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COMPACT SETS

Advisor;

Muliammed Altım
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III I.İ1İS work we examiued llie existence of a linear continuous extension operator 
Cor tJic space of Wliitney I'mictions given on subsets of tlie Avhole space. We stud­
ied tlie linear to|)ological invariants, ('.specially an iuvai'ia.nt which topologically 
cha.ra.ctei’izes tlie existence of an extension operator. I''ina.lly, we gave necessa.ry 
a.nd sullicient conditions foi· the existence of an extension operator on some spcx'.ial 
ty|)e compact sets.

Keywords and Phrases: Frckhet sj)a.ces, Extension opera.tor, Whitne,y func­
tions, Ijinear Topological lnvci.ria.nts.
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ÖZET

•  ·

BAZI MODEL KOMPAKT KÜMELER İÇİN 
GENİŞLETME ÖZELLİĞİNİN GEOMETRİK 

KARAKTERİZASYONU

Mulıammecl Altım
Matematik Yııksek Lisans 

Damşmaıı; Dog. Dr. Alexander Gonclıarov 
Eylül 2000

Bu çalışnıacla voktörel bir uzayın ali kümelerinde tanımlanmış olan VVlıit- 
ney fonksiyon uzaylarında lineer sürekli bir genişletme operatörünün var olma, 
durumlarım inceledik. Ayrıca lineer topolojik invariantlar üzerinde, özellikle 
bir genişletme operatörünün va.r olma, durumunu karakterize eden bir inva.ria.nt 
üzerinde ça.lıştık. Son olarak ba.zı özel kompakt kümelerde bir genişletme op- 
('ratörünün var olma durumu için yeter ve gerek şartla.rı verdik.

Analılar Kdinıcler m; ifadeler: Freclıet uza.yları, Genişletmeo])eratörü, VVlıit- 
ney fonksiyonları, Lineer topolojik invariantlar.
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Chapter 1

Introduction

The development of cliiFerential calculus in the 20‘ ‘̂ century has its origin in 
the work of Whitney on differentiable functions. The profound theorems proved 
during the last fifty years were motivated on the one hand by problems of Laurent 
Schwartz concerning division of distributions and differentiable functions, and on 
the other hand by the theory of singularities of differentiable mappings, developed 
at first by Thom and Whitney. Some of the most fundamental results are due to 
Schwartz’s students Glaeser,Grothendick and Malgrange.

We will begin with cui elementary theorem on differentable even functions, 
which introduces some important technicpies and which provides a good illustra­
tion of the fundemental problems and the relationships ciniong them.

Let U be an open set of E"'. We denote by £"'’{U) (respectively £{U))  the alge­
bra of m times continuously differentialile (respectively infinitely differentiable) 
functions in f/, with the topology of uniform convergence of functions and all 
their partial derivatives on compact sets. This is the topology defined by the 
seminorms

\f\i sup l ^ ( . r ) |  ; ,T € K, |A:| <  rn
dx^

where K  is a compact subset of U (and ni runs through N in the case). Here 
X =  (.Ti,..., ,r,i), k denotes a multiindex k =  (A:], . . . , /j„) G N’\ |A:| =  A:i -f ... -f kn
and

dW д\Ц

dx^ dx\\..dx’̂ ’'

We will sometimes use m for either a nonnegative integer or -|-oo and write

2
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£+^{U)  =  £{U)
Let ¿̂ ’"(R)ei;en the closed subspci.ce of £̂  

{m € N or rn =  + oo )
consisting of even functions

T h e o re m  1.1 If f { x )  ts a (7 ’̂"  even fxinction of one variable (rn € N or m =  
Too), then there exists a 6” " function g{y) such that f { x )  =  g{x^)· In fact 
there exists a continuous linear operator L : ¿i '̂"(E,)ei,en — > £’"‘ (IR) such that 
f { x )  =  L{f){x'^) for all f  e  £ '̂‘

The first assertion is clue to Whitney [25]. The second follows from the the­
orem ol Seeley [20]. It will be clear that an analogous result holds for functions 
of several variables that are even in some of them.

The proof of the theorem can be given by using the following elemantary but 
important lemma.

L em m a 1.2 (Iladainard’s lemma) If f { x )  =  f(xi,...,Xn,x,i+i,---,Xp) is a C"” 
function such that

_/(0, 0,..., 0, .'r'n+1) ··.) ~  ^

then there exists functions gi{xi, ...,xf}, 1 <  * < n, such that

fi^ ) =
i=i

P ro o f: By the fiinclamental theorem of calculus aud the chain rule, we have 

\ J ) ···? ) ···)‘̂ 'p) u ( \
= i  — dt—

where

Jo OXi
It is clear that the gi defined In the proof of Lemma 1.2 depend in a continuous 
linear way on / .

Hadamard’s lemma is a very simple type of division theorem for dilferentiable 
functions. In the C°° Ccise, the assertion of the lemma is ecjuivalent to the state­
ment that the ideal in generated by X) ,̂...,x,i is closed. Malgrange [14]
proved tliat if U is an open subset of R", then any ideal /  in £{U)  which is gen­
erated by finitely many ainalytic functions is closed. Malgrange’s theorem licis a
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more concrete formulation: a function /  on U belongs to /  if cuicl only if it 
’’ belongs formally to / ” . ’’ Belongs formally to / ” mea.ns that the formal Taylor 
series oi /  at each point ol U is the formal Taylor series of some element of I. In 
fact according to W hitney’s s|:)ectral theorem [26], the closure of any ideal /  in 
S{U) equals the ideal of functions which belong formally to I.

P r o o f  o f  T h e o re m  1.1: Let f { x )  be a even function. There is a 
uni(|ue continuous function (j{y) dcTiied in [0,oo ) such that g is in [0, oo) 
and f { x )  =  (){x )̂. If X 7̂  0, we have

dx
=  2xg^̂ -'-''>{x )̂ 0 < k <  2m

On the other hand we can use lladamard’s lemma to define C ’̂ ’̂”' even functions 
/i.fc inductively as follows:

ho I

hi = 2x Iu4 0 < k < rn

It follows that h-k{x) =  outside the origin, so that each d e r i v a t i v e 0 <
k. <  777. can be continued up to the origin. We will |)rove that g is the restriction 
to [0,oo ) of a O ’" function defined on R.

The problem of extending g io a, differentiable function is a very special in­
stance of Whitney’s extension ])roblem: When is a function / ,  defined in a closed 
subset X  of R", the restriction of a O ’" function in R " ? ([27],[28]). In fact we 
Wfint to extend g in a continuous linear wa.}̂  The existence of such an extension 
in the case wirs first proved by Mityirgin [17] and Seeley [20].

Let T’" ([0,c o ))  denote the space of continuous functions g in [0, oo) such that 
g is 6” " in (0,oo ) and all deriviitives of 7/ ] (0,oo) extend continuously to [0,oo). 
Then ¿i’" ( [0,oo )) has the structure of a Frechet space defined by the seminorms

=  sup{|i/''(2/)l : 2/ e /L, \k\ < ?7i},

where K  is a compact subset of [0,oo ) (fuid rn runs through N in the case), 
and wlmre g ’̂  denotes the continuation of (d^/dy^)[g\{0, oo)) to [0,oo).

The following theorem comi)letes the proof of theorem 1.1.

T h e o re m  1.3 There is a continuous linear extension operator

Id : T’"([0 ,oo )) — 7 T '" ’
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such that i?(ir)|[0, oo) =  g for all g E oo)).

