
 

 

 

 

 

 

 

 

 

 

 

 

MODEL-DRIVEN ENGINEERING OF  

SOFTWARE ARCHITECTURE VIEWPOINTS 
 

 

 

 

 

 

A THESIS  

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING 

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE 

OF BILKENT UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

Elif Demirli 

September, 2012 

 

 



ii 

 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science. 

 

 

     ______________________________                                             

    Asst. Prof. Dr. Bedir Tekinerdoğan (Supervisor) 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science. 

 

 

     ______________________________                                             

    Prof. Dr. Özgür Ulusoy 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science. 

 

 

     ______________________________                                             

    Asst. Prof. Dr. Kayhan İmre 

 

 

 

 

Approved for the Graduate School of Engineering and Science: 

 

 

_______________________________ 

Prof. Dr. Levent Onural 

Director of the Graduate School 



iii 

 

 

ABSTRACT 

MODEL-DRIVEN ENGINEERING OF SOFTWARE 

ARCHITECTURE VIEWPOINTS 

 
Elif Demirli 

M.S. in Computer Engineering 

Supervisor: Asst. Prof. Dr. Bedir Tekinerdoğan 

September, 2012 

 

 

A common practice in software architecture design is to apply so-called 

architectural views to design software architecture for the various stakeholder 

concerns. Architectural views are usually developed based on architectural 

viewpoints which define the conventions for constructing, interpreting and 

analyzing views. So far most architectural viewpoints seem to have been primarily 

used either to support the communication among stakeholders, or at the best to 

provide a blueprint for the detailed design. 

In this thesis, we provide a software language engineering approach to define 

viewpoints as domain specific languages. This enhances the formal precision of 

architectural viewpoints and leads to executable views that can be interpreted and 

analyzed by tools. We illustrate our approach for defining domain specific 

languages for the viewpoints of the Views and Beyond framework. The approach 

is implemented as an Eclipse plug-in, SAVE-Bench tool, which can be used to 

define different views based on the predefined software architecture viewpoints. 

The tool also supports automatic generation of architecture documentation from 

view models. 

 

 

 

 

 

Keywords: Software Architecture Viewpoints, Software Language Engineering, 

Domain-Specific Modeling, Model-Driven Engineering, Tool Support. 



iv 

 

 

 

ÖZET 

YAZILIM MİMARİSİ BAKIŞ AÇILARI İÇİN MODEL 

GÜDÜMLÜ MÜHENDİSLİK 
 

Elif Demirli 

Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Bedir Tekinerdoğan 

Eylül, 2012 

 

 

Yazılım mimarisi tasarımında yaygın pratiklerden biri yazılım mimarisini çeşitli 

paydaş ilgilerine yönelik tasarlayabilmek için mimari görünümlerini kullanmaktır. 

Mimari görünümleri genellikle bu görünümleri oluşturmayı, yorumlamayı ve 

analiz etmeyi sağlayan kuralları tanımlayan mimari bakış açılarını temel alarak 

geliştirilir. Şimdiye kadar çoğu mimari bakış açısının esasen paydaşlar arasındaki 

iletişimi desteklemek ya da en iyi ihtimalle detaylı tasarım için bir plan sağlamak 

amacıyla kullanıldığı görülmektedir. 

Bu tezde mimari bakış açılarını alana özgü dil olarak tanımlamak için bir yazılım 

dil mühendisliği yaklaşımı sunuyoruz. Bu, mimari bakış açılarının formalliğini 

iyileştirirken bir yandan da araçlar tarafından yorumlanıp analiz edilebilen 

çalıştırılabilir görünüm modellerine öncülük ediyor. Mimari bakış açılarını alana 

özgü dil olarak tanımlama çalışmamızı Görünümler ve Ötesi yaklaşımı için 

gösterdik. Yaklaşımımız çeşitli görünümleri modellemeyi destekleyen Eclipse 

eklentisi SAVE-Bench yazılım aracı olarak geliştirildi. Araç aynı zamanda 

görünüm modellerinden otomatik mimari dökümantasyonu üretmeyi de 

destekliyor. 

 

 

 

 

 

 

Keywords: Yazılım Mimari Bakış Açıları, Yazılım Dil Mühendisliği, Alana-Özgü 

Modelleme, Model Güdümlü Mühendislik, Araç Desteği. 



v 

 

 

 

Acknowledgement 
 

I would like to express my sincere gratitude to my supervisor Asst. Prof. Dr. Bedir 

Tekinerdoğan for his invaluable guidance, support and understanding during this 

thesis. He encouraged and motivated me during my whole research. 

I am thankful to Prof. Dr. Özgür Ulusoy and Asst. Prof. Dr. Kayhan İmre for 

kindly accepting to be in the committee and also for giving their precious time to 

read and review this thesis.  

I am grateful to The Scientific and Technological Research Council of Turkey 

(TÜBİTAK-BİDEB) for the financial support they provided during the time span 

of this thesis. 

I would like to thank to my housemate Özlem, my friends Seher, Şadiye, Püren 

and Başak for their valuable friendship and the enjoyable time we spent together. 

Last but not least, I would like to thank my family, my mother Makbule, my 

father Ekrem and my sister Esra for being in my life, for their endless, 

unconditional love and support to me. With very special thanks, I dedicate this 

thesis to them. 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

Contents 

 

 
1    Introduction ....................................................................................................... 1 

1.1. Software Architecture Design ................................................................. 1 

1.2. Problem Statement .................................................................................. 3 

1.3. Approach ................................................................................................. 4 

1.4. Contribution ............................................................................................ 6 

1.5. Outline of the Thesis ............................................................................... 7 

2    Software Architecture Views ............................................................................ 8 

2.1. Background ............................................................................................. 8 

2.2. Software Architecture Frameworks ...................................................... 10 

2.3. Enterprise Architecture Frameworks .................................................... 13 

3    Model-Driven Development ............................................................................ 16 

3.1. Modeling ............................................................................................... 17 

3.2. Meta-Modeling ..................................................................................... 18 

3.3. Model Transformations ......................................................................... 21 

4    Domain Specific Languages for Software Architecture Viewpoints .............. 24 

4.1. Viewpoints as Metamodels ................................................................... 25 

4.2. Case Study: Crisis Management System .............................................. 28 

4.3. Domain Specific Languages for V&B Framework .............................. 29 

4.3.1. Module Viewpoints ............................................................................ 30 

4.3.1.1. Decomposition Viewpoint ................................................................................ 30 

4.3.1.2. Uses Viewpoint ................................................................................................. 32 

4.3.1.3. Generalization Viewpoint ................................................................................. 35 

4.3.1.4. Layered Viewpoint ........................................................................................... 38 

4.3.1.5. Aspects Viewpoint ............................................................................................ 42 

4.3.1.6. Data Model Viewpoint ...................................................................................... 44 

4.3.2. Component and Connector Viewpoints ............................................. 46 

4.3.2.1. Pipe and Filter Viewpoint ................................................................................. 46 

4.3.2.2. Shared Data Viewpoint ..................................................................................... 50 

4.3.2.3. Publish-Subscribe Viewpoint ........................................................................... 52 

4.3.2.4. Client-Server Viewpoint ................................................................................... 55 



vii 

 

4.3.2.5. Peer-to-Peer Viewpoint ..................................................................................... 56 

4.3.2.6. SOA Viewpoint ................................................................................................ 58 

4.3.3. Allocation Viewpoints ....................................................................... 60 

4.3.3.1. Deployment Viewpoint ..................................................................................... 60 

4.3.3.2. Install Viewpoint .............................................................................................. 63 

4.3.3.3. Work Assignment Viewpoint ........................................................................... 64 

4.4.   Evaluation of Architectural Viewpoint Frameworks .......................... 65 

4.4.1. Evaluation Framework ....................................................................... 66 

4.4.2. Evaluation of Views and Beyond Framework ................................... 70 

5    SAVE-Bench Tool .......................................................................................... 74 

5.1. Save-Bench Architecture ...................................................................... 74 

5.2. Using Save-Bench ................................................................................. 77 

6    Automatic Architecture Document Generation ............................................... 82 

7    Related Work ................................................................................................... 88 

8    Conclusions ..................................................................................................... 92 

Bibliography .......................................................................................................... 94 

Appendix A ........................................................................................................... 98 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



viii 

 

