if

$$
\begin{equation*}
\exists M>0: \quad \psi_{n} \geq h_{n-1}^{M} \tag{3.10}
\end{equation*}
$$

Proof: (Necessily) It is easy to see that under conditoin (3.2) the statement (3.10) is equivalent to the following:

$$
\exists M>0: \psi_{n} \geq h_{n}^{M}
$$

We have p from $(I) N)$. Let $q=p+1$, and let

$$
f\left(x_{1}, x_{2}\right)=f_{n}\left(x_{1}, x_{2}\right)= \begin{cases}\left(x_{1}-a_{n}\right)^{q} / q! & \text { if } x \in D_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\|J\|_{q} \geq 1$. We shall estimate $\|f\|_{p}$ and $\|f\|_{r}$ from above. We have

$$
\|/ J\|_{p}=|J|_{p}+\sup \frac{\left|\left(R_{y}^{p} J\right)^{(i)}(x)\right|}{|x-y|^{p-|i|}}
$$

$\left(R_{y}^{p} f\right)^{(i)}(x)=0$ (or $i_{2}>0$ so let $i_{2}=0$.
For $x, y \in D_{n}$ we have

$$
\begin{aligned}
\left(\left[R_{y}^{p} f\right)^{\left(i_{1}, 0\right)}(x)\right. & =f^{\left(i_{1}, 0\right)}(x)-\sum_{j \geq i, k j \leq p} \frac{f^{(j)}(y)}{(j-i)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}}\left(x_{2}-y_{2}\right)^{i_{2}-i_{2}} \\
& =f^{\left(i_{1}, 0\right)}(x)-\sum_{i_{1} \leq j_{1} \leq p} \frac{f^{\left(j_{1}, 0\right)}(y)}{\left(j_{1}-i_{1}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}} \\
& =f^{(p+1,0)}(\eta) \frac{\left(x_{1}-y_{1}\right)^{p+1-i}}{(p+1-i)!} \text { for some } \eta \in D_{n} \text { using (3.5) }
\end{aligned}
$$

Then we have

$$
A_{p, i}=\frac{\left|\left(R_{y}^{p} J\right)^{(i)}(x)\right|}{|x-y|^{p-|i|}} \leq \frac{\left|x_{1}-y_{1}\right|}{(p+1-i)!} \leq \psi_{n}
$$

For $x \in D_{n}, y \notin D_{n}$ we have

$$
\left(R_{y}^{p} f\right)^{\left(i_{1}, 0\right)}(x)=\int^{\left(i_{1}, 0\right)}(x)=\left(x_{1}-a_{n}\right)^{q-i_{1}} /\left(q-i_{1}\right)!
$$

Hence $\Lambda_{p, i} \leq \psi_{n}$
For $y \in D_{n}, x \notin D_{n}$ we have
$\left(R_{y,}^{p} f\right)^{\left(i_{1}, 0\right)}(x)=-\sum_{i_{1} \leq j_{1} \leq p} \frac{f^{\left(j_{1}, 0\right)}(y)}{\left(j_{1}-i_{1}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}}=\sum \frac{\left(y_{1}-a_{n}\right)^{q-j_{1}}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}}}{\left(q-j_{1}\right)!\left(j_{1}-i_{1}\right)!}$
So we have $\Lambda_{p, i} \leq e \psi_{n}$ in this case, it is clear that $|f|_{p} \leq \psi_{n}$. Hence we have $\|f\|_{p} \leq 4 \psi_{n}$.

By doing a similar work we see that $\|f\|_{r} \leq 4 h_{n}^{-r}$.
Combining all these estimations in (DN) for $t=8 C h_{n}^{-r}$ we obtain $1 \leq$ 64Chin h_{n}^{-r} hence there exists $M>0$ such that $\psi_{n} \geq h_{n}^{M}$.
(Sulficiency) Let $p=0$ and $R=2 M Q+1$ where for a given $q \geq 1$ let $r=3 q$ and $m=M q+1$. It is enough to prove the implication

$$
\|f\|_{0} \leq \tau, \quad\|f\|_{r} \leq t \Longrightarrow\|f\|_{q} \leq 1
$$

where $\tau=\frac{1}{i^{R_{q}}}$
For any t such that $t^{2}>\frac{1}{b_{1}}$ find n such that $b_{n+1} \leq t^{-2}<b_{n}$. Then

$$
h_{n} \geq b_{n}^{Q}>\frac{1}{l^{2 Q}}
$$

and by the hypothesis, we have

$$
\psi_{n+1} \geq \delta:=\frac{1}{l^{2 M Q}}
$$

It is clear that $\delta t^{2} \leq 1$ and $\frac{r}{\delta \eta}<\frac{1}{l}$
Let us first estimate

$$
B_{k}(z):=\left|f^{(k)}(z)\right| l^{2(q-|k|)} \quad z=\left(z_{1}, z_{2}\right) \in K \quad|k| \leq 3 q
$$