P ro o f: Our problem is to define E{^g)[y) when ?/ <  0. If ni — 0 we can define 
E{i)){y) reflection in the origin : E[g)[y)  =  g{—y) ,y < 0. If m =  1 we can 
use a weighted sum of reflections. Consider

=  «117(̂ 12/) +  (I'2g{hy) ,  y < 0

Where 61,62 < 0. Then E(g)  determines a extension of g provided that the 
limiting values of E[g)[y)  and E(g)'{y)  agree with tho.se o[ g (—y) and g'{—y) as 
y — > 0— ; in other words if

«1 +  «2 =  1 
aibi -|- 0,262 =  1

For distinct 61,62 <  0 these equations have a unique solution Oi, 02.TIiis extension 
is due to Lichtenstein [1.3].

Ilestenes [11] remarked that the same technique works for any rn < 00 : 
a weighted sum of in reflections leads to solving a system of linear equations 
determined by a Vandermonde matrix.

If m — 00, we can use an infinite sum of reflections [20]:

00
J^{9){y) =  (^kf{hky)g{hky), 2/ < 0,

k-l

where {o^.}, { 6*,} are sequences satisfying

( 1)

(2)

(3)

bk < 0, l>k — > —00 as k — > 00:
00

X^lafcl|6fc|" < 00 for all n >  0;
k=[
00

Ukbl =  1 for all n >  0
k=l

and (f) is a function such that <j){y) =  1 if 0 <  y < 1 cuid (¡){y) =  0 if y >  2. 
In fact condition (I) guarantees that the sum is finite for each y < 0. Condition 
(2) shows that all derivatives converge cas y — > 0—,uniformly in ecich bounded 
set, and (3) shows that the limits agree with those of the derivatives of y(y) as 
y — > 0+. The continuity of the extension operator also follows from (2).
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It is Ccisy to choose sequences {ajt}, { 6̂ :} Scitisfying the above conditions. We 
Ccui take - —2̂  and choose using a tiieorem of Mittag Lefller : there exists 
an entire function ur··?* taking arbitrary values (here ( — 1)"·) for a sequence
of distinct points (here 2") provided that the sequence does not have a finite 
accumulation point.

It is clear that Seeley’s extension operator actually provides a simultaneous 
extension of all classes of differentiability.

In this article we will be concerned mainly with C°° functions. Whitney’s 
theorem on even functions in the C°° case is equivalent to the statement that the 

lalgebra of ¿ '(R ) of functions of tlie form g{x^) is closed.

1.1 Whitney’s Extension theorem

In this section we will examine the classical extension theorem of Whitney [27]. 
Let U be an open subset of E ’‘ , and X  a closed subset of U. Whitney’s theorem 
asserts that a function defined in X  is the restriction of a C"“ function in U 
(m Ç N or 777. =  + oo) provided there exists a sequence (/̂ )̂|i-|<„,, o( lunctions 
defined in X  which sa.tisfies certain conditions that arise naturally from Taylor’s 
formula.

First we consider rn 6 N. By a jet of order rn on X  we mean a set of continuous 
functions F =  (/'' '̂)|7:|<m A''.IIere k denotes a multiindex k =  (^q, ...,F i) € N". 
Let J"' (Af) be the vector space of jets of order rn on X.  We write

if K  is a compfict subset of X,  and F{x)  =  F^{x).
There is a linear mapping .7’" ; ¿’"' (17) — > J ’"(X ) whidi associates to ea,ch 

/  € ¿ ’” (f/) the jet
/  Q\U f

7’“(/)= (a ^ A"
|/c|<7fl

For each k with |7.j <  rn, there is a linear mapping /7̂ ' : J ’"(A ') — i .7’" “ Î 'I(Â ) 
defined by D^F =  (7'’*'+')|î|<,„_|a..|. We also denote by the mapping of ¿"*(77) 
into given by

i r f  = -
d:·, , . k
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This should cause no confusion since

79* o o 79*

If a 6 9l cuid F  € J^^{X) , then the Taylor polynomial (of order m) of E' at a is 
the i)olynon)ial

F^(a)'¡TF(x)= x; iAi(x-„)‘-
|A:|< 7i i k\

of degree <  rn. Here A,·! =  We define R fF  =  F -  F^{T(fF),  so tluit

( I Ç F n -z )  =  F \ x )  -  Y :
| i |< m -|f c |

if I A: I <  /77..

D efin ition  1.4 A jet F  € J^fX)  is a Whitney field of chiss C"* on X  if for 
each I A: I <  ?/i

as |.T — y\ — > 0, .T, y Ç: X .

( 1. 1)

Let S^"'{X) C J’”' {X)  be the subspace of Whitney fields of class C ”L £’”*(97) 
is a Frechet space with the seminornis

I№‘7’)‘ (!/)IPi|f'' =  I i'l''· -1- supI 7U I 1771 \x -  7/ 1’ TT :x ,  y e  K,X  ^  7/,|A:| < 777. ) ,

where K  C X  is compact.
There iue two more type of norms used to identify the topology in E'"'(X), 

where one of them is:

" +  sup I x: y € K, x ^ y } ,
1 771 1  ̂ 1771

I A; I <  771
|;c — 7/|”*~Fi

iuid the other is

m =  |7'‘’ |(^,sup '̂̂ ‘ ~'''‘ ' ' ' ^ l f - - x , y e K , x ^ y , W < ’n|,j. _  ,y|m-|A:|

It is easy to see that topologies given by thoise system of norms are ecpiivalent.
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R em a rk  1.5 If 1'' G and for all x G U, j/c| <  rn we have

inn
y—

then there exists f  G S"^{U) such that F  =  </"*(/)■ This simple converse of Tay­
lor’s theorem shows that the two spaces ive have denoted by £ ”’’{U) are equivalent. 
On the topologies defined by the seminorms |-|,h, are equivalent (by
the open mapping theorem).

T h e o re m  1.6 (Whitney [27]) There is a continuous linear mapping

M/ : £”\ X )  — > £”\U)

.such that D ’̂ W{F){x)  =  F'^{x) if F  G £ ’” {X),  x G A', |A;| < rn, and W{F)\{U -  
X )  is

R em a rk  1.7 The condition (1.1) cannot be weakened to :

\(IK'Ff(v)\Inn
v--*  ̂ |.r -

=  0 ( 1.2 )

for all X Ç. X , |A:| <  ni.

For example lei A be the .set of points (using one variable) x =  0, 1/2* and 
1/ 2* -b 1/ 2 *̂ (.s =  1, 2,...). Set f { x )  =  0 at x — 0 and 1/ 2* and f ( x )  =  l / 2 *̂ at 
X =  1/ 2* -b 1/ 2^*.Set /'( .i·)  =  0 in A. The above condition is satisfied but there’s 
no extension of f { x )  which has continuous first derivative.

For K  a closed subset of R ’‘ and m G N. Whitney’s extension theorem [27] 
gives an extension operator (a linear continuous extension operator) from the 
spa.ee £"' (K)  of Whitney jets on K  to the space C"''(R"). in the ca.se rn =  oo 
such an operator does not exist in genera.l.

D efin ition  1.8 For K  C R ” , K  has the Extension property if there exists a 
linear continuous extension operator L : £ {K)  — * C '^ (R ’*).

An example for a compact set which docs not have the extension pro])erty 
is the set K  =  (0) C R. To prove this fact assume that there exists such a 
continuous extension operator L for K  =  (0 ). Hence we have

Vp 3 ,.C  : | | i f | | ,< C || /n | ,  VCe£(A·).
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Let p =  0, then we have q,C  satisfying ||L/''||o <  C'||7'’||, WF € T{K)·
Let F  =  =  J- 9.nd T') =  0 for all i ^  q +  1.
It is easy to see that ||/''||,, =  0.
But of course Ll·' ^  0 since , L ' (̂0) ^  0.
'I'lieii we get 0 < ||L/'’||o <  — 0 which is a contraxliction.
We can similarly ¡)iov(i that K  — {()) U [«,/>] C K 0 < « <  6 also does not 

liave the extension property, (h'neraliziiig this, it is easy to see that if K  C IR" 
has isolated points then K  hcis no extension property.