 

List of Figures 

 
 

2.1. IEEE conceptual model for architecture description ........................................ 9 

2.2 Kruchten’s 4+1 viewpoint framework ............................................................ 11 

3.1. An example for the four-layer OMG architecture .......................................... 20 

3.2. A conceptual model to describe metamodeling concepts............................... 21 

4.1. Architectural Description Concepts from  a meta-modeling perspective ...... 25 

4.2. The process of defining DSLs for architectural viewpoints ........................... 27 

4.3. Abstract syntax and grammar for decomposition style .................................. 31 

4.4. Textual decomposition view model................................................................ 31 

4.5. Visual decomposition view model ................................................................. 32 

4.6. Abstract Syntax of Uses Viewpoint ............................................................... 33 

4.7. Grammar of Uses Viewpoint .......................................................................... 33 

4.8. Textual Uses View ......................................................................................... 34 

4.9. Visual uses view ............................................................................................. 34 

4.10. Abstract syntax for generalization viewpoint ............................................... 36 

4.11. Grammar for generalization viewpoint ........................................................ 37 

4.12. Textual generalization view ......................................................................... 37 

4.13. Visual generalization view ........................................................................... 38 

4.14. Abstract syntax for layered viewpoint .......................................................... 39 

4.15. Grammar for layered viewpoint ................................................................... 40 

4.16. Textual layered view .................................................................................... 40 

4.17. Visual layered view ...................................................................................... 41 

4.18. Abstract syntax for aspects viewpoint .......................................................... 43 

4.19. Grammar for aspects viewpoint ................................................................... 43 

4.20. Textual aspects view..................................................................................... 44 

4.21. Abstract syntax for data model viewpoint .................................................... 45 

4.22. Grammar for data model viewpoint ............................................................. 45 

4.23. Textual data model view .............................................................................. 46 

4.24. Abstract syntax for pipe-and-filter style ....................................................... 47 

4.26. Grammar for pipe-and-filter viewpoint ........................................................ 48 

4.26. Textual pipe-and-filter view ......................................................................... 49 

4.27. Visual pipe-and-filter view ........................................................................... 49 



ix 

 

4.28. Abstract syntax and grammar for shared data viewpoint ............................. 51 

4.29. Textual shared data view .............................................................................. 52 

4.30. Abstract syntax for publish subscribe viewpoint ......................................... 53 

4.31. Grammar for publish subscribe viewpoint ................................................... 54 

4.32. Textual publish-subscribe view .................................................................... 54 

4.33. Abstract syntax for client-server viewpoint ................................................. 55 

4.34. Grammar for client-server viewpoint ........................................................... 56 

4.35. Visual client-server view .............................................................................. 56 

4.36. Abstract syntax for peer-to-peer viewpoint .................................................. 57 

4.37. Grammar for peer-to-peer viewpoint............................................................ 58 

4.38. Visual peer-to-peer view .............................................................................. 58 

4.39. Visual SOA view .......................................................................................... 60 

4.40. Abstract syntax for deployment viewpoint .................................................. 61 

4.41. Grammar for deployment viewpoint ............................................................ 61 

4.42. Textual and visual deployment views .......................................................... 62 

4.43. Abstract Syntax for install viewpoint ........................................................... 63 

4.44. Grammar for install viewpoint ..................................................................... 63 

4.45. Visual install view ........................................................................................ 64 

4.46. Abstract syntax for work allocation view ..................................................... 65 

4.47. Grammar for work allocation view .............................................................. 65 

4.48. Overall Process for Assessment of Architectural Viewpoint ....................... 67 

4.49. Activity Diagram for Activity Model Viewpoint ......................................... 68 

4.50. Abstract syntax definition levels for V&B (both editions of the book) ....... 71 

4.51. Concrete syntax definition levels for V&B (both editions of the book) ...... 72 

4.52. Static semantics  definition levels for V&B (both editions of the book) ..... 73 

5.1. Process for defining Viewpoints as DSLs and generating SAVE-Bench ...... 75 

5.2. SAVE-Bench model file creation wizard ....................................................... 78 

5.3. Snapshot of the SAVE-Bench tool for modeling architectural views ............ 79 

5.4. SAVE-Bench screenshot ................................................................................ 81 

6.1. Model-to-text transformation pattern for architecture documentation 

generation .............................................................................................................. 83 

6.2. Architecture documentation generation process ............................................ 84 

6.3. M2T transformation template for decomposition viewpoint ......................... 85 

6.4. Decomposition view part of generated architecture documentation .............. 86 

6.5. M2T transformation template for pipe and filter viewpoint ........................... 87 

6.6. Pipe and filter view part of generated architecture documentation ................ 87 



1 

 

 

 

 

Chapter 1 

 

 

Introduction 

 

 

1.1. Software Architecture Design 

As the size and complexity of software systems increases, software architecture 

has emerged as an important sub-discipline of software engineering. A software 

architecture for a program or computing system consists of the structure or 

structures of that system, which comprise elements, the externally visible 

properties of those elements, and the relationships among them [6]. Since it 

depicts the high-level structure of the system, software architecture is a valuable 

artifact for both communicating and designing the system. Representing a 

common abstraction of a system, software architecture forms a basis for 

understanding and communication among stakeholders who have various 

concerns in the construction of the software system. In addition to this, as one of 

the earliest artifact of the software development life cycle, software architecture 

embodies early design decisions, which impacts the system’s detailed design, 

implementation, deployment and maintenance. That is why; it must be carefully 

documented and analyzed.  

Software architecture is not a single one-dimensional structure but it consists of a 

set of structures. This can be better explained via house architecture analogy. In 



2 

 

order to build a house and reason about its architecture, every stakeholder of the 

house either uses or creates a particular plan that satisfies his own interests. The 

house architect designs the skeleton of the house. Interior designer defines the 

interior architecture plan and the electrician sets up wiring plan based on the 

house architect’s plan. All of these plans are different entities and every 

stakeholder is interested in a few of them. Individually, none of those plans can be 

called as house architecture. However, when all of them are brought together, they 

constitute the architecture of the house. The same situation applies in software 

development, too. A software system has a set of stakeholders who have special 

interests on the overall system. A software developer is interested in how the 

system is structured as a set of implementation units, a performance engineer is 

interested in the organization of the run-time elements and a project manager is 

concerned about the distribution of implementation units among development 

teams. Each of these structures is a part of the software architecture, however; 

none of them can be called as software architecture by itself. In order to enable 

dealing with those different structures easily architectural view concept was 

introduced. 

An architectural view is a representation of a set of system elements and relations 

associated with them to support a particular concern [6]. Each view shows the 

system from a different point of view. Having multiple views helps to separate the 

concerns and as such support the modeling, understanding, communication and 

analysis of the software architecture for different stakeholders. The conventions 

for constructing and using a view are specified by viewpoints [6]. Viewpoints 

basically define element and relation types that can be used for the corresponding 

view, together with some set of constraints on their use. An architectural 

framework organizes and structures the proposed architectural viewpoints. 

Different architectural frameworks have been proposed in the literature. Examples 

of architectural frameworks include the Kruchten’s 4+1 view model [24], the 

Siemens Four View Model [17], and the Views and Beyond approach (V&B) 

[6][7].  



3 

 

1.2. Problem Statement 

Obviously the notion of architectural view plays an important role in modeling 

and documenting architectures. Architectural views are intended to be used for 

communication, design and analysis. The quality, expressiveness and value of 

view models are based on the corresponding viewpoint definitions. When 

examined, it is observed that so far most architectural viewpoints seem to have 

been primarily used either to support the communication among stakeholders, or 

at the best to provide a blueprint for the detailed design. These viewpoints were 

defined in a notation and representation neutral manner to increase their use and 

flexibility. That is why; most viewpoint definitions are high-level and abstract. A 

comprehensive analysis and design process is required to develop tools for 

modeling viewpoint specifications. Consequently, the derivation of formal view 

models and performing formal analysis of the specifications produced becomes 

harder.  

The lack of a formal approach for defining viewpoints results in less precise 

viewpoint definitions. From a historical perspective it can be observed that 

viewpoints defined later are more precise and consistent than the earlier 

approaches but a close analysis shows that even existing viewpoints lack some 

precision. Moreover, since existing frameworks provide mechanisms to add new 

viewpoints the risk of introducing imprecise viewpoints is high. The development 

of a proper and effective architecture is highly dependent on the corresponding 

documentation. An incomplete or imprecise viewpoint will impede the 

understanding and application of the viewpoints to derive the corresponding 

architectural views, and likewise lower the quality of the architectural document. 