If $z_{1} \geq a_{n+1}$ then one can apply Lemma 3.4 for $|k| \leq q$

$$
\begin{aligned}
B_{k}(z) & \leq\left(C_{1} \delta^{-|k|}|f|_{0}+C_{2} \delta^{r-|k|}\left|\int\right|_{r}\right) t^{2(q-|k|)} \\
& \leq\left(C_{1} \delta^{-|k|} \tau+C_{2} \delta^{r-|k|} t\right) l^{2(q-|k|)}=C_{1}\left(\delta l^{2}\right)^{q-|k|} \delta^{q} \tau+C_{2} t^{2(q-r)+1} \\
& \leq C_{1} \iota^{-1}+C_{2} t^{1-2 q} \leq C_{3} l^{-1} \text { for some } C_{3} \geq 1
\end{aligned}
$$

The same estimation already holds for $q \leq k \leq 3 q$
If $z_{1} \leq b_{n+2}$ then we consider the Taylor expansion of $f^{(k)}$ at the point $a=$ $\left(a_{n+1}, 0\right)$

$$
f^{(k)}(z)=\sum_{i \geq k,|i| \leq 3 q} f^{(i)}(a) \frac{\left(z_{1}-a_{n+1}\right)^{i_{1}-k_{1}}\left(z_{2}-0\right)^{i_{2}-k_{2}}}{\left(i_{1}-k_{1}\right)!\left(i_{2}-k_{2}\right)!}+\left(R_{a}^{3 q} f\right)^{(k)}(z)
$$

We apply Lemma. 3.4 to the terms $f^{(i)}(a)$. Since $\left|z_{1}-a_{n+1}\right| \leq a_{n+1} \leq b_{n+1}<t^{-2}$ and $\left|z_{2}-0\right|<\psi_{n+2}<b_{n+2}<t^{-2}$ we have

$$
\begin{aligned}
B_{k}(z) & \leq \sum_{i \geq k_{1}, i \mid \leq 3 q} B_{i}(a) t^{2(|i|-|k|)} \frac{t^{-2(|i|-|k|)}}{\left(i_{1}-k_{1}\right)!\left(i_{2}-k_{2}\right)!}+\|f\|_{3 q} t^{-2(3 q-|k|)} \\
& \leq \sum \frac{B_{i}(u)}{\left(i_{1}-k_{1}\right)!\left(i_{2}-k_{2}\right)!}+t^{-q} \text { for }|k| \leq 2 q \\
& \leq e^{2} C_{3} t^{-1}+t^{-q} \text { for }|k| \leq 2 q \\
& \leq C_{4} t^{-1} \text { for some } C_{4} \geq 1
\end{aligned}
$$

Hence we have reached to the result

$$
\begin{equation*}
\left|f^{(k)}(z)\right| l^{2(q-|k|)} \leq C_{4} t^{-1} \quad z \in K, \quad|k| \leq q \tag{3.11}
\end{equation*}
$$

hence $\left|\int\right|_{I I} \leq C_{4} l^{-1}$

Next we estimate

$$
A_{q}=\frac{\left(R_{y}^{q} f\right)^{(i)}(x)}{|x-y|^{q-|i|}} \quad x, y \in K, x \neq y,|i| \leq q
$$

If $|x-y| \leq t^{-2}$, then

$$
\begin{aligned}
\left(R_{y}^{\prime} f\right)^{(i)}(x) & =\left(R_{y}^{q+1} f\right)^{(i)}(x)+\sum_{|k|=q+1, k \geq i} f^{(k)}(y) \frac{\left(x_{1}-y_{1}\right)^{k_{1}-i_{1}}\left(x_{2}-y_{2}\right)^{k_{2}-i_{2}}}{\left(k_{1}-i_{1}\right)!\left(k_{2}-i_{2}\right)!} \\
& \leq\left(l_{y}^{q+1} f\right)^{(i)}(x)+|J|_{q+1}| | x-\left.y\right|^{|+1-|i|} \sum_{|k|=q+1, k \geq i} \frac{1}{\left(k_{1}-i_{1}\right)!\left(k_{2}-i_{2}\right)!} \\
& \leq\left(R_{y}^{q+1} J\right)^{(i)}(x)+e^{2}|f|_{q+1} \cdot|x-y|^{q+1-|i|}
\end{aligned}
$$

and it follows that

$$
\Lambda_{q} \leq\left(\|f\|_{q+1}+c^{2}|f|_{q+1}\right)|x-y| \leq \frac{10}{l}
$$