1.2 Linear Topological Invariants

In this section we will introduce Frechet spaces, Kpthe spaces and linear topo- 
logicaJ invariants. We will denote by K either of the fields R or C.

D efin ition  1.9 A K-vecLor space F, endowed with a melric, is called metric 
linear space, if in F addition is uniformly continuous and scalar nndiiplication 
is conlimious.

A nietric linear space F is said to be locally convex ij Jor each a € F  and 
each, neighborhood V of a there exists a convex neighborhood U of a with U C V -  

A complete, metric, locally convex space is called a Frechet space.

Evei'y nornied spa.ee is a metric linear space and every Banach space is a Frechet 
space; however there are Frechet si)ci.ces which are not Banach spaces. The next 
lemma gives cin example of a Frechet space which is not Banach.The proof can 
be found in [16] Lemma 5.17.

Lem nici 1.10 Let (/i'n, ||·|І7í)n6N a sequence of Banach spaces. A metric is 
defined on E — hj

CO j

d{x,y)  :=
71= J ^

l̂ 'n ?y7t ||7l
+  II “  VnWn

) y — (2/h)7iGN G

Then {E,d) is a Frechet space. [E,d) is not a Banach .space if En 7̂  {0} for 
infinitely many n G N.
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Using this kimma it is easy to see tliat C{U), C°°{U) are Freclret spaces for U an 
open subset oí R ", a.ncl tlie space of analytic functions on U which we denote by 
A{U)  is a Fréchet space when U is an open subset of C.

C'^{U) lor U an open subset of R"’,C''^(f/)-tlie space of infinitel}^ cliiferentiable 
lunctions on an open bounded domain U which are uniforady continuous with all 
their derivatives, £{N)  (or К a. compact subset of R ” and A(U)  for U an open 
domain in C“ are ty])ica.l examples of l'Véchet spaces.

We now give a simple but useful proi)erty of Fréchet spaces by the following 
proposition:

P ro p o s it io n  1.11 For every Fréchei space Ё and each, closed subspace F of E, 
ike spaces F  and Id/F are Fréchet spaces.

D efin ition  1.12 Let E be a locally convex space. A collection U of zero neigh­
borhoods in E is called a fundamental system of zero neigliborhoods, if for every 
zero neighborhood LI there exists a V G U and an e > 0 with cV C U.

A family (l|-||fv)(ve/i of continuous seminorms on E is called a fundamental 
.system of s(miinorms, if the sets

Ua :=  {.T € E : ||:r||„ < 1), a; € A, 

form a fundamental system, of zero neighborhoods.

N ota tion  1.13 Let E be a locally convex .space which has a countable fundamen­
tal system of seminorms (||.||n))i6N· ¡hi p<î ‘̂ N.ng over to (r//.a.ri<,<,i||.||j)„.gN one 
may assume that

||.r||n<||.rH,H-iV.TG F , 7 r € N

holds. We call (||.||„),ieN «'»- increasing fimdamental system.

D efin ition  1.14 A sequence (e,)ygN in a locally convex space E is called a Schauder 
ba.sis of E, if for each x € E, there is a uniquely determined sequence {^j{x))j^n 
in K, for which X =  (j{x)cj is true. The maps (,■ : E — > K, j  G N, arc. 
called the coellicient functionals of the Schauder basis (ej),gN· 'i'ltcy are linear by 
the uniqueness stipulations.
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A Schauder basts of E is called an absolute basis, if for each continuous
seminorm p on E there is a continuous seminorm q on E and there is a C > 0 
such that

E  < e</(aO Vx e  li.

l;cl A — be a matrix of i(;al numbers such that 0 <  a,·,, <
Kothe space, cleliuecl by the matrix / 1, is said to be the locally convex space K{A)  
of all sequences (  =  ((̂ ¿) such that

lil;̂  — < oo Vp e N
iei

with the topology, genera.ted by the system of semi'norrns € N). The set
of indices /  is su|)posed to be countable, but in general I ^  This is convenient
for applications, especially when multiple series are considered.

D efin ition  1.15 Let E and F be locally convex spaces ; let us define

L{E,F)  : = { / ! :  E — >· F  : A is linear and continuous }

L{E)  :=  L{E, E) and E' := L{E, K)

E' is called the dual s])ace, of E.
A linear map A : E — > E is called an isomorphism, if A is a homomorphism. 

E and F  are said to be isomorphic, if there exists an isomorphism A between E 
and E . Then loe write E ~  E.

It is well known that eveiy I'Vechet space with absolute basis is isomorphic to 
some Kothe space. More precisely, if E is a Krechet space, {c,}¿g / is an absolute 
basis in E, and {H-HplpeN is an increasing sequence of seniinorrns, generating the 
topology of E, then E is isomorphic to the Kothe space, defined by the matrix 
A =  (aip), where a,·,, =  ||e¿||p.

For example the space 1,1] is isomorphic to the Kothe space s =  K{n^)
(see [17]), the space A (P), where D  =  { 2: € C : j ĵ < 1) , is isomorphic to 
K{exp{—n/p)), the space /1(C) is isomorphic to K{exp(pn)).

It is known ([.'!],[5],[22],[2'lj,[.‘53]) if the boundary of a domain Ü is smooth, 
Lipschitz or even Holder, tium the sp<u:<; C ‘̂ '{D) is i.somor|)hic to the space s.
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To examine whether two given linear topological spaces are isomori)lhc or not 
it is uselul to deal with some properties of linear topological spaces which are 
invciriant under isomorphisms. More precisely, if E is a class of linear topological 
spaces, 0, is a set with a relation of equivalence ~  and <I> : S — > H is a mapping, 
such tha.t

~  y  = >  <|)( A') ~  (1>(F)

tlien <l> is called a Linear '¡'opologicul Invariant. We say tha.t the invariant <I> is 
complete on the cla.ss E if for any X, V € E

<I>(Â  ~  <D(V') X -  y
First linear topological invariants connected with isomorphic classification of 
Frechet spaces are due to A.N. Kolmogorov [12] and A. Pelczynski [19]. They in­
troduced linear topological invariants called approximative dimension and proved 
b}' their help that A{D)  is not i.somor])hic to A[G) \I Ü Q C"·, G C C '", rn ^ n 
iuid /1(0"·) is not isomori)hic to /1 (0 ') ,  wliereD)"' is the unit polydisc in C**. Later 
C. Bessa.ga, A. Peiczynsky, S. Rolewics [2] and B. Mitia.gin [17] considered other 
linear topological invariants called diametral dimension, which turns out to be 
stronger ciud more convenient than the approximative dimension. V.Zahariuta 
[29, .30], introduced .some general characteristics as generalizations of Mitiagiii’s 
invariants and some new invariants in terms of synthetic neighborhoods [31, 32]. 
We will give here as an exam])le the invariant fl which was used by A. Goncha.rov 
and M. Kocatepe [10] based on the Zahariuta’s method of synthetic neighbor­
hoods.