The resulting view models lead ambiguous interpretations. 

When the function of architectural views in software development lifecycles is 

examined, we observe that architectural views are not single isolated artifacts. 

They have relations both among themselves and to other software development 

artifacts. In order to enable consistency and automation among those artifacts, 

executable view models are required. When current view modeling practices are 



4 

 

analyzed, we observe that view models are not at the desired level of formality. 

The reason behind it is the lack of formal viewpoint definitions on top of which 

formal and automatically processable executable view models can be defined. 

In addition to these, since the language to define views, namely viewpoints, are 

not formally defined, developing a tool support for view modeling requires 

heavyweight analysis step to lift viewpoint definitions up to proper level of 

formality. In the literature, there is not much architecture modeling tools that puts 

architectural views at the center. This lack leads view modelers to simple box-

and-line diagrams which is not a healthy way since the ambiguities in notation can 

cause misinterpretations. 

In summary, we have identified the following problems in current architecture 

view modeling practices: 

 Lack of formal approach for defining viewpoints 

 Imprecise and vague viewpoint definitions in the literature 

 Lack of tool support 

1.3. Approach 

In order to address above problems, we propose that viewpoints should be also 

defined as formal languages. We recognize that viewpoints are in fact metamodels  

and we provide a Model Driven Engineering (MDE) approach for defining 

viewpoints as domain specific languages (DSLs). This enhances the formal 

precision of architectural viewpoints and likewise helps to share the additional 

benefits of domain specific languages, i.e. defining executable views.  

First, we identified that viewpoints are in fact domain specific languages. A 

domain specific language is an executable specification language that offers 

proper abstractions and notations for expressing a particular problem domain [8]. 

Viewpoints are DSLs since they provide particular abstractions and notations for 

specific stakeholder concerns. We selected Views and Beyond architecture 

framework to show our process of defining DSLs for viewpoints. We recognize 



5 

 

viewpoints as DSLs that is why we develop metamodel for each viewpoint. In 

both software language engineering and model-driven development domain, a 

metamodel is defined as follows: 

1) Definition of abstract syntax: Abstract syntax describes the vocabulary of 

concepts provided by the language and how they may be combined to create 

models. In order to define abstract syntax for viewpoint DSLs, we first needed 

to identify language constructs that will be used in modeling views. We 

analyzed the current viewpoint definitions to define the vocabulary of our 

DSLs. We observe that most viewpoint definitions in Views and Beyond 

Framework are not at the desired level of formality to map them easily to 

language. We filled out the missing parts and resolved inconsistencies in 

language constructs when required. After deciding the language constructs and 

their interrelations, we define grammar for the viewpoint using Eclipse Xtext 

tool [37]. Grammar encapsulates the abstract syntax in itself. 

2) Definition of concrete syntax: Concrete syntax defines the notation that 

facilitates presentation and construction of models. We define both textual and 

visual concrete syntax for viewpoints. Textual concrete syntax is embedded in 

grammar definition. We use Eclipse GMF tools [16] and other supplementary 

Eclipse plug-ins to define visual concrete syntax. In our analysis on current 

viewpoint definitions, we observe that usually formal notations or modeling 

tools are not provided. We make use of the informal and semi-formal 

notations provided and define our own notation on top of them. 

3) Definition of static semantics: Static semantics, namely well-formedness rules, 

provide definition of additional constraint rules on abstract syntax that are 

hard or impossible to express in standard syntactic formalism of the abstract 

syntax. In viewpoint definitions of Views and Beyond approach, these 

constraints are listed as topology constraints. We analyzed them and observed 

that they are mostly incomplete constraints in natural language. We lift them 

up to executable constraints embedding them into our DSL definitions as 

validation codes written in Java. 



6 

 

4) Definition of semantics: Semantics is the description of the meaning of the 

concepts in the abstract syntax. In this work, we don’t provide formal 

semantic specifications. We keep it out of the scope of this thesis. 

We followed these steps to define metamodels for the selected viewpoints. We 

illustrate our approach in a generic way through the thesis such that it can be 

applied on other viewpoint frameworks. We used various Eclipse tools in our 

work and present our formal viewpoint specifications as Eclipse plug-ins in our 

tool SAVE-Bench. SAVE-Bench consists of domain specific languages for Views 

and Beyond framework viewpoints and it enables modeling textual and visual 

views that conforms to those viewpoints. It also supports automatic architecture 

documentation from view models. 

1.4. Contribution 

The contributions of this thesis can be defined as follows: 

 Systematic approach for modeling architectural viewpoints as DSLs and 

executable models for the Views and Beyond approach 

We recognized the lack of a formal approach for defining architectural 

viewpoints. The key premise of this work is recognizing that viewpoints are in 

fact domain specific languages. We present our software language engineering 

approach explicitly through the thesis. We analyzed the V&B framework 

viewpoints and concluded that the viewpoint definitions are not at the desired 

level of formality to support executable view models. We enhanced those 

viewpoint definitions and present them in SAVE-Bench tool in order to enable 

modeling executable views. 

 Evaluation framework for characterizing viewpoint approaches 

In order to evaluate the formality of the viewpoint definitions, we set up an 

evaluation framework. The framework evaluates the viewpoint definitions from 

software language engineering perspective with respect to their completeness and 

degree of formality. We provide evaluation results for V&B viewpoint definitions 

and observed that viewpoints defined earlier are less precise than those defined 



7 

 

later. We also see how our viewpoint DSLs lift the formality and precision of 

viewpoint definitions up. 

 SAVE-Bench Eclipse Plug-in tool for modeling software architecture 

viewpoints 

We collected our formal viewpoint definitions for V&B in SAVE-Bench tool. The 

tool enables defining executable view models using DSLs for viewpoints. It is 

extensible such that new viewpoint frameworks can be added or new viewpoints 

can be defined as DSLs into existing frameworks. The tool also supports 

automatic architecture document generation from view models. 

1.5. Outline of the Thesis 

This thesis is organized as follows: Chapter 2 provides background information 

for software architecture views and presents the widely used viewpoint 

frameworks. Chapter 3 provides an overview of model-driven development. In 

Chapter 4, first, the idea that viewpoints are in fact domain specific languages is 

introduced. Case description is provided which will be used as example for 

modeling views. Then, the domain specific languages for the viewpoints defined 

in Views and Beyond framework are provided and evaluated with respect to a 

viewpoint evaluation framework. Chapter 5 presents the SAVE-Bench tool that 

we have developed for modeling viewpoints and based on these the views. In 

Chapter 6, automatic architecture documentation from architectural view models 

is explained. Chapter 7 gives the related work. Finally, Chapter 8 presents the 

conclusions and discussions. 

 

 

 

 

 

 

 

 

 



8 

 

 

 

 

Chapter 2 

 

 

Software Architecture Views 

 

 
Software architecture for a computing system is the structure or structures of that 

system, which consists of elements, their externally visible properties and 

relationships among them [6]. As this definition implies, software architecture is 

not a single structure, but it consists of lots of overlaying structures. In order to 

ease dealing with those structures separately, architectural view concept was 

introduced. In this section, we will present the background information on 

architectural views. Then, we will introduce some selected software architecture 

and enterprise architecture frameworks that enables modeling the architecture 

using views. 

2.1. Background 

Architectural drivers define the concerns of the stakeholders which shape the 

architecture. A stakeholder is defined as an individual, team, or organization with 

interests in, or concerns relative to, a system. Each of the stakeholders’ concerns 

impacts the early design decisions that the architect makes [6][20]. A common 

practice is to model and document different architectural views for describing the 

architecture according to the stakeholders’ concerns. An architectural view is a 

representation of a set of system elements and relations associated with them to 



9 

 

support a particular concern [7]. Having multiple views helps to separate the 

concerns and as such support the modeling, understanding, communication and 

analysis of the software architecture for different stakeholders. 