If $|x-y|>t^{-2}$ then we will use the identity

$$
\left(R_{y}^{q} f\right)^{(i)}(x)=f^{(i)}(x)-\sum_{j \geq i, \mid j \leq q} \frac{f^{(j)}(y)}{\left(j_{1}-i_{1}\right)!\left(j_{2}-i_{2}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}}\left(x_{2}-y_{2}\right)^{j_{2}-i_{2}}
$$

and (3.10), then we have

$$
\begin{aligned}
\Lambda_{q} & \leq\left|f^{(i)}(x)\right||x-y|^{|i|-q}+\sum_{j \geq i,|j| \leq q}\left|f^{(j)}(y)\right| \frac{|x-y|^{|i|-q}}{\left(j_{1}-i_{1}\right)!\left(j_{2}-i_{2}\right)!} \\
& \leq\left|f^{(i)}(x)\right| l^{2(q-|i|)}+\sum\left|f^{(j)}(y)\right| \frac{t^{2(q-|j| j)}}{\left(j_{1}-i_{1}\right)!\left(j_{2}-i_{2}\right)!} \\
& \leq \frac{C_{1}}{l}\left(1+\sum \frac{1}{\left(j_{1}-i_{1}\right)!\left(j_{2}-i_{2}\right)!}\right) \leq \frac{C_{1}}{l}\left(1+c^{2}\right) \leq 10 \frac{C_{4}}{t}
\end{aligned}
$$

Therefore for large enough l we obtain $\|f\|_{q} \leq 1$

Chapter 4

Multidimensional Cantor type sets

We concider a problem of the existence of a linear continuous extension operator for the space of Whitncy functions given on a generalized multidimensional Cantor set.

4.1 Introduction

In what follows we will consider only C^{∞}-determining compact sets. A compact set $K \in \mathbb{R}^{n}$ is called C^{∞}-determining if for each $f \in C^{\infty}\left(\mathbb{R}^{n}\right),\left.f\right|_{K}=0$ implies $\left.f^{(k)}\right|_{K}=0$ for all $k \in \mathbb{N}^{n}$. Therefore we can consider not jets but functions.

Let $\left(l_{n}\right)_{n=0}^{\infty}$ be a sequence such that $l_{0}=1,0<2 l_{n+1}<l_{n}, n \in N$. Let K be the Cantor set associated with the sequence $\left(l_{n}\right)$ that is $K=\cap_{n=0}^{\infty} K_{n}$, where $K_{0}=I_{0,1}=[0,1], K_{n}$ is a union of 2^{n} closed intervals $I_{n, k}$ of length l_{n} and K_{n+1} is obtained by deleting the open concentric subinterval of length $l_{n}-2 l_{n+1}$ from each $I_{n, k}, k=1,2, \ldots, 2^{n}$.

Fix $\alpha>1$ and $l_{1}<1 / 2$ with $2 l_{1}^{\alpha-1}<1$. We will denote by $K^{(\alpha)}$ the Cantor set associated with the sequence $\left(l_{n}\right)$, where $l_{0}=1, l_{n+1}=l_{n}^{\alpha}=\ldots=l_{1}^{\alpha^{n}}, n \geq 0$.

Theorem 4.1 [9, Goncharov]If $\alpha>2$ then $K^{(\alpha)}$ does not have the extension properly.

Theorem 4.2 [9, Goncharov] If $1<\alpha<2$ then $K^{(\alpha)}$ has the extension property.

4.2 Cantor type sets in \mathbb{R}^{n} and the extension property

We see that the critical point for the one dimensional Cantor sets is $\alpha=2$. We want to find the critical point for the set $K^{\left(\alpha_{1}\right)} \times K^{\prime\left(\alpha_{2}\right)} \times \ldots \times K^{\left(\alpha_{n}\right)}$. Let for $i \leq n K^{\left[\alpha_{1}, \ldots, \alpha_{i}\right]}$ denote the set $K^{\left(\alpha_{1}\right)} \times K^{\left(\alpha_{2}\right)} \times \ldots \times K^{\left(\alpha_{i}\right)}$. For simplicity we will use the folowing notation:

Notation $4.3\|f\|_{q^{(i)}}^{(i)}$ denotes the $q^{\text {th }}$ norm of $\int \in \mathcal{E}\left(K^{\left[\alpha_{1}, \ldots, c_{i}\right]}\right) \quad \forall i \in \mathbb{N}$.
For $x=\left(x_{1}, \ldots, x_{n}\right) \in K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}$ and $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ lel

$$
\begin{aligned}
\vec{x} & =\left(x_{1}, \ldots, x_{n}\right) \\
\vec{x}_{i} & =\left(x_{i}, \ldots, x_{n}\right) \\
\bar{x}_{i} & =\left(x_{1}, \ldots, x_{i}\right) \\
k! & =k_{1}!\ldots k_{n}! \\
x^{k} & =x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} \\
\vec{x} \geq \vec{y} & \Leftrightarrow x_{i} \geq y_{i} \forall i \leq n \\
\vec{x}=\vec{y} & \Leftrightarrow x_{i}=y_{i} \quad \forall i \leq n \\
\vec{x}>\vec{y} & \Leftrightarrow \vec{x} \geq \vec{y} \text { and } \vec{x} \neq \vec{y}
\end{aligned}
$$

Lemma 4.4 Let $\int \in \mathcal{E}\left(K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}\right)$. For $n \geq 2 \int i x c \in K^{\left[\alpha_{2}, \ldots, \alpha_{n}\right]}$ and let $f_{c}(x)=$ $f(x, c), x \in K^{\left(\alpha_{1}\right)}$ thcn $\|f\|_{q}^{(n)} \geq\left\|f_{c}\right\|_{q}^{(1)}$

Proof:

$$
\begin{aligned}
\left|\int\right|_{\eta}^{(n)} & =\sup _{x, \vec{j}}\left\{\left|f^{(\vec{j})}(x)\right|\right\}=\sup \left\{\left|f^{\left(j_{1}, \ldots, j_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)\right|: x_{i} \in K^{\left(\alpha_{i}\right)},|\vec{j}| \leq q\right\} \\
& \geq \sup _{x_{1}, j_{1}}\left\{\left|f^{\left(j_{1}, \overrightarrow{0}\right)}\left(x_{1}, c\right)\right|: x_{1} \in K^{\left(\alpha_{1}\right)}, c \in K^{\left[\alpha_{2}, \ldots, \alpha_{n}\right]}, j_{1} \leq q\right\} \\
& =\sup _{q}\left\{\left|f_{c}^{\left(j_{1}\right)}\left(x_{1}\right)\right|: x_{1} \in \mathbb{R}, j_{1} \leq q\right\}=\left|f_{c}\right|_{q}^{1}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
S_{q}^{\prime n}(f) & =\sup _{x, y, i}\left\{\left|\frac{\left(R_{y}^{q} f\right)^{(i)}(x)}{|x-y|^{|q-|i|} \mid}\right|: x, y \in K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}, x \neq y,|i| \leq q\right\} \\
& =\sup \left\{\frac{\left|f^{(i)}(x)-\sum \frac{f^{(j)}(y)}{\left(j_{1}-i_{1}\right) \ldots\left(j_{n}-i_{n}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}} \ldots\left(x_{n}-y_{n}\right)^{j_{n}-i_{n}}\right|}{|x-y|^{q-|i|}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sup _{i_{1} \leq q}\left\{\frac{\left|f^{\left(i_{1}, \overrightarrow{0}\right)}\left(x_{1}, c\right)-\sum \frac{f^{\left(j_{1}, 0\right)}\left(y_{1}, c\right)}{\left(j_{1}-i_{1}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}}\right|}{\left|x_{1}-y_{1}\right|^{q-i_{1}}}: x_{1} \neq y_{1}\right\} \\
& =S_{q}^{1}\left(f_{c}\right) \text { for } c \in K^{\left[\alpha_{2}, \ldots, \alpha_{n}\right]}
\end{aligned}
$$

hence $\|f\|_{q}^{(n)}=\left|\int\right|_{q}^{(n)}+S_{q}^{\prime n}\left(f^{\prime}\right) \geq\left|f_{c}\right|_{q}^{(1)}+S_{q}^{1}\left(f_{c}\right)=\left\|\int_{c}\right\|_{q}^{(1)}$
ㅁ
Lemma 4.5 Lel $\int \in \mathcal{E}\left(K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}\right)$. For $n \geq 2$ fix $c \in K^{\left(\alpha_{n}\right)}$ and lel $\int_{c}^{(i)}(y)=$ $\frac{\partial^{i}}{\partial x_{n}^{i}} \int(y, c), y \in K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}$ then $\left\|\int\right\|_{q}^{(n)} \geq\left\|\int_{c}^{(i)}\right\|_{q-i}^{(n-1)}$