Let X  be a Fréchet s|)a.ce with a. fundamental system of neighborhoods ((/,,), 
and let t,T € M+. In wliat follows t — > oo and r =  r(/.) — > 0. Given 0 <  p < 
q < r we set U =  rUp 0 tUr then

/3{T,t : Up,U,,,Ur) =  rnin{dim L : Ü C +  L},

where m in(A) is the minimum of the set A. We can .see tliat f3{r,t) > ]{?i. : 
dn{0,U^) >  1)1, where dn i.s the Kolmogorov diameter.

Suppose X  is a. Frckhet space and ([l·]]; ,̂  ̂ =  1 ,2 ,...) be a .system of serninorms 
generating the toi)ology of .\’ . 'The following intcr|)olation [)ioperties dcdiix,; very
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iinportanl, classes oi Krcchcl, spaces, 'i'liey are invariant under isomorphisms and 
hence these LTI’s are called Interpolaiional Invariants:

(UN)

( ! i )
3,M ,3,',C :||x ||J<C||i U , t ||. x €X·,

'll * / II II — eV ,,3 ,V .-3 e 3 C ·: I l l ' l l ;  <  C(||.,;'||;)«(||.,; ,x G A ,

Let US note that these notations are due to D.Vogt [16], V. Zaharinta uses the 
notations respectiv(dy. In this artichi we will g(MieralIy use Vogt’s notation.

We sliall reformulate {DN)  in an equivalent way in the following simple ¡Dropo- 
sitions.

P ro p o s itio n  1.16 /1 Frechet space E with an increasing fundamental system 
(ll-lkOfceN o / seminorms has the property (DN) if and only if the following holds:

3p Vr/ V o O  3r,C:  ||.'r||,; <  C'||:r i;-'ii»ii.‘ (1.3)

for all X € E.

P ro o f : For e =  1 the given condition obviously implies {DN).  To prove the 
converse, let p G N be so choosen that ||.||p is a dominating norm. II q G N, 
q >  p, is given, then we define :=  p, r\ ;=  q and iteratively apply {DN)  to find

ll·гİIİ̂ ,. < C'„||;r||,,||.i;||,„̂ , for all ;r G E.

As ||.|L, is a norm, we have for each ni G N and all x G E, x 0 :

Ikil,
<  K x . f i  n

1

K = fii i )  )'f follows that

ll·гi, <  o„.i|.t|i;,-''"'ii.T|i;.{;;·, for aii x € e

If now 0 < e < 1 is given, then we choose rn G N with ~  <  c and obtain the 
given condition which holds lor r =  7’,n+i· II e >  1 then the condition trivially 
holds. □

( 1.3) can be stated also as follows :

3p Vr/ V c X )  3 r ,C :  | | . r |L r  <  C || . ry . r | | [ . (1.4)

for all X  G E.



CIIAFTER 1. INTRODUCTION 14

P ro p o s itio n  1.17 (DN) is equivaleuL to the folloiuing:

3p V, 3r,C·: ||x||, <l||,T||,+ y||x||. ( > 0  (1.5)

P ro o f: Let (DN)  holds. Tlieu we liave p as a cloniinaliiig norm, given r/ € N 
Lliere exists r € N and C > 0 such that

ll·г·||;í < í̂ ||.г·||.||.г■||ı.

and by taking tlie sciuare roots we get
c ,

11*11, <  l l* l i; / '(C ||x || , .) '/^  =  ( i||x ||„ ) ''^ (  j l l x l l , ) ' ' “ V i >  0

< +  V i > 0

<  '11*11,+ 711* 11, V1> 0,

For the proof of tlic converse take then we get

ll.-Hi; < dc|l·r||,||χ·||,..

□

P ro p o s itio n  1.18 (L5) is equivalent to the following:

3 p 3 R > 0 ^ q  3 r ,6 ':  ||,;||, <î ||;,;||„+^||,;||, ¿ > 0

P ro o f: (1.5) (J-b) is trivial. To prove the converse assume we have (l.G)
then we liave p,R satisfying the condition in (l.G).

Given q =  r/O) we find r/i+i > qi and Ci > 0 sucli that

c;+i„ „

(l.G)

< n\'4p t Ki+l 0,< i < R- 1
Using tliese R ine(|ualities we get

•'̂ iliyo ^  (̂ ^̂  T  ̂ +  ... +  Ci...Cn-it)\\x\\p +
CV-Cfit

l̂ n 11-117«

Then there exists C > Cy...Cii sucli that

( i ' '+ c u ' ' - '+ c h 6''2/ . . .+65. . . 6̂ 1011̂ 1̂«+

and hence we have

'-'ll·; ^  +
c,

17«

C,...Ca,
t‘  ̂ '

V/. >  0

c

□
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P ro p o s itio n  1.19 'The following staternenL is equivalent to D N :

(7,
3 /« :> 0 V ^ 3 r ,C > 0 :| .| ,  <  +  ¿ > 0

P ro o f: For the equivalence (l.C) (F7) see [4] □

(1.7)

1.3 Topological Characterization of Extension 
Property

Let {Ei, Ai)i^x be a seciuence of linear s[)aces Ei and linea.r maps /1,- : Ei — > 7?i-h · 
The sequence is said to be exact at the position Ei in case R{Ai-i )  =  N[Ai).  Here 
11 denotes image and N denotes tlie kernel of the map. The seciuence is said to 
be exact, if it is exact at each position. A short sequence is a sequence in which 
at most three successive spaces are diiferent from (0 ). We then write

0 — > E — E G 0

R em a rk  1.20 Let E be a, Erechet space and E be a closed subspace of F'. Then 
by Proposition 1.11 , E and F'/Ll are likeiuise Frechet spaces. If j  : E — > F is 
the inclusion and q : F — > F f E is the quotient map, then

0 —  ̂ E — P F  — U F fE  —  ̂ 0

is a short exact sequence of Frechet spaces.

D efin ition  1.21 A seminorni p on a K-vector space E is called a Ifilbert semi- 
norm, if there exists a semi-scalar product ( .,.) on E with p[x) -  {x, x) Jor all

X e  E.
A Frechet-Hilbert space is a F'rechet space which has a fundamental system 

of Hilbert seminorms.

The folowing theorem of D. Vogt from [16] is fundamental in the structure theory 
of Frechet spaces.

T h e o re m  1.22 (Splitting theorem) Let E, /'" and G be Frechet-Hilbert spaces and 
let

0 — > G — E — > 0
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he a short exact sequence with continuous linear maps. If E has the property {DN)  
and E has the property (i2), then the sequence splits, ie., q has a continuous linear 
right inverse and j  has a continuous linear left inverse.

M. Ticllen used Uic splitting tlicorejn for the ])roof of the next theorem which tells 
that the extension j)roperty of K is e(|uivalent to tlie property {DN)  of E{K).

T h e o re m  1.23 [22, TidJumJA compact set K has the exten.sion property iJJ the 
space £ ( K)  has the property {DN).

Proof: For the proof of the suiliciency part assume that E{K)  has the property 
(DN) and let L be a cube such that K  C IT. Now consider the short exact 
se(|uence

0 / .)— >'■ V{ L)— ¿: ( A' ) — >0

where D{L)  =  C f ’ {L) is tlie space of infinitely difrerentia.ble functions on L, 
where the functions and all tlunr derivatives va.nish on the boundary of L, and
E { K , L )  =  { f e V { L ) : f \ K  =  0}.

By [22] we have that E{K,  L) lia.s property (ii) V compact K  C IF. Hence 
we can apply the splitting theorem. This means tliat there exists au operator 
?/;, a continuous linear right inverse of q, t[ : £ {K)  — > TA{h) wliere obviously 
{'iI)J)\k =  ./ for ./ ^ is the operator f  is an extension operator.