Architectural views are defined based on viewpoints. An architectural viewpoint 

is a specialization of element and relation types together with a set of constraints 

on how they can be used [7]. The view and viewpoint concepts are directly 

addressed in IEEE 1471 standard [20]. Viewpoints encapsulate some design 

knowledge that addresses a set of stakeholders’ concerns. They are independent of 

systems. When a viewpoint is bound to a system, the resulting model is 

architectural view of the system. The conceptual model from IEEE 1471 standard 

describing architectural view and viewpoint concepts are given in Figure 2.1 [20]. 

As shown in the figure, each architectural view addresses some stakeholders 

concerns and these concerns also directly affect the viewpoint definitions. 

Viewpoint definitions are important assets here since they differentiate 

architectural views to address different concerns. 

 

Figure 2.1. IEEE conceptual model for architecture description 



10 

 

A viewpoint framework collects and organizes a set of viewpoints to guide the 

architect [20]. Initially, viewpoint frameworks were introduced as a collection of 

fixed set of viewpoints to document the architecture. For example, the Rational’s 

Unified Process [], which is based on Kruchten’s 4+1 view approach [24] utilizes 

the logical view, development view, process view and physical view. Lately, this 

situation has changed. Because of the different concerns that need to be addressed 

for different systems, the current trend recognizes that the set of views should not 

be fixed but multiple viewpoints might be introduced instead. For this reason, the 

IEEE 1471 standard [20] does not commit to any view although it takes a multi-

view approach for architectural description. 

2.2. Software Architecture Frameworks 

 

Kruchten’s 4+1 Viewpoint Framework 

Philippe Kruchten’s 4+1 set which forms a basis for Rational’s Unified Process [] 

can be seen as the first formal software architecture viewpoint framework in the 

literature. It describes five different viewpoints to model software architectures. 

Figure 2.2 shows the views of Kruchten’s framework. Logical view can be seen as 

a kind of object model of the architecture. It is used to support the concerns 

related to functional requirements. Process View takes into account the non-

functional requirements such as performance and availability. It captures the 

concurrency and synchronization aspects of the design. Physical view describes 

the environment in which software executes and shows the mappings of software 

onto the hardware. Development view presents the static organization of the 

software in its development environment. According to Kruchten, architecture can 

be organized around these four views. However, a supplementary view (i.e. 

scenarios) is required to complete the architectural description. This final +1 view 

serves as glue among other views that ensures the elements of other views work 

together in harmony. 



11 

 

 

Figure 2.2 Kruchten’s 4+1 viewpoint framework 

Siemens Four View Framework 

Siemens four view framework is a result of a study into the industrial practices of 

software architecture [17]. The authors found that the structures used to design 

and document software architecture fall into four broad categories, which they call 

conceptual, module, execution and code structures. Each category addresses 

different stakeholder concerns.  

The views in Siemens Four View framework are not single, isolated models, but 

several important mappings of structures are explicitly defined in the design 

approach. The elements of conceptual view are “implemented-by” module view 

structures, and also “assigned-to” execution view structures. Module view 

elements can be “located-in” or “implemented-by” code view elements. Code 

structures can configure execution structures. In other words, there is a strict 

relation between different views of Siemens Four View framework. Changing the 

structure or definition of a view will most probably require updating another view. 

Rozanski and Woods Framework 

Rozanski and Woods [34] address the architecture of large information systems 

and propose six core viewpoints: Functional, Information, Concurrency, 

Development, Deployment and Operational.  



12 

 

Functional viewpoint describes the system’s runtime functional elements and their 

responsibilities, interfaces and primary interactions. Its main concerns are 

functional capabilities and internal structure of the system. As the name implies, 

information viewpoint mainly concerns the information structure of the system. It 

is used to describe the way that architecture stores, manipulates and distributes 

information. Concurrency viewpoint is used to address the concurrency structure 

of the system. It shows how functional elements are mapped on concurrency units 

such as threads and processes in order to clearly identify the parts that can execute 

concurrently. Development Viewpoint addresses software developers’ and testers’ 

concerns such as module organization, codeline organization, standardization of 

design and testing. Deployment Viewpoint is used to describe the runtime 

environment into which the system will be deployed. Finally, operational 

viewpoint describes how the system will be operated, administrated and supported 

when it is running in its production environment.  

Views and Beyond Framework 

Views and Beyond framework[6][7] is an open-ended viewpoint framework. 

Being open-ended framework means that the framework does not limit the 

number of viewpoints that are defined, any new viewpoints can be introduced. 

They do not use the term viewpoint explicitly; they refer to it as style. A style 

definition provides the elements and relation types to be used when defining 

views together with some topological constraints. In V&B framework, there is no 

limit on the number of styles that can be defined. There is a set of predefined 

styles that are organized around three main types of architectural styles: Module 

styles, component-and-connector styles and allocation styles. Module styles are 

used to show how the system is structured as a set of implementation units. 

Decomposition style is an example to module styles which shows the structure of 

modules and submodules. Component and connector styles are used to show how 

the system is structures as a set of runtime elements. Pipe-and-filter style is an 

example to this which shows the data flow between so-called filters that 

manipulate the data. Allocation styles are used to show how the software elements 

are mapped to non-software elements in its environment. Deployment style is an 



13 

 

example to allocation styles and it is used to show how the software elements are 

mapped on hardware elements and their run-time behavior. 

2.3. Enterprise Architecture Frameworks 

RM-ODP 

Reference Model of Open Distributed Processing (RM-ODP) is a reference model 

which provides a framework for the standardization of open distributed processing 

[19]. It provides an enterprise architecture framework which comprises five 

generic and complementary viewpoints on the system and its environment. The 

enterprise viewpoint focuses on the purpose, scope and policies for the system. It 

describes the business requirements and how to meet them. Information viewpoint 

focuses on the semantics of the information and information processing 

performed. It describes the information managed by the system. The 

computational viewpoint enables distribution through functional decomposition 

on the system into objects which interacts at interfaces. It describes the 

functionality provided by the system and its functional decomposition. The 

engineering viewpoint focuses on the mechanism and functions required to 

support distributed interactions between objects in the system. Technology 

viewpoint describes the technologies chosen to provide the processing, 

functionality and presentation of the information.  

Each viewpoint is explicitly specified by a language that defines concepts and 

rules for specifying ODP systems from the corresponding viewpoints. In addition 

to this, a UML profile is provided for each viewpoint language. 

Zachman’s Framework 

The Zachman Framework is an enterprise architecture framework which provides 

a formal and highly structured way of viewing and defining an enterprise [39]. 

The basic idea behind Zachman’s framework is that an item can be described 

using different ways for different purposes. The framework consists of a two 



14 

 

dimensional matrix based on the intersection of six questions and six particular 

perspectives namely views. 

The rows of the framework are as following: Row 1 describes the scope of the 

system. It is the planner’s view of the architecture which is an executive summary 

for planner and investor who wants to estimate the cost and scope of the system. 

Row 2 is owner’s view which corresponds to enterprise models that shows 

business entities, processes and their interrelationships. Row 3 is designer’s view 

which shows data elements, logical process flows and functions. Row 4 is 

builder’s view which is a more specific version of designer’s view. The elements 

of designer’s view are bound to supporting technology for example the 

programming language that is used. Row 5 is subcontractor view which is a 

detailed specification of the system that is given to programmers who implement 

individual modules without knowing the overall structure of the system.   

Each row in the framework can be described in 6 different representations: data 

description (what), function description (how), network description (where), 

people description (who), time description (when), motivation description (why). 

TOGAF 

The Open Group Architecture Framework is a framework for enterprise 

architecture which provides a high-level, comprehensive approach for designing, 

planning, implementation and governance of enterprise information architecture 

[37]. TOGAF’s taxonomy of architecture views defines the four categories of 

architectural views that should be considered in the development architecture. 

Business Architecture Views address the concerns of the users of the system. They 

describe the flows of business information between people and business 

processes. Data Architecture Views describes data entities and their interrelations 

addressing database designers’ and administrators’ concerns. Application 

Architecture Views provide blueprint for the system, its interactions to other 

systems. Technical Architecture Views describes the hardware, software and 

network infrastructure to support the application functionalities. 



15 

 

DoDAF 

Department of Defense Architecture Framework (DoDAF) is an architecture 

framework that is targeted for United States Department of Defense that provides 

structure for a specific stakeholder through viewpoints organized by various views 

[9]. In DoDAF, architectural viewpoints are composed of data that has been 

organized to facilitate understanding. All Viewpoint describes the overarching 

aspects of architecture context that relate to all viewpoints. Capability Viewpoint 

articulates the capability requirements, delivery timing and deployed capability. 