Proof

For the proof of this inequality we will use a strategy similar to the one in the proof of the previous lemma.

$$
\begin{aligned}
|f|_{q}^{(n)} & =\sup _{x, j}\left\{\left|f^{(j)}(x)\right|: x \in K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]},|j| \leq q\right\}=\sup \left\{\left|f^{\left(j_{1}, \ldots, j_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)\right|\right\} \\
& \geq \sup \left\{\left|f^{\left(\bar{j}_{n-1}, j_{n}\right)}(y, c)\right|: c \in K^{\left(\alpha_{n}\right)}, y \in K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}\right\} \\
& =\left|\int_{c}^{\left(j_{n}\right)}\right|_{q-j_{n}}^{(n-1)}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& S_{q}^{\prime n}(\rho)=\sup \left\{\left|\frac{\left(R_{y}^{q} J\right)^{(i)}(x)}{|x-y|^{q-|i|}}\right|: x, y \in K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}, x \neq y,|i| \leq q\right\} \\
& =\sup \left\{\frac{\left|f^{(i)}(x)-\sum \frac{f^{(j)}(y)}{\left(j_{1}-i_{1}\right)!\ldots\left(j_{n}-i_{n}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}} \ldots\left(x_{n}-y_{n}\right)^{j_{n}-i_{n}}\right|}{|x-y|^{q-i i \mid}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.: \bar{x}_{n-1}, \bar{y}_{n-1} \in K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}, \bar{x}_{n-1} \neq \bar{y}_{n-1},\left|\bar{i}_{n-1}\right| \leq q-i_{n}\right\} \quad \text { for fixed } i_{n} \\
& =S_{q-i_{n}}^{n-1}\left(f_{c}^{\left(i_{n}\right)}\right) \\
& \text { hence }\|f\|_{q}^{(n)}=\left|J_{q}^{(n)}+S_{q}^{\prime n}(J) \geq\left|J_{c}^{(i)}\right|_{q-i}^{(n-1)}+S_{q-i}^{n-1}\left(f_{c}^{(i)}\right)=\left\|\int_{c}^{(i)}\right\|_{q-i}^{(n-1)}\right.
\end{aligned}
$$

Theorem 4.6 $K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}$ has the extension property for $1<\alpha_{i}<2, i=1, \ldots, n$.

Proof

We will prove by induction on n. We know the statement is true for $k=1$. Now suppose the statement is true for $k \leq n-1$. Then take

$$
z_{0}=\left(x_{0}, y_{0}\right) \in K^{\left[\alpha_{1}, \ldots, \gamma_{n}\right]}
$$

where $x_{0} \in K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}$ and $y_{0} \in K^{\left(\alpha_{n}\right)}$
fix $f \in \mathcal{E}\left(K^{\int\left[\alpha_{1}, \ldots, \alpha_{n}\right]}\right)$ fix q. Given $R>0$ Now fix $k_{2} \leq q$
Let $g_{1}(x):=f^{\left(0, k_{2}\right)}\left(x, y_{0}\right)$. Then $g_{1}(x) \in \mathcal{E}\left(K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}\right)$
Therlore by proposition 1.19 and by our induction assumption

$$
\exists r, C>0:\left|g_{1}\right|_{q}^{(n-1)} \leq \iota^{R}\left|g_{1}\right|_{0}^{(n-1)}+\frac{C}{t}\left\|g_{1}\right\|_{r}^{(n-1)}, \quad \iota>0
$$

So $\forall \overrightarrow{k_{1}} \in \mathbb{N}^{n-1}$ s.t. $\left|\overrightarrow{k_{1}}\right| \leq q-k_{2}$ we have

$$
\begin{equation*}
\left|f^{\left(\left(\overrightarrow{k_{1}}, k_{2}\right)\right.}\left(z_{0}\right)\right| \leq t^{R} \sup _{x \in K^{\left\{\left(x_{1}, \ldots, \alpha_{n-1}\right\}\right.}}\left|f^{\left(\overrightarrow{0}, k_{2}\right)}\left(x, y_{0}\right)\right|+\frac{C}{t}\left\|g_{1}\right\|_{r}^{(n-1)}, t>0 \tag{4.2}
\end{equation*}
$$