On the other liand if tliere exists au extension operator then q of =  Idŝ ĵq 
and fo q  is a continuous projection of V{L)  onto £{K).  We know that V{L)  is 
isomorphic to s, hence £{K)  is a complemented subspace of s, therefore £{E)  
has {DN),  since the property {DN)  is inherites by subspaces. □



Chapter 2

Review of Previous Results

VVliitiiey’s extension tlieorem provides coiitiiiuous linear extension operator from 
the space of C"'* Whitney fields {m < oo) on a closed subset X  of 1R’‘ , to the space 
of functions on R “ . Though Whitney fields on extend to functions 
on R ", there does not exist a cojitinuous linear extension operator for every closed 
subset X . Let €[X)  be the Krechet space of (7°° Whitney fields on X.  Then i (R " )  
identifies with the space of functions on R ’b The folowing problem arises: 
Under what conditions on X  is there an extension operator E : S{X)  — > i ( R ” )? 
Where we mean by an extension operator, a linear continuous operator such that 
E{F)\x =  E  for all E € ¿^(X)· Seeley [20] shoved that an extension operator 
exists if X  is a closed lialf-sjrace H". We have described the proof of his theorem 
in the first chapter.

Mitiagin [17] presented an extension operator for a closed interval in R. Mi- 
tiagin in his work proved the fact that the Chebishev Polynomials Tn{x) =  
cos(ii cos“ ' f o i ' i n  a basis in the space C ^ [ —l, 1] ie., lor 'k(/) G (7°°]—1, 1] and

cos(??. cos ' x)
vT

dx

we have that

71 = 0

It is clear that a linear transformation of the argument sets up an isomorphism 
between tlie sj)aces C '^[—1,1] and C' '̂[a,b], —oo < a, b < oo ] therefore the

17



CHAPTER 2. REVIEW OF PREVIOUS RESULTS 18

correspondingly translbnned Chebishev polynomials form a basis in the space 
C^[a,b].

Mitiagin constructs in [17] special extensions 7'„ for the polynomials 
and defines the operator M  : C '^[—1, 1] — > C°°[—2,2] by

OO

71=1

and by using an inrmitely differentialrle function lo(l) on the wliole straight line 
such that

lo{i) =  1 Kl <  1 and /o(0  =  0 |/| >  1 -I- ^ 

lie defines the operaLor M' ; 1, 1] — i 00, 00) by

(A/M>)(a) = (Ai<[>)(i)i„(i)

which is a continuous linear extension operator from [—1, l]/o( —oo, oo).
Now let us give tlie definition of Lipschitz domain.

D efin ition  2.1 Lei (j) : R"·“  ̂ — > R he a function which satisfies the Lipschitz 
condition oj orders, 0 < 7 <  I ; ¿e there is a constant M > 0 such that

) 71- ]; 7/ G M.

\ m  -  </;(.r')| < M\x -  x V

for all x^x' G R "“ h We consider points in R " as pairs (x,y),  x G 
The open subset

{ (x ,y)  G R " ; y > (f{x)]

is called a special Lipschitz domain of class Lip 7 . A rotation around y axis of 
such a domain ruill also be called a special Lipschitz domain.

Let be an open subset o / R ’b and dVl its boundary. We say more ycncrally 
that 0, is a Lii)schitz domain if for each point a in Oil, there exists an open 
neighborhood Ua of a in R", (md a special Lipschitz domain Oa such that OOUa =  
Ha O Ua· If each Ha ¿5 of class Lip 7 (independent of a), then we say H is a 
Lipschitz domain of class Lip 7 .

Tlie following theorem is due to Stein [21]
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Theorem 2.2 1/ X  is the closure of a Lipschitz domain Î2 of class I, then there 
exists an extension operator

E  : S{X)  — ^

Stein’s i'(:!sult is extended by Bierstone [3] to the case of a domain with bounda.ry 
which is Lipscldtzol any class, in other words; with boundcu'y of Holder type. The 
main result ol Bierstone [3], where he used Hironaka’s desingularization theorem, 
is that an extension operator exists if X is a fat closed sid^analytic subset of R ’b 

d'iie extension property of K  =  Ù for a domain H with boundary of Holder 
type Wcis proved also by Tidten [22] using the property {DN)  and by Goncharov 
[5] who ]:>roved that in this case is isomorphic to s.

M. Tidten in [23] introduced a geometric property of compact sets in R which 
could help to give a geometric characterization for the extension property. Here 
we define this geometi ic property.

Definition 2.3 Let a >  A compact set K  C R is said to belong to the class 
(a ) if there exists (5q >  0 and C > 0 such that, for any point y € K , there is a 
sequence (xj) in K  with the following properties:

(1) lî/-■гb·U0
(2) | î/-.x -i| > io

(3) C \ y - Xj+i I >  |y -  a-yl" for all j

■ K  has the extejision property K  € (a)

Tidten proved that

K e (1)

and gave an example of K  ^ (1) with the extension property. Later Goncharov 
in [9] shoved that belonging to some class (cv) can not be in general a geometric 
characterization of the extension property for K  C R.

A. Goncharov and M. Kocatei)e in [10] considered compact sets of the follow­
ing type. For two sequences (a,,), (bn) such that 0 <  ... < < a.n < bn < ... <
b[ <  I, let In =  [(hi, bn] and K =  {0} U U ^ i /„ .  By ifn denote the length of 
hn — cin ~ bn+i is the distance between /„  and R+i and let

■'/’» \  !>n \  0, -(/’« <  K , n e  N

nsN
(2. 1)
( 2.2)
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They shoved that S{K)  luis property DN  if and oidy if

3 M ,  Vn,  ./.„+1 >  A "

It is shown in Chapter 3 that tlie condition (2.2) can be omitted in the case 
is bounded, vvliere =  min{ j  : ĥ +j < ?/’«}·

A. Goncliarov in [9] considered Cantor type sets in K and has given tlie nec- 
essciry and suiRcient conditions of extension property for tliose type of compcict 
sets. In Chapter 4 we will see these results a.nd prove that the necessary a.nd 
sufficient conditions for the extension property of multidimensional cantor type 
sets is similar to the case one dimensional cantor type sets.

In [I] B. Arslan, A. Goncharov and M. Kocatepe considered generalized Can­
tor ty[)e sets, where the generalized Cantor type sets are produced by removing 
more tlian one intervals from all interveds in eacli step.

Pawlucki and Plesniak [IS] by using the Lagrange interpolational polynomials 
constructed an extension operator for compact sets satisfying the Markov prop­
erty. In general Meukov propeity is not equivalent to the Extension property. 
A Goncharov [6] gave an excimple of a set with an extension operator but not 
satisfying the Markov |)ropcrty.



Chapter 3

Some Model Cases

Let N =  { 1, 2, . . .} .  We will consider compact sets of the following type. For 
two sequences {an)^{bn) such that 0 < < bn < ... < 6i < 1,
let In =  [cin.bn] and K =  {()] U By VAi we denote tlie length of In]
b-n — — bn+i is the distance between h  tuid / 7̂ -1· hi wliat lollows we restrict
ourselves to the case

(3.1)

(3.2)

\  0, /).„ \  0, 4’n < hn, € N

a g  e N : /i.„ >  6̂ +1, 7 г e N

An equivalent ionu of (3.2) is

3Q e N :  hn>b 2,  n e N

Let us give some identities about the reuiainder of the Ta.ylor polynomials that 
will be used in this chapter. Proofs can be found in [15]:

If /  G and x ,y  € [a,h], then for some G [a,b] we have

( w y f H x )  =  (/<">(0 -  / <’ > ( ! / ) ) ‘ =

• The  next two lenima.s are Irom  [10].