Data and Information Viewpoint describes the data relationships in the 

architecture context of the architecture. Operational Viewpoint includes the 

operational scenarios, activities, and requirements that support capabilities. 

Project Viewpoint describes the relationships between operational and capability 

requirements. Services Viewpoint presents the design for solutions supporting 

operational and capability functions. Standards Viewpoint describes the 

operational, business, technical and industry policies, standards and constraints on 

system and service requirements. Systems Viewpoint describes the legacy support, 

the design for solutions articulating the systems, their interrelationships and 

compositions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 

 

Chapter 3 

 

 

Model-Driven Development 

 

 
Historically, models have had a long tradition in software engineering and have 

been widely used in software projects. Software is a complex entity that is built 

upon both domain and technical knowledge. In order to be able to deal with only 

the relevant piece of the software at the desired level of abstraction, software 

researchers and developers create abstractions, namely models of the software. 

Initially, models had been treated as only documentation. Model-Based Software 

Development (MBSD) aims to use models to develop software, but, it puts them 

into a completely separate place from the code. Recently, Model-Driven Software 

Development (MDSD) [35] paradigm entered to the stage which adopts models as 

the basic abstraction of software development process. According to MDSD, 

models are not only documentation but they can also directly participate into the 

code via automatic transformations.  

In this chapter, we present the background on Model-Driven Development 

(MDD). Section 3.1 explains the concept of model. Section 3.2 gives basic 

information about metamodeling and software language engineering. Section 3.3 

reports the value of model transformations in MDD and explains the two types of 

transformations: Model-to-text (M2T) and model-to-model (M2M) 

transformations. 

 



17 

 

3.1. Modeling 

Modeling is a ubiquitous activity that we can observe in many areas of the real 

life. In general sense, a model is a set of statements that are used to describe the 

system under study. From this definition, it can be inferred that primary purpose 

of modeling is describing the subject entity. 

In the context of software engineering, there exist several definitions of model. 

Here, we present some selected definitions that are collected by Muller et al. [29].   

Definition 1 

A model is a simplification of a system built with an intended goal in mind. The 

model should be able to answer questions in place of the actual system. [3] 

Definition 2 

Models provide abstractions of a physical system that allow engineers to reason 

about that system by ignoring extraneous details while focusing on the relevant 

ones. [5] 

Definition 3 

A model is an abstraction of a (real or language based) system allowing 

predictions or inferences to be made. [25] 

We can summarize from these definitions a model is an abstraction of system that 

aim to describe a system from a specific point of view, ignoring the 

unnecessary details, providing a basis for communication and analysis. The 

highlighted properties make models valuable in the context of software 

engineering context. 

Models are different in quality and nature. Mellor et al. [28] makes a distinction 

between three kinds of models depending on their level of precision. 

 



18 

 

Models as Sketches 

Model as a sketch are used to communicate ideas and do not give much detail of 

the system. Sketches are informal diagrams used to communicate ideas, explore 

alternatives or design in a collaborative manner. They are usually focused on 

some aspect of the system and are not intended to show every detail of it.  

Models as Blueprints 

Model as a blueprint describe the system in sufficient detail. A blueprint must be 

enough to a programmer to code a system. In the case of forward engineering, the 

details of the blueprint should be enough for a programmer to code the system. In 

the case of reverse engineering, the diagrams show all the details of a system in 

order to understand it better or to provide views of the code in a graphical form. 

Models as Executables 

Executable models are models that have everything required to produce desired 

functionality of a domain. They are more precise than sketches and blueprints. 

They can be compiled by model compilers. For example, in case of UML, 

executable UML means that UML can also be used as a programming language. 

When used in this form, the whole system is specified in the UML, the diagrams 

are the code, and they are compiled directly into executable binaries. 

In model-driven software development the concept of models can be considered 

as executable models as defined by the above characterization of Mellor et al. []. 

This is in contrast to model-based software development in which models are used 

as blueprints at the most.   

3.2. Meta-Modeling 

Model-driven software development is a paradigm in which the concept of model 

is the key abstraction. In contrast to model-based software development, in model-

driven software development models are not mere documentation but become 

“code” that are executable and that can be used to generate even more refined 



19 

 

models or code. MDSD aims to achieve this goal through defining models and 

metamodels as first class abstractions, and providing automated support using 

model transformations [14][28][34].  

In the context of MDSD metamodeling plays a very important role. The language 

in which models are expressed is defined by metamodel. More precisely, a 

metamodel describes the possible structure of models in an abstract way. It 

defines the constructs of modeling language, their relationships, constraints and 

rules. A model is said to be an instance of a meta-model, or a model conforms to a 

meta-model. A meta-model itself is a model that conforms to a meta-meta-model, 

the language for defining meta-models. In model-driven development, models are 

usually organized in a four-layered architecture. The top (M3) level in this model 

is the so called meta-metamodel, and defines the basic concepts from which 

specific meta-models are created at the meta (M2) level. Normal user models are 

regarded as residing at the M1 level, whereas real world concepts reside at level 

M0 

The four-layered architecture [30] can be explained better via the example in 

Figure 3.1. In the bottommost layer M0, the real concrete system to be described 

lies. In M1, the model layer, there is class diagram which is in fact a model of the 

real system. In metamodeling layer, the concepts to define a class diagram are 

presented. The language used for modeling the class diagram-UML lies in the M2 

layer. The topmost layer is the meta-metamodeling layer which embodies the 

language for defining the metamodel, in this case UM which is meta-object 

facility(MOF). The topmost layer M3 is accepted to be recursively defined by 

itself. 



20 

 

 

Figure 3.1. An example for the four-layer OMG architecture 

Metamodels are important concepts in not only MDSD domain but also in 

software language engineering (SLE) [23] which is defined as the application of a 

systematic, disciplined, quantifiable approach to the development, use, and 

maintenance of languages. A proper definition of meta-models is important to 

enable valid and sound models. In both the software language engineering [23] 

and model-driven development domains [35], a meta-model should include the 

following elements: 

Abstract Syntax: describes the vocabulary of concepts provided by the language 

and how they may be combined to create models. It consists of a definition of the 

concepts and the relationships that exist between concepts. 



21 

 

Concrete Syntax: defines the syntax, the notation that facilitates the presentation 

and construction of models or programs in the language. Typically two basic 

types of concrete syntax are used by languages: textual syntax and visual syntax. 

A textual syntax enables models to be described in a structured textual form. A 

visual syntax enables a model to be described in a diagrammatical form. 

Well-formedness rules (Static Semantics): provides definitions of additional 

constraint rules on abstract syntax that are hard or impossible to express in 

standard syntactic formalisms of the abstract syntax. 

Semantics: The description of the meaning of the concepts and relation in the 

abstract syntax. Semantics can be defined in natural language or using other more 

formal specification languages. 

Figure 3.2 shows the elements that constitutes a metamodel and their 

relationships. 

 

Figure 3.2. A conceptual model to describe metamodeling concepts. 

3.3. Model Transformations 

The notion of model transformation is central to model-driven engineering 

[28][35]. A model transformation takes a model conforming to a given metamodel 



22 

 

as input and produces another model as output which also conforms to a given 

metamodel. Model transformations are useful for the following purposes: 

 Generating lower-level models, eventually code, from higher level models 

 Ensuring that a family of models is consistent, saving effort and reducing 

errors by automating the building and modification of models where 

possible 

 Mapping and synchronizing among models at the same level of different 

levels of abstraction 

 Reverse engineering of higher-level models from lower-level models or 

code. 

Figure 3.3 explains basic model transformation pattern [35]. Source model is 

defined based on the source metamodel. There is also a given target metamodel. 

Transformation definition defines how a model conforming to source metamodel 

can be translated to an output model conforming to the target metamodel. The 

transformation definition is executed by a transformation engine. It reads the 

source model and outputs the target model. The transformation can be 

unidirectional or bidirectional based on the transformation definition. 

 

Figure 3.3. Model transformation pattern 



23 

 

Basically models transformations are categorized into two types: model-to-model 

and model-to-text transformations.  