Now let $g_{2}(y):=\int(x, y)$ then $g_{2}(y) \in \mathcal{E}\left(K^{\left(\alpha_{n}\right)}\right)$ using our assumption again, if we fix x we will have

$$
\left|\int^{\left(\overrightarrow{0}, k_{2}\right)}\left(x, y_{0}\right)\right| \leq d^{l 2} \sup _{y \in K^{\left(\alpha_{n}\right)}}|J(x, y)|+\frac{C}{d}\left\|y_{2}\right\|_{r^{(1)}}^{(1)}, d>0
$$

then

$$
\begin{aligned}
\sup _{x \in K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}}\left|f^{\left(\overrightarrow{0}, k_{2}\right)}\left(x, y_{0}\right)\right| & \leq \sup _{x \in K^{\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]}}\left(d^{R} \sup _{y \in K^{\left(\alpha \alpha_{n}\right)}}|f(x, y)|+\frac{C}{d}\left\|g_{2}\right\|_{r}^{(1)}\right) \\
\cdot & \leq d_{(x, y)} \sup _{(x, y)}|f(x, y)|+\frac{C}{d} \sup _{x}\left\|g_{2}\right\|_{r}^{(1)} \forall d>0
\end{aligned}
$$

By Lemma. 4.4

$$
\left\|g_{2}\right\|_{r}^{(1)} \leq\|f\|_{r}^{(n)}
$$

and by Lemma 4.5

$$
\left\|g_{1}\right\|_{r}^{(n-1)} \leq\|f\|_{r+k_{2}}^{(n)} \leq\|/\|_{2 r}^{(n)}
$$

then

$$
\left|f^{\left(\overrightarrow{k_{1}}, k_{2}\right)}\left(z_{0}\right)\right| \leq t^{R} d^{R}|f|_{0}+t^{R} \frac{C}{d}\|f\|_{2 r}+\frac{C}{l}\|f\|_{2 r}
$$

Now let $d=t^{R+1}$ then

$$
\left|\cdot f^{\left(\overrightarrow{k_{1}}, k_{2}\right)}\left(z_{0}\right)\right| \leq t^{R^{2}+2 R}|f|_{0}+\frac{2 C}{t}\|f\|_{2 r} \forall t>0
$$

Lemma 4.7 Let $\int \in \mathcal{E}\left(K^{\left[x_{1}, \ldots, \alpha_{n}\right]}\right)$ s.t. $\int(x)=\int\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}\right), F\left(x_{1}\right) \in$ $\mathcal{E}\left(K^{\left(\alpha_{1}\right)}\right)$ that is, f depends only on the first variable. 7 hen $\|f\|_{q}^{(n)}=\|F\|_{q}^{(1)}$

Proof: Since $F^{\left(k_{1}, \vec{k}_{2}\right)}\left(x_{1}\right)=0$ for $\vec{k}_{2}>0$ we have

$$
\begin{aligned}
\left|\int\right|_{q}^{(n)} & =\sup _{x_{1}, \vec{x}_{2}, k_{1}, \vec{k}_{2}}\left\{\left|f^{\left(k_{1}, \vec{k}_{2}\right)}\left(x_{1}, \vec{x}_{2}\right)\right|: k_{1}+\left|\vec{k}_{2}\right| \leq q, x_{1} \in K^{\left(\alpha_{1}\right)}, \vec{x}_{2} \in K^{\left[\alpha_{2}, \ldots, \alpha_{n}\right]}\right\} \\
& =\sup _{x_{1}, k_{1}, \vec{k}_{2}}\left\{\left|F^{\left(k_{1}, \vec{k}_{2}\right)}\left(x_{1}\right)\right|: k_{1}+\left|\vec{k}_{2}\right| \leq q, x_{1} \in K^{\left(\alpha_{1}\right)}\right\} \\
& =\sup _{x_{1}, k_{1}}\left\{\left|F^{\prime\left(k_{1}\right)}\left(x_{1}\right)\right|: k_{1} \leq q, x_{1} \in K^{\left(\alpha_{1}\right)}\right\} \\
& =|F|_{q}^{(1)}
\end{aligned}
$$