(3.4)

(3-5)

21
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L em m a 3.1 LeL I  he any closed interval in R with length{[) > 8̂  and let p < 
k < r be given. Then there exists two constants Ci ,C2 such that

|/W(.x·)! < C ’ir ^ -+ ''| / |p  +  C2<5’- ' ' | / | , .  ^feC'-{I),  V(5g (0,<5o], V .T G /

L em m a 3.2 Given positive integers N,]>,k such that k <  there is a constant 
C{N,p,k)  With the jollowing properties: For any closed interval / C IR with 
length(J) =  So and/or any set of points ai,...,aAf G f, let G(x) — n^((,T  — a^yh 
Then

|6'i^')(.7:)| <  C{N,p,k)Sf-'^ V.f G /

I'br eacli we define =  rnin{j : bn+j < tGi}
VVe liave the following result from [10]. When K  satisfies both the conditions 

(3.1) and (3.2) in the cases either (./„) is bounded or — > oo as n — > oo K
lias the extension propert}' if and 011I3/ if

3M\ Vn, V-’u+i > ĥ y

In the following theorem arguing as in [10] we .see that tlie same result holds 
without having the condition (3.2) when (.7„) is bounded.

T h e o re m  3.3 Let J/v < J for each n. K  is a compact set as it is described in 
this chapter satisfying condition (3.1). Then £{K)  has property DN if and only

if
3M\ Vn, f,^.i > h)y

P ro o f: (Necessity) We liave p from DN. We let q =  (2J +  l ) ( p +  1) and find 
i\C according to DN. We fix n a.nd define

/  =  .in
{x ' (,r -  ft,))'’ ·̂ ' ·'· <  in
0 X  >  rt„_i

Since b„,+.;„ <  ffn we have hn+.j <  V’n for all n. Because /  is a polynomial of 
degree q on [0,/i„] we have ]]/]], >  [ /] ,  > ]/̂ ''̂ |o =  g! Now let us find upper
bounds for ]]/])p and

To find the upper bound for ]]/][,, let x < b,i+j . Then f { x )  =  ,'c'̂ '''’ G'(cc) where 
G{x)  is the product of the other terms. For k < p.

(3.0)
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If X < bn+2J tlien

if X ^ li n <  I < n -I- 2J — I then

|/(‘ '(i)| < A,.

(3.7)

(3.8)

Wc tlicrcfoie have |)A''7(a)| <  A„iii„ if a <  b,i+2J or .t e /; n < I <  n +  2.7 -  I. 
Nex(, con.sidei‘ /1,, =  .v,y € K   ̂ ^ y * ^  P
If ·'■);(/ <  l>n+2.i or .T,7/ € f/ {n < I < 11 +  2J — 1) tliea by (3.5) wc have

Ap ^

If X E 11 and y E Im {n ^  <  ?i +  2J  — 1) then

|;r - y \ >  > rnax{ilji,ipm]

and from (3.8) we .sec that
Ap ^

Clearly the same estimate holds if / >  n,rn < n — 1.
If rr <  bn+2J aiid y E Im n <  <  ?/. +  J -  1 tlien |.c- y \ >  K  + J - 1  > bn+2j

and .so (3.7) implies

ı./■<‘'(^■)ı < ,  o :  -  > <  > ,,,
|:r -  -  ” u:xn-\-2J

Clearly the estimate holds if x <  6„4-2,; and y E Im ^  n
Now tliere is only one remaining case to consider which is x < b^+2j  and 

y E Im '>>' +  I  ^  <  n +  2d — 1
But then .T,y <  ba+j and then by (3.5) we have

7 i : / ' ' ’ (* ) =  ( / ' " ’ ( i )  -  / ' ” '(!/))
(a· -  yY '

( p -  ?:)!

where 0 <  if < bn+j and therefore

Ap ^  2,\iiij)p

Hence we have that ||/||,, <  hXn'tl’n <  '/’ll for n > iip since A„ —» 0
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Upper bouiicl for ||/||, ; by Lemma 3.2 <  C{2J +  for
k < q and 0 otherwise.Thus

\f\r< imixC{J  +  l,p, k) =  C\

Clearly R’yJ{x) - 0 when x ,y  <  If either x > a„_i or y >  a„_i tlieii since
— y\ > kn-\ by (3.4) we have

I- -  y \ -  -  +  ,S

d'lius 11/ 11, < 5 a , /C l
Now replacing /  by / „  in DN  , we obtain

g! <  Ej’n +  7 5 a , 1 <  ¿/n +  7 ^

for large enough n and arbitrary /,. Let t =  Since q > 2 we obtiiin
lin_i <  4’ti h)r n large enough.M > ?■ +  1 increasing the value of M  if nccessciry 
we get <  /„V n

(Sufficiency) Let p =  0 R = 7M + 3  for given g >  1. Let r =  3q. it is enough 
to prove the implication

<7 — ^

For any I s.t. C >  7 . Find n s.t. /i„+i <  tffi < kn
Let us first estimate B = z G K  k <  ‘]q If 2 >  apply

Lemma 3.1,

< C\r^'''’ -̂  +  C 2 r” < c ^ n

0 <  r =  r'^"

fWr <  P

If 2T =  bn+2 tlicn consider taylor expansion of at the point a =  a„.|.}-l
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Therefore for Bk = 0  < 2q we have

Bk <  c C a r"  + ||/|İ3,,i-2M

< eC-^n  +  n  < {eC-i +  l ) r "  =  C R -”

And for 2q < k < 'iq we luive

=  \ < ¿'? + 2'i-2̂ · <; ¿37-'ti7 _  î -q

Hence for .3: = h,i+2 wc liave Bic{z) < CR~'’ 0 < k < 3q

U z = (in+2 then consider taylor expansion of at the point a = 6,1̂ .2

/ “ '(П  =  E  / '" (< ‘ ) T ^  +  ( f i ? / )< ‘ )(z)

Tlierefore for B  ̂ =  A: < 2q we have

İ4  <  e a , r ’ +  ||/||з„^-''̂ м

< e a , r ’ + r "  < (eC'-i + l) i-"  = С 5 П

And for 2q < к < 3q we have

Bk =  < ¿'H-29-2fc < ¿37-17 ^ ¿-7

Hence for  ̂ = 6„+2 we have Bk{z) < Cr^C’ 0 < к < 3q Now it is easy to see 

that we can find an inequality for Bk{z) for 2 e  {¿u-1-2, a»i i-2, ¿п+з, «и+з, ···, ^n+j) 

for every element in tlie sequence using tlie inequality for the previous element.

Bk{bn+,n) < С ъ п Г ’’ 2 < rn < J  

/^4«n+m) < C2„H-li"" 2 < ? n < J - f

Where C^ has the recurrence relation Cm = &Cm-i + 1 Using tliis recurrence 

relation we get Cm =  е’"“ ^Сз + e’” “ '* + ... + e + 1. It is easy to see that (Cm) is 

increasing.

5,1
of at a = bn+m we obtain

If 2 € [an+m b̂n+m] 2 < rn < J  — I then Iry considering the Taylor expansion

Bk{z) < еС2тГ” + n  = C2,„+H-’  < C2J+it-
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if ^ < bn+j then consider taylor expiinsion of at the point a =  bn+j

\i—k

and since I2: — a| <  bn+.j <  hn+i <  we liave

Bk{z) <  eC 2 j n  +  n  =  C2 j+ it- ' ’ 

Hence we liavc proved that

z) < C2.J+1H'’ \/z G K  k < 3q (3,9)

a77,o (/ ^  C2J-\-î ·

Next we estim ate /1, =  x ,y  € K  x ^  y i <  p If |;c — y\ >  ¿“^,tlien
by (3.4) and (3.9) we have

/1, <  l / ' · ' ( n l l · , ■ - ! / r  +  ¿ l / ' ‘ > (!/)lb τΓ '''
k=i (k - ,)!