Model-to-Model (M2M) Transformation: In model-to-model transformation a 

model is transformed into another model (target model) which is instance of either 

the source metamodel or another metamodel. Both input and output are models 

which conforms to some metamodel. Transformation rules are defined to support 

M2M transformations and they are executed by transformation engine. Based on 

the definition of those rules, transformation can be unidirectional or bidirectional. 

The Eclipse M2M project provides a framework for model-to-model 

transformation languages including ATL[22], Operational QVT and Relational 

QVT [31]. Model-to-model transformation is required to ease generation of 

intermediate software models and keeping all models consistent. 

Model-to-Text(M2T) Transformation: Model-to-text transformation which is 

also referred as model-to-code transformation is a special case of model-to-model 

transformation in which there is no target metamodel and the target output is a 

text. Model-to-text transformations are useful generating textual artifacts like code 

and documentation. It is standardized how to translate a model to various texts 

such as code, specifications, reports and documents in MOF Model to Text 

standard. Essentially, the standard needs to address how to transform a model into 

a linearized text representation. A template-based approach is defined in which 

the text to be generated from models is specified as a set of text templates that are 

parameterized with model elements. In the literature, there exists various tools that 

support model-to-text transformations that are developed based on MOF M2T 

standard such as Acceleo [1] and Xpand [38]. 

 

 

 
 

 

 



24 

 

 

 

 

Chapter 4 

 

 

Domain-Specific Languages for 

Software Architecture Viewpoints 

 

 
Architectural views are usually developed based on architectural viewpoints 

which define the conventions for constructing, interpreting and analyzing views. 

Our analysis on the architectural viewpoints yields that so far most architectural 

viewpoints seem to have been primarily used either to support the communication 

among stakeholders, or at the best to provide a blueprint for the detailed design. 

They are not used as, executable architectural models. We identified that one 

important reason behind this is that the architectural viewpoints in the literature 

are not well and precisely defined. In order to address this problem, we propose 

that architectural viewpoints should be defined as domain-specific languages 

(DSL). In this chapter, we provide a software language engineering approach to 

define viewpoints as domain specific languages. We illustrate our approach with 

the viewpoints of the Views and Beyond framework using Crisis Management 

System (CMS) architecture as the case study. We also set up a framework to 

evaluate the quality of the viewpoint definitions. After defining all viewpoints as 

DSLs, we illustrate how the current viewpoint definitions are improved when they 

are defined as DSLs using the evaluation framework. 

 



25 

 

 

 

 

4.1. Viewpoints as Metamodels 

In architecture modeling literature the notion of meta-model is not explicitly used. 

Nevertheless, the concepts related to architectural description are formalized and 

standardized in ISO/IEC 42010:2007, a fast-track adoption by ISO of IEEE-Std 

1471-2000, Recommended Practice for Architecture Description of Software-

Intensive Systems [20]. The standard holds that an architecture description 

consists of a set of views, each of which conforms to a viewpoint, but it has 

deliberately chosen not to define a particular viewpoint. Here the concept of view 

appears to be at the same level of to the concept of model in the model-driven 

development approach. The concept of viewpoint, representing the language for 

expressing views, appears to be on the level of meta-model.  

M0

M1

M2

Architecture

Framework

Architecture

Viewpoint

Architectural

View

System-of-

Interest
Architecture

Architectural

Description

1..*

governs

conforms

 to

describes

has

1..*

1..*

 

Figure 4.1. Architectural Description Concepts from  

a meta-modeling perspective 

Although the ISO/IEC 42010 standard does not really use the terminology of 

model-driven development the concepts as described in the standard seem to align 

with the concepts in the meta-modeling framework. In Figure 4.1, we provide a 



26 

 

partial view of the standard that has been organized around the meta-modeling 

framework. An Architecture Description is a concrete artifact that documents the 

Architecture of a System of Interest. The concepts System-of-Interest and 

Architecture reside at layer M0. System-of-Interest defines a system for which an 

Architecture is defined.  Architecture is described using Architectural Description 

that resides at level M1. Architectural Description includes one or more 

Architectural Views that represent the system from particular stakeholder 

concern’s perspective. Architectural views are described based on Architectural 

Viewpoint, the language for the corresponding view. Architectural Viewpoints are 

organized in Architectural Framework. The latter two reside at level M2.  The 

standard does not provide a concept that we could consider at level M3, and as 

such we have omitted this in Figure 4.1.  

The key premise of this thesis is viewing the architectural viewpoints as 

metamodel. We build our work on top of this. As we mentioned in Chapter 3, a 

metamodel in other words a domain-specific language consists of the following 

elements: abstract syntax, concrete syntax, static semantics and semantics. We 

keep semantics discussion out of the scope of the thesis and follow the process 

shown in Figure 4.2 to define DSLs for architectural viewpoints. The formal 

viewpoint definitions given in Chapter 4.3 are defined based on this process. 

As we mentioned earlier, we selected Views and Beyond framework viewpoints 

to defined them as DSLs. For each DSL, we first present the abstract syntax that 

defines the language abstractions and their relationship. The abstract syntax for a 

viewpoint is defined after an analysis of the viewpoint description in the 

corresponding textbook [7]. 

 



27 

 

(1)

Define Abstract Syntax 

for viewpoint

(2)

Define grammar for 

viewpoint

(3)

Define well-

formedness rules

(3)

Define visual 

concrete syntax

[done]

 

Figure 4.2. The process of defining DSLs for architectural viewpoints 

Based on these descriptions and the defined meta-model we provide the grammar 

which defines syntactic rules of the language together with textual concrete 

syntax. The grammar is defined using Xtext a language development framework 

provided as an Eclipse plug-in [11]. The grammar of the language is defined in 

Xtext's [39] EBNF grammar language and the corresponding generator creates a 

parser, an AST-meta model (implemented in EMF) as well as a full-featured 

Eclipse Text Editor from that. After defining the grammar, we have our pure 

language at hand. We enrich our language defining visual concrete syntax and 

well-formedness rules. These two are not mandatory steps and none of them are 

prerequisite to each other. As shown in Figure 4.2, they can be done in parallel. 

The visual concrete syntax is defined using Graphical Modeling Framework 

(GMF) plug-in of Eclipse [16]. Constraints on viewpoint elements and relations 

are implemented as static semantics which is implemented writing validation 

codes in Java.  



28 

 

4.2. Case Study: Crisis Management System 

In this section, we present the case study Crisis Management System (CMS) [21] 

for which we will define sample architectural views when illustrating our domain-

specific languages for viewpoints in section 4.3. 

A crisis management system is a software system that helps in: 

 identifying,  assessing, and handling a crisis situation 

 by coordinating the communication between all parties involved in 

handling the crisis, 

 by allocating and managing resources, 

 and by providing access to relevant crisis-related information to authorized 

users. 

The need for crisis management systems has grown significantly over time. In the 

context of CMS a crisis can be major event that affects various segments of 

society such as natural disasters, terrorist attacks or accidents. The role of crisis 

management system is to facilitate the process of resolving the crisis by 

coordinating the relevant parties. 

A crisis management scenario is initiated by a crisis report from a witness at the 

scene. A coordinator, who is responsible for organizing all required resources and 

tasks, initiates the crisis management process. The coordinator has access to the 

camera surveillance system. If a crisis occurs in locations under surveillance, the 

crisis management system can request video feed that allows the coordinator to 

verify the witness information. 

A super observer who is an expert depending on the kind of crisis, is assigned to 

the scene to observe the emergency situation and identify the tasks necessary to 

cope with the situation. The tasks are crisis missions defined by the observer. The 

coordinator is required to process the missions by allocating suitable resources to 

each task. 



29 

 

Depending on the type of crisis, human resources could include firemen, doctors, 

nurses, policemen, and technicians, and hardware resources could include 

transportation systems, computing resources, communication means, or other 

necessities like food or clothes. The human resources act as first-aid workers. 

Each first-aid worker is assigned a specific task which needs to be executed to 

recover from the abnormal situation. The workers are expected to report on the 

success or failure in carrying out the missions. The completion of all missions 

would allow the crisis to be concluded. 

In summary, a crisis management system (CMS) should include the following 

functionalities: 

 Initiating a crisis based on an external input from a witness, 

 Processing a crisis by executing the missions defined by a super observer 

and then assigning internal and/or external resources, 

  wrapping-up and archiving crisis, 

  authenticating users, 

  handling communication between coordinator/system and resources. 