On the other hand we have

$$
\left.F^{\prime} i_{1}, i_{2}\right)\left(x_{1}\right)-\sum_{j \geq i}|j| \leq q \frac{F^{\left(j_{1}, j_{2}\right)}\left(y_{1}\right)}{\left(j_{1}-i_{1}\right) \ldots \ldots\left(j_{n}-i_{n}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}} \ldots\left(x_{n}-y_{n}\right)^{j_{n}-i_{n}}=0 \text { for } \vec{i}_{2}>0
$$

and $F^{\left(j_{1}, \vec{j}_{2}\right)}\left(x_{1}\right)=0$ for $\vec{j}_{2}>0$ therefore

$$
\begin{aligned}
& S_{q}^{\prime \prime}(f)=\sup _{x, y, i}\left\{\left|\frac{\left(I_{y}^{q} f\right)^{(i)}(x)}{|x-y|^{q-|i|}}\right|: x, y \in K^{\left[\alpha_{1}, \ldots, \alpha_{n}\right]}, x \neq y,|i| \leq q\right\} \\
& =\sup \left\{\frac{\left|f^{(i)}(x)-\sum_{j \geq i,|j| \leq q} \frac{f^{(j)}(y)}{(j-i)!}(x-y)^{j-i}\right|}{|x-y|^{|-|i|}}: x \neq y,|i| \leq q\right\} \\
& =\sup \left\{\frac{\left|F^{\left(i_{1}, \vec{i}_{2}\right)}\left(x_{1}\right)-\sum_{j \geq i, j i \mid \leq q} \frac{F^{\left(j j_{1}, j_{2}\right)}\left(y_{1}\right)}{(j-i)!}(x-y)^{j-i}\right|}{|x-y|^{q-|i|}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i_{1} \leq q \\
& =\sup \left\{\frac{\left|F^{\left(i_{1}\right)}\left(x_{1}\right)-\sum \frac{F^{\left(j_{1}\right)}\left(y_{1}\right)}{\left(j_{1}-i_{1}\right)!}\left(x_{1}-y_{1}\right)^{j_{1}-i_{1}}\right|}{\left(\sqrt{\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}\right)^{q-i_{1}}}: x \neq y, i_{1} \leq q\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sup \left\{\frac{\left|F^{\left(i_{1}\right)}\left(x_{1}\right)-\sum \frac{F^{\left(j_{1}\right)}\left(y_{1}\right)}{\left(j_{1}-i_{1}\right)!}\left(x_{1}-y_{1}\right)^{i_{1}-i_{1}}\right|}{\left|x_{1}-y_{1}\right|^{\mid-i_{1}}}: x_{1}, y_{1} \in \mathbb{R}, x_{1} \neq y_{1}, i_{1} \leq q\right\} \\
& =S_{q}^{1}\left(F^{\prime}\right)
\end{aligned}
$$

Hence we get $\|f\|_{q}^{(n)}=\|F\|_{q}^{(1)}$
Theorem $4.8 K^{\left[x_{1}, \ldots, c_{n}\right]}$ does not have the extension property if al least one of the α_{i} 's is grealer than ${ }^{2}$.

Proof: Suppose wlog $\alpha_{1}>2$. By the proof of Theorem 2 in [9] we have $\forall p \exists c \exists q \forall r>q \exists\left(f_{m}\right) \subset \mathcal{E}\left(K^{\left(\alpha_{1}\right)}\right): \frac{\left\|\int_{m}\right\|_{p}^{(1)}\left\|\int_{m}\right\|_{r}^{(1) \epsilon}}{\left\|\int_{m}\right\|_{q}^{(1)!+\epsilon}} \longrightarrow 0$ as $n \longrightarrow \infty$

Now deline $g_{m}\left(x_{1}, \ldots, x_{n}\right)=\int_{m}\left(x_{1}\right)$ By Lemma $4.7\left\|g_{m}\right\|_{q}^{(n)}=\left\|f_{m}\right\|_{q}^{(1)}$
Hence we have
$\forall p \exists \epsilon \exists q \forall r>q \exists\left(g_{m}\right) \subset \mathcal{E}\left(K^{\left[\alpha_{1}, \ldots, \kappa_{n}\right]}\right): \frac{\left\|g_{m}\right\|_{p}^{(n)}\left\|g_{m}\right\|_{r}^{(n) c}}{\left\|g_{m}\right\|_{q}^{(n) 1+\epsilon}} \longrightarrow 0$ as $n \longrightarrow \infty$ which shows the negation of (1.4)