< -I-1 i

If |;r — i/| <  , then

((■/ + 1  -  0·'

and using this Jcvst equation cind (la.st) we get

A,j <  C2j+i{t —  7 +  2
(c/ +  1 -  0 !

<  C2J.kH.r’ +  n  ^C 2J+2r”

“h ... "M - 7+27_
l~2q

K,) +(2 , -  i)!

Therefore lor large enougli t we obtain ||/||,, < 1  □
Now we will consider compact sets K  C of the following type.For two 

sequences (an),(in ) such that 0 < ... < ¿>«+1 < <̂n < b,i < ... < < 1 let c,i =
I(a„  +  6„),let Dn be the closed disc with center (c„,0) cind radius ?·„ =  ^{bn — an) 
then K  =  {0}U)^i A c  By ?/>„ =  2r,i we denote the diameter of A d  ¡hi =  a„ -6„+ i 
is tlie distance between Ai f'nd D„,+ \ ■ We restrict ourselves to the case where 

(3.1) and (3.2) ])old.
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S{K)  is equipped vviUi the topology defined by the sequence of norms

-I- sup : x, y e K, x  ^  2/,|/i:| < q >  ,
. \x-vr"·'

|A:| =  A,q +  k'i
q =  0, 1 , wlicrc l / l ,  =  suj>{\fO(x)\ ; x G Л", |A:| <  q} and

l i l i b )  -  -  '/;;/(-г·) =  /(.г·) -  e
K’l<7

/ЕМ
k,\k,\ (•гч -  y i r ( x 2 -  У2)h

is the Taylor remainder.
Let D be a bounded domain in R^, 5 > 0. For a point x G ii we denote 

X  € Q{S) if  ̂ represents a point of a square, situated in ii, with the side of the 
gth 6. The next lemma is from [8].

L em m a 3.4 Lei f  G к G p <  |A:| <  5, x G Q{S). Then

T h e o re m  3.5 Lei Lhe coinpaci set K  C R^ he as it is described. 'Then €{K)  has 
(DN) if and only if

3 M > 0  : <A. > A " i (3.10)

P ro o f: (̂ yVeces5?7.j/J It is easy to see tliat under conditoin (3.2) the statement (3.10) 
is crpiivalcnt to tlic following;

3 M > Q  : f n > h ^ f

We have p from {DN).  Let q = p +  1, and let

{ x i -anY/ql  ifa-’ G A i
/(а^ь-гч) =  fn{-^i,X2) =

0 otherwise

Clearly ||/||, > 1. Wc shall estimate ЦУЦ7; and ||/||r irorri above. We liave

— \J |.i; — y\p~\A
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— 0 for ¿2 > 0 so let i2 =  0. 
For x ,y  G Dn we liave

( / i ; / )< · '·”)(.,;) =  /< ■ " " ) (» ) -  E  f ^ ( » · V?2-i2

M <ii <7̂

'I'lien we have

/■(?>+! ,0)̂ .̂ /)(-y ?-/l) g .̂̂  5̂
0> -| -l-? .)!

^  . _  \WYH^>^)\ < k - ? y i l  <  ,
_  ,y|P-|.|

For X e  Dn,y ^ On we have

{J}J’ f f"^^\x) =  f ' ’^\x) =  {xi -  « « ) ’ "'V(<7 -  *i)!

Hence /lp,j <  ?/>„
For 7/ G 7̂ n,·»· ^ 7̂ n we Inive

So we liave Apj, <  ei[>n hi this ciisc, it is cleiir that \f\p < tj:>n. Hence we luive

ll/ll,, <  4./’,..
By doing a similar work we see tliat ||/||,. <
Combining all these estimations in (DN)  for i =  SCh~’' we obtain 1 < 

ClChn' l̂^n licnce tliere exists M > 0 such that ijjn > ■
(Sufficiency) Let p =  0 and R — 2lVIQ -|- 1 where for a given q > 1 let r =  3q 

iuid m =  Mq H- 1· It is enougli to prove tlic irniilication

||/||o <  T, ll/ll, < t ^  ll/ll,, < I

where r =
For any t such tluit 0  > hud n sucli that bn+i <  Then

£ 'i > / j
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and by the liypotliesis, we have

I'lMQ

It is clear that 8iS <  1 and ^  < 7
—  o ' ·  L

Let us first estimate

z =  {z„ Z 2) € K  \k\<3q

If zy >  a„_|_i then ojie can apply Lemma 3.4 lor |A:| <  q

Bk{z) <

< {Cy8~\̂ T̂ +  =  Ci((5/.^)’ “ Î 'I(5V +  6 2̂/-̂ '̂'"’· +̂'

<  C\t~̂  -(- <  Csir' for .some C3 > I

Tlie same estimation cilready holds for f; <  A: <  3q
If zy < bn-y-2 then we consider tlie Taylor expansion of jC'  ̂ at the point a =

(«n+1,0)

¿>fc,M<3<, -  ^ 2)!

We apply Lemma 3.4 to the terms /^ ‘^(a). Since \zy —  a„+i| <  a„+i <  bn+i < 
and \z2 -  0| < '(/’„+2 < K -̂2 < we have

i-A\i\-\k\)
ih U )  <  E +  ll/Iİ3,r^(^^-i'=i)

<  +  t~'‘ for lA.·! < 2q

< CR~̂  for some C,y > I

Hence we have reached to the result

<  C'.ir*  ̂ e  K, |A:| <  q (3.11)

hence l/|„ <  C,L/-1
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Next, we eslimaie

\x-y\^-\^\ x ,y  e  K, x ^ y ,  \i\<q

If |,T — i/| <  < Ihen

(;i;;/)W (,T) =  ( / C ' / ) « ( x ) - f  E  / “ ’ (!/)■ ,,  .
in=,+i.i>i (ti -  » i)!(A:2 -

<  ( « ;+ 7 ) | ' '( x ) +  i/ i„-m .|x -!/|''+'-|'| e  77— r n k — TiT
w=,+ l,i>i ( 7  -  ' 0 K*2 -  >2)!

< (Ai:;+'/)<’>(x) + «7n,+..|x-!/r'“'‘'
and if follows that

Aq <  (||i|lf,+ i +  e^|/|,+ i)|.T - y \ <
10

If — y\> i  ̂ then we will use the identity

-  E (ii -  гy)\{j2 -  ¿2)!
(a'l -  (0:2 -  2/2)·’" -«2

and (3.10), then we have

-Q
/1, <  l /< '> (x ) l l x - s l " '" '+  E  l / ‘ ' ’ ( ! /) l7 -

pin-lil)

(il -  *l)K i2 -  ¿2)!

iI + E  7 —̂ C r -·— < — (1 + 7 ) < 10-

Tlierefore for large enough L we obtain ||/||, < 1  □

a ,
I,



Chapter 4

Multidimensional Cantor type 
sets

VVe concider a i)robleni of the existence of a linear continuous extension opera­
tor for the space of Wiiitney functions given on a generalized multidimensional 
Cantor set.