4.3. Domain Specific Languages for V&B Framework 

In this section we will illustrate the modeling of viewpoints as domain specific 

languages to show how existing viewpoints can be even further formally specified 

to lift these to the level of executable models. We implement V&B framework [7] 

viewpoints as DSLs.  

We will follow the process as defined in Figure 4.2. For each DSL, we first 

present the abstract syntax that defines the language abstractions and their 

relationship. Then, we provide the grammar which defines syntactic rules of the 

language together with textual concrete syntax. While presenting the language for 

a viewpoint, we provide example textual and visual view models of Crisis 

Management System that are defined using our DSLs. 



30 

 

4.3.1. Module Viewpoints 

4.3.1.1. Decomposition Viewpoint 

The Decomposition viewpoint [7] is used to show how system responsibilities are 

partitioned across modules and how these modules are decomposed into 

submodules. The decomposition view of the architecture depicts the overall 

structure of the architecture which is reasonably decomposed into modular 

implementation units. It is regarded as a fundamental view of the architecture 

since it serves as an input for other views (e.g. work allocation view) and helps to 

communicate and learn the structure of the software. 

We have defined a DSL for decomposition viewpoint based on the textual 

specification given in [7]. The meta-model elements of it are provided below. 

A model of the abstract syntax for the decomposition style is given in the left part 

of Figure 4.3. The root element is DecompositionModel. A valid decomposition 

model consists of elements. An element can either be a Module or Subsystem. 

Module denotes principal unit of implementation. Subsystem differs semantically 

from the module in the way that it can be developed, executed and deployed 

independent of other system parts. The decomposition relation between elements 

is established via the aggregation relation indicating that an element consists of 

other subelements. Element can have two types of properties: Interface and Simple 

property. The element’s interface is documented with interface property. An 

element’s interface can be declared as a reference to one of its children’s 

interface. Simple property is a generic property which allows specifying new 

properties in view document. 

The grammar for decomposition style is given in the right part of Figure 4.3. An 

example decomposition view implemented using our DSL is shown in Figure 4.4. 

The textual concrete syntax is defined for elements. No explicit relation is 

modeled in order to express decomposition. Subelements are directly placed into 

the parent element. 



31 

 

Abstract Syntax Grammar 

  
 

Figure 4.3. Abstract syntax and grammar for decomposition style 

 

 

Figure 4.4. Textual decomposition view model 

Crisis Management System consists of one large subsystem, Crisis Management 

Subsystem and supplementary modules where Comm Management module 

establishes the communication infrastructure for the system, Data Management 

module utilizes DBMS operations in a modular way and Offline Reporting 

module enables taking various reports on the crisis events. Crisis Management 

Subsystem consists of Crisis Reporting module which enables initiating and 

maintaining crisis management process in a well-formed documented way and 

Crisis Handling module which enables taking task allocation and coordination 

actions to resolve crisis situation. Both textual and visual decomposition view 



32 

 

models are easy-to-develop and understand. Visual view model for CMS 

decomposition viewpoint is given in Figure 4.5. 

 

Figure 4.5. Visual decomposition view model 

In addition to extracting the abstract syntax and the grammar we can also derive 

the well-formedness rules of views, the static semantics, from the viewpoint 

descriptions. In the decomposition style, two constraints have been defined: no 

loops are allowed in decomposition graph and a module can have only one parent. 

From the language perspective, those constraints are too high level to implement. 

We merged these constraints and shortly defined that no element can have the 

same name. Doing so we prevented both <A contains B, B contains A> case and 

<A contains B, C contains B> case. We implemented this constraint in Java as a 

validation rule that applies on the language model. 

4.3.1.2. Uses Viewpoint 

The uses viewpoint [7] results when the depends-on relation is specialized to uses. 

A module uses another module if its correctness depends on the correctness of the 

other. Uses viewpoint tells developers what other modules must exist for their 

portion of the system to work correctly. It enables incremental development and 

the deployment of useful subsets of full systems. 

We have defined a DSL for uses viewpoint based on the textual specification 

given in [7]. The meta-model elements of it are provided below. 



33 

 

The root node of the grammar is UsesModel. It consists of Elements and Uses 

Declaration part. An Element of uses style is either a Module or a Subsystem. 

They are identified by their names.  The relation is Uses. It has source and target 

attributes where both are references to Element instances. Figure 4.6 shows the 

abstract syntax for uses viewpoint and Figure 4.7 shows the grammar.  

 

Figure 4.6. Abstract Syntax of Uses Viewpoint 

 

 

Figure 4.7. Grammar of Uses Viewpoint 

We have defined both textual and visual concrete syntax for uses viewpoint. In 

textual uses model, the subsystems and modules are listed by their names and uses 

declarations are specified in order to model the relation between those listed 



34 

 

elements. In Figure 4.8, an example textual uses view is given for CMS. The 

modules and subsystems are listed first and then it is specified which modules 

uses the others. For example, Task Allocation and Resource Allocation modules 

uses Reporting modules which mean that crime reporting services must be 

correctly defined and implemented in order those two modules to be implemented.  

 

Figure 4.8. Textual Uses View 

The corresponding visual view model is also given in Figure 4.9. 

 

Figure 4.9. Visual uses view 

Since there are no topological constraints for uses view, we didn’t implement any 

well-formedness rules for it. 



35 

 

4.3.1.3. Generalization Viewpoint 

The generalization viewpoint [7] is useful for modeling is-a relation among 

modules. When an architect wants to support extension and evolution of 

architectures and individual elements, this viewpoint can be employed. Modules 

in this viewpoint are defined in such a way that they capture commonalities and 

variations. When modules have a generalization relationship, the parent module 

owns the commonalities, and the children modules own the variations  

We have defined DSL for generalization viewpoint. The abstract syntax, grammar 

and textual and visual examples are given below. 

The root node of the grammar is GeneralizationModel. It consists of Elements and 

Generalization Declarations. An element is either a Module or an Interface. They 

are identified by their names. Generalization declarations consist of Relations. 

There are 3 types of relations: InterfaceImpl, ClassInheritance, 

InterfaceInheritance. If a module contains the implementation of an interface, it is 

denoted by InterfaceImpl relation. If a module inherits some behavior of other 

module, it is denoted by ClassInheritance relation. InterfaceInheritance denotes 

the definition of a new interface based on another previously defined interface. 

Figure 4.10 gives abstract syntax definition for generalization viewpoint. 



36 

 

 

Figure 4.10. Abstract syntax for generalization viewpoint 

In V&B generalization style, only module is defined as element type. If a module 

is an interface, it is denoted by “abstract” property of the module. Instead of 

differentiating modules and interfaces with a property, we defined Interface as a 

first-class abstraction in our grammar. V&B defines generalization relation as 

relation type and again motivates to differentiate different types of generalizations 

with properties. In our grammar, we explicitly define 3 types of relations 

InterfaceImpl, ClassInheritance, InterfaceInheritance. Figure 4.11 shows grammar 

for generalization viewpoint. 



37 

 

 

Figure 4.11. Grammar for generalization viewpoint 

Below is an example generalization view from Crisis Management System. There 

is a generic module, namely interface, Crisis Handler, which includes the 

common properties that a specific type of crisis handler class must implement. 

After defining interfaces and modules the generalization relations are declared. 

For example, in our case, Car Crash Handler class implements Crisis Handler 

interface. The corresponding visual generalization view is also shown in Figure 

4.13. The visual concrete syntax is very easy to understand. Modules and 

interfaces are differentiated from each other via their shapes and the Interface 

Implementation relation is denoted via an empty closed arrow. 

 

Figure 4.12. Textual generalization view 



38 

 

 

Figure 4.13. Visual generalization view 

There is one topology constraint for generalization views. The relations cannot be 

cyclic or bi-directional. We have implemented this topology constraint as a well-

formedness rule. 

4.3.1.4. Layered Viewpoint 

Another important module viewpoint defined in [7] is layered viewpoint. Layered 

viewpoint is similar to decomposition viewpoint since it reflects the division of 

software into units. The difference is that in layered viewpoint, layers, the first 

class elements of the style, are created to interact based on a strict ordering 

relation. If layer A is allowed to use layer B, layer A’s implementation can use 

any public facilities of Layer B. However, layer B cannot use any facilities of 

layer A. 

We have applied our language design process on layered viewpoint specification 

given in [7] to define a DSL for it. 

The abstract syntax and grammar of layered viewpoint are given in Figure 4.14. 

The DSL for layered viewpoint consists of elements and relations. The element 

types are Layers and Segments. Semantically a layer is a group of software 

components that have similar module dependencies. The modules inside a layer 

are reusable in similar circumstances and they are likely to be ported to new 

applications together. Some layers consist of layer segments which are more 

cohesive subsets of layers. The fundamental relation of layered style is allowed to 

use relation. The ordering between layers is determined by allowed to use. There 

are two meaning of allowed to use relation. It can mean the source layer is 



39 

 

allowed to use the target layer or source layer is allowed to use the target layer 

and all layers below it in the layering hierarchy. That’s why, we defined two 

separate allowed to use relations: allowed to use and allowed to use below. There 

is no strict property that the layers have to exhibit. In case of any need to model 

some property of a layer, we define a generic property that can be defined for 

layers and layer segments. 

 

Figure 4.14. Abstract syntax for layered viewpoint 

The grammar definition for layered viewpoint is given in Figure 4.15. The root 

node of the grammar is LayeredModel. It consists of layers and relations. A Layer 

is identified by its name and can contain properties and layer segments. Layer 

segments are similar to layers except for they do not contain further layer 

segments. There are two types of relations: allowed to use, allowed to use below. 

Allowed to use relation is usually expressed in “[sourceLayer] allowed-to-use 

[targetLayer]” form. Allowed to use all below relation is expressed in 

“[sourceLayer] allowed to use [targetLayer] and below” form. A property is 

specified by its name which is an identifier and value which is a string following 

“property” keyword.  

 



40 

 

 

Figure 4.15. Grammar for layered viewpoint 

An example layered view of defined using the grammar is shown in Figure 4.16. 

On the top of the view model, layers are defined. Then layer ordering declarations 

starts where the relations are specified. The two types of relations both allowed to 

use and allowed to use below are used in the example view. UI Management 

module of CMS is allowed to use CMS application logic and all layers that it is 

allowed to use which are Data Management and Comm Management in our case.  

 

Figure 4.16. Textual layered view 

The visual concrete syntax for layered viewpoint consists of two element types: 

layers and layer segments.  A layer is expressed by a rectangle where name of the 

layer is shown on the top of the rectangle. A layer segment is expressed by a 

rounded rectangle where its name is shown on top. The layer segments are 

directly placed inside layer figures. Visual concrete syntax is defined for two 

relations types: allowed to use and allowed to use below. Both are denoted by 



41 

 

arrows from source layer to target layer. The allowed to use all below relation is 

expressed bolder than allowed to use in order to help to distinguish. Visual 

concrete syntax is not defined for properties in order to prevent crowd in diagram.  

An example layered view defined using visual concrete syntax is given in Figure 

4.17. 

 

Figure 4.17. Visual layered view 

The V&B layered style defines 3 constraints:  

 Every piece of software is allocated to one layer. 

 There are at least two layers 

 Allowed to use relation cannot be circular. 

The first constraint has two aspects: every module is allocated to a layer and every 

module is allocated to exactly one layer. The first is satisfied by the syntactic 

definition since we do not allow existence of modules outside the layers. For the 

second, we write a Java code that prevents giving same names to different 

modules. 

The second constraint is partially satisfied by our grammar definition. We force 

the model to include at least one allowed to use relation. If layers are not allowed 

to use themselves this means the constraint is satisfied. We implement the 



42 

 

constraint that prevents specifying allowed to use relation where target and source 

layers are the same. 

The third constraint is more complex to implement. We implement it again 

writing a Java code. The layers that are allowed to use by some given source layer 

is found. Then, the layers allowed to use by previously identified layers are found 

and this process is repeated recursively. When recursion terminates, we have a 

tree structure at hand whose root node is initially given source layer. The tree is 

traversed for source layer and error is signaled if source layer is found in one of 

the tree’s internal or leaf nodes. 

4.3.1.5. Aspects Viewpoint 

The aspects viewpoint [7] is a module viewpoint used to isolate in the architecture 

the modules responsible for crosscutting concerns. The viewpoint prescribes that 

the modules responsible for the crosscutting functionality should be placed in one 

or more aspect views. These modules are called aspects, based on the terminology 

introduced by aspect-oriented programming (AOP). The aspect views should 

contain information to bind each aspect module to the other modules that require 

the crosscutting functionality. The goal of designing and implementing 

crosscutting concerns in separate aspect modules is to improve modifiability of 

the modules that deal with the business domain functionality. 

We have defined a DSL for aspects viewpoint and the metamodel is given below. 

The root node of the grammar is Model. A model consists of Elements and 

Crosscut Declarations. An element can be either a module or an aspect. Both are 

identified by element names. Crosscut declarations are a set of statements that lists 

the aspects and shows which modules they crosscut in which way. A crosscut 

consists of an Aspect and Details. In details part, modules related to corresponding 

aspect are listed and it is given in which way the aspect crosscuts that module in a 

textual definition. Figure 4.18 and 4.19 shows the abstract sytax and the grammar 

for aspects view. 



43 

 

 

Figure 4.18. Abstract syntax for aspects viewpoint 

 

Figure 4.19. Grammar for aspects viewpoint 

An example aspects view is given for CMS. Logging, ExceptionHandling, 

Persistence aspects crosscut various modules of the architecture. In the textual 

view, an explanation is provided for each crosscut declaration, however, we 

choose not to show those explanations in visual models to prevent crowd in the 

diagram. Figure 4.20 shows a textual aspects view of CMS architecture. 

As topological constraint, we defined that there must definitely exist a crosscut 

declaration for each aspect and an aspect is related to at least one other module. 

 



44 

 

 

Figure 4.20. Textual aspects view 

4.3.1.6. Data Model Viewpoint 

Data modeling is a common activity in the software development process of 

information systems. The output of this activity is the data model, which describes 

the static information structure in terms of data entities and their relationships. 

The data model viewpoint [7] is prescribed in order to facilitate stakeholder 

communication during various stages of software development. Main uses of it 

are forming a model to communicate database optimization and normalization 

decisions, to reason about data access performance, to enable modifiability 

analysis or to ensure data integrity. 

We implemented DSL for data model viewpoint and the metamodel of our DSL is 

explained below. 

The first class abstraction of the language is data entity. A data entity describes 

any persistent object in the database. A data entity can have various properties 

such as data attributes and primary keys. The number and type of properties are 

open ended and left to view definer. There can be 3 types of relations: 

associations, generalizations and aggregations between data entities. The 



45 

 

cardinality of associated entities (one-to-one, one-to-many etc.) must be defined 

when declaring association relation. The abstract syntax and grammar for data 

model view are given in Figure 4.21 and 4.22. 

 

Figure 4.21. Abstract syntax for data model viewpoint 

 

Figure 4.22. Grammar for data model viewpoint 

Figure 4.23 shows a textual data model view of CMS. The main entity here is 

CrisisEvent. A crisis event is described by an explanation, crisis type and date. 

Each crisis event can be related to one or more system users and each crisis event 

is related to at least one Location. There is a direct association to from CrisisEvent 

to CrisisAction. A crisis action consists of many tasks and many resources. The 

textual model is more detailed than visual view. We intentionally prefer not to 



46 

 

model details like properties in visual data model in order to prevent crowd in the 

diagram. 

 

Figure 4.23. Textual data model view 

There is no defined topological constraint in data model viewpoint. We identified 

that the is-a relations cannot be cyclic or bi-directional. The associates relation 

cannot be bidirectional. 

4.3.2. Component and Connector Viewpoints 

4.3.2.1. Pipe and Filter Viewpoint 

The Pipe-and-Filter viewpoint [7] is a component-connector type style that shows 

the successive transformations on a stream of data. With their input ports, filter 

components take a stream of data, process it and direct to its output ports. Pipes 

are connectors between filter components. The pipe and filter style is usually used 

to model the data flow between run-time components of software, thus, the data 

dependencies between components can be identified and analyzed. 

We have defined DSL for pipe-and-filter style of V&B approach.  

Every component-connector style defines component and connector types. 

Component type that is used in pipe-and-filter style is Filter. A filter