Bibliography

[1] 13. Arslau, A. Goncharov, M. Kocatepe, Spaces of Whitney Functions on Cantor Type S'els, preprint.
[2] C. Bessaga, A. Pelczynsky, S. Rolewics, On diametral approximative dimension and lincar homogenity of F-spaces, Bull. Acad. Pol. Sci.,9,677683(1.961).
[3] E. Bierstonc, Extension of Whitney-Fields from Subanalytic Sets, Invent. Math 46 (1978), 277-300.
[1] L. Frerick, Extension Operators for: Spaces of Arbitrary Often Differentiable Functions, preprint.
[5] Λ. Goncharov, Isomorphic classificalion of the spaces of infinitely differentiable functions, Ph.D. Thesis, Rostov State University,(1986)(in Russian).
[6] A. Goncharov, A compact set withoul Markov's property but with an extension operalor for C ${ }^{\infty}$ Junctions,SLudia Math. 119(1996),27-35.
[7] A.I'. Goncharov, On cxplicit form of extension operator for C^{∞} functions, preprint.
[8] A. Goncharov, Compound invarianls and spaces of C^{∞} functions, Linear Topol. Spaces Complex Anal. 2(1995),45-55.
[9] A. Goncharov, Perfect Sels of Finite Class Without the Extension Property, Studia Math,126,(1997), 161-170
[10] $\Lambda . P^{\prime}$. Goncharov, Melharet Kocalepe Isomorphic Classification of the Spaces of Whitney Functions, Michigan Math.J.44(1997),555-577.
[11] M. R. Hestenes, Extension of the range of a differentiable functions, Duke Math. J. 8(1941), 1.83-192.
[12] A.N. Kolmogorov, On the linear dimension of vector topological spaces,(in Russian)Matem analiz i ego pril. 5,210-213,Rostov-on-Don(1974).
[13] L. Lichtenstein, Bine elcmankare Bemerkung zur recllen Analysis, Math. Zeitschuift, 30 (1929), 794-795).
[14] B. Malgrange, Division des distributions,Seminaire L. S'Chwartz 1959/60, exposes 21-25.
[15] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, London, 1967 .
[16] R. Meise and D. Vogt, Introduction to Funclional Analysis, Oxford,(1997)
[17] B. Mitjagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16:4 (1961),59-128=Uspekhi Mat. Nauk 16:4 (1961), 63-132.
[18] W. Pawlucki and W. Pleśniak, Lxtension of C^{∞} functions from sets with polynomial cusps, Studia Math. 88 (1988),279-287.
[19] A. Pelczynski, On the approximation of S-spaces by finite dimensional spaces, Bull. Acad. Pol. Sci.,5,879-881(1957).
[20] R. T. Seelcy, Extension of C^{∞} functions defined in a half space, Proc. Amer. Math. Soc. 15 (1901),625-626.
[21] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
[22] M. Tidten, Fortsetzungen von C^{∞}-Finktionen, welche auf einer abgeschlossenen Menge in \mathbb{R}^{n} definiert sind,Manuscripta Math, 27,(1979),291-312
[23] M. Tidten, Krilerien für die Exislenz von Ausdehnungsoperatoren zu $\mathcal{E}(K)$ für kompakte leilmengen K von \mathbb{R}, Arch. Math. (Basel)40(1983),73-81.
[24] II. Tricbel, Interpolation Lheory,function spaces, differcutial operator:, VEB Deutschere Verlag der Wissenschaften, Berlin(1978).
[25] II.Whitney, Differentiable even functions,Duke Math J. 10(1943), 159-160.
[26] H.Whitney, On ideals of differentiable functions,Amer.J.Math.70(1948),635658.
[27] H.Whitney, Analylic extcnsions of differentiable functions defined in closed sels, Trans. Amer. Math. Soc. 36(1934),63-89.
[28] II.Whitney, I)ifferentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36(1934),369-387.
[29] V.l. Zahariuta, Linear topological invariants and the isomorphism of spaces of analytic functions, Matem. aualiz i ego pril., Rostov-on-Don, Rostov Univ., 2(1970), 3-13; 3(1971),176-180 (Russian).
[30] V.P. Zahariuta, Generalized Miliagin Invariants and a continuum of pairwise nonisomorphic spaces of analylic functions, Funktional analiz i Prilozhen. 11(1977),24-30 (Russian).
[31] V.P. Zahariuta, Synthetic diameters and linear lopological invariants,School on theory of operators in functional spaces (abstracts of reports), pp. 51-52, Minsk, 1978 (Russian).
[32] V.P. Zahariuta, Linear lopological invariants and their applications to isomorphic classifications of generalized power spaces, Rostov Univ., 1979 (Russian) ; revised English version in Turkish J. Math. 20(1996), 237-289.
[33] M. Zerner, Développement en séries de polynômes orthonormaux des fonclions indéfiniment différentiables, C.R. Λ cad. Sci. Paris 268(1969),218-220.