4.1 Introduction

In what follows we will consider only C'^-determining compact sets. A compact 
set K  € R ” is called C'^-determining if for each /  G C °°(R ” ),/| /c  =  0 implies 

=  0 for all k G N“ . Therefore we can consider not jets but functions.
Let {ln)^=o a sequence such that C =  1,0 <  2ln+i <  /„,?r G A^.Let K be 

the Cantor set associated with the soxpience (/„) that is K  ■ where
Ko — 7o,i — [0, l],An is a union of 2" closed intervals ln,k of length /„ and K'n+i 
is obtained by deleting the open concentric subinterval of length /„ — 2ln+i from 
each duyki k — 1,2, ...j 2 .

Fix a >  1 and li <  1/2 with 2 /f “ * < l.W e will denote by the Cantor set 
associated with the sequence ( /„ ) ,where /q =  l ,C + i — ~  ·■· ~  — 0·

T h e o re m  4.1 [9, Goncharov]If a > 2 then AA®) does not have the extension 
property.

T h e o re m  4.2 [9, Goncharov] If I < a < 2 then has the extension property.

31
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4.2 Cantor type sets in W  and the extension 
proj)erty

We see tliat the critical point for the one cliinensional Cantor sets is a =  2. We 
want to iiiul the critica.1 |)oint for the set K'OL x J\CL x ... x Let for
i <  n ["i'···'"·) denote tlie set KOP  x  ¡{C-P ^ x  r OP, For simplicity we will
use the folowing nota.tioii:

Notation 4.3 P denotes ike norm of f  G ^
> ■ * 1 and k =  № ,

X =  (;fi,

Xi — ('̂ '¿) ·• ·)

Xi =

A:! =  A:,!..,.k j

x^ =  ,1̂ ·'..

x > y ;i;¿ > yi Yi <  n

x =  y a;¿ =  yi Yi < n

x >  y X > y and X ^ if

L em m a  4.4 Lei f  G S(̂ k Ui>···’^ Eor n >  2 fix c G K̂ '
/ ( . 7 ; , c ) , : r e /d “ ·) then ||,/·||S") >

P r o o f :

\f\PP =  sup{|/('^(.i:)|) =  sup{l./'<''’--'’'^(.'ri, ...,.'r„)| : X( G |i| <  q)

>  siii){| .C '’"n-^h,c)l : .7:, G I & ' K c  G < q]
•h’l ,.7l

=  sup{|./'j-^')(.ri)| : Xi G E ,i i  <  q} =  l./'dj 

On the other hand

s ; { f )  =  sup : X%y e  ^  Î/, |?:| <  q

____ Ai m ____ (
w  |x· -  

sup ■ -  í/|7-NI
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*1 <n
‘1-1 ,!/i G ^

=  Slifc) roi- c G

l*ei.cc ||/||("·) ^  l/ lyO  +  .5 - ( / )  >  |/,|0) +  5 j(/ c )  =  ||„

□

L em m a  4.5 Lei, J G ¿?(/i [“ >’•••’""1). Ji'or n > 2 fix c G ROO â nd IqI =

£ r j '{y ,c ) ,y  G i i then ll/IIJ") >

P r o o f
I'br llie proof of Lliis iuequafity we will use a strategy similar to the one in the 

proof of the previous lemma.

l/lj") =  sup{|/(^)(.r)| : .T G 171 <  q} =  sup{|/(^>......., .t„)|}

>  sup{ 1/^̂ "“ ' c)| : c G K^^"\y G j

\q-Ju

On the other hand

s ? ( / )  =  * . » € « > · ■ ....

=  sup

I a; _

\x -

(4.1)

>  sup
I/-('n-l .'n)cj·. _ c) -Y^ ;(jn ‘ ,c) . -
_________ ' >Ui-l .IJti-l (n ~'l ' - 'n - l  )! *' ’* * '  "  _________[

: Xn-i,y,i-i € ^  y „ - i ,  |¿„_i| < q ~  i „ }  for fixed

=  s : : L U f ’'̂ )

h(
□

nice n) 1!,“ ' +  s : ;u )  >  ’ +  s p ,■'(,/■('>)1-1/ r(i)\ -  II /•(Oii("'-b
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T h e o re m  4 .6  /^["1’·■·'""] has the extension property for  1 < < 2,i =

P r o o f
We will prove b}' induction on n. We know the statement is true for k 

Now sujrpose the statement is true for k < n — 1. Then take
=  1.

~o —

where Xq G /fk*!’···’“ »-'] a.nd ?/o € 1 ( 0 0

fix /  € ¿’( /fN i ’ -.o.il) fix ry.Given R > 0 Now fix k2 <  q 
Let (ji{x) :=  ;!/o)· Then gi{x)  G ¿ :( i f [«>-·■“ "->])
Therfore by proposition 1.19 a.ud by our induction assumption

3r , C>  0 : < í"|a.|í,”-'> + y lk l l '" - " .  i > 0

So Yki G N"“ ’ s.t. |A:i| < q — k.2 we have

<  l "  sup i > 0  (4.2)

Now let </2(2/) :=  /(■'*'’ ,2/) Ihen ,92(2/) € S{KOO'j  using our assumption again, 
if we fix X we will have

C,
yo)I <  «I'p l./'(·г̂  2/) 1 +  T I \ŷ I ^

j/GK(“h)

then

C,
sup |./'̂ '’’'''n-G;'/o)| <  aup ((/ '̂ sup |/(:i·, 2/)l +  7 ll2/2||i-‘ )̂

By Leinina 4.4 

and l)y Lemma 4.5

<  sup |/(.X·, 2/)I +  7  sup 112/21li-̂  ̂ Vd >  0
(x,y) n ®

Ite llP  <  ll/lli">

\U Il7-1-A;2
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< iV|/lo + i ' 7 II/II2, + f  II/II2,
Now let d =  then

" ’ +“ |/lo +  ^ l l / l k V i > 0

□

Lemma 4.7 Let f  G S{I& '...“”)) s.L f{x) = /(.t,, .x„) =  F{xP,F{x,)  €
iiidi j  depends only on the first variable.'Then ||/||̂ '‘  ̂ =

P ro o f : Since =  g for 2̂ >  0 we have

l/l!,” ’ =  ■ *1 +  \h\ s « . * , e  a '<” ‘ >,x2 e  / i '" · ....

'2,A,£>(I'"'‘ " ‘’ ’(2■,)I : k, + |4 | < ?,xi e /!''“■>}=

=  SUp,;̂ ,kl

=  |c|<‘ >

" '" ' ’ ( » O h '. - i S 'y .x i e A '* “ ·»)

On ilie other hand we liave

and =  0 for j 2 >  0 therefore

i i i S S i   ̂· ’> « ...2>.n s .)

............' : . 2 „ l . | < .sup

sup

sup
xpŷ il

\x -

|;c -  y\n-\A

|o.· -

sup <; . ......  .------ : ;i·
— Vv)  ̂ +  ··. +  — Unf)fi-M

for i\ < q 

7̂  yPi  < <1
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— sup
1

^ ----------------------  : xi ,yi  e  R,x i  ^Уı ,гı  < q
l-'Ci -

= sun
Hence we get ||/||(” ) li' II7 □

T h e o re m  4.8 / '̂[“ 1. docs not have the extension yroyerty if at least one of 
the (Xi’s is greater than 2.

P r o o f : Suppose wlog a\ > 2 .By tlie proof of Theorem 2 in [9] we have

Vp 3c 3í; V r  >  q 3(/,„) C ; I;; \\J rn 11 r 0 as ri — > 00

Now define 1,..., =  /,„(.T i ) By Lemma 4.7 =  ||/„
Ileiice we have

71J I I , ,  ||(7l)cm 11 rVp 3o 3 , Vr > q 3(,,,„) C £(A-t“.... ”■') : „ ,L |.,
hm\\\

0 as n — > 00

which shows the negation of (i .4)
□
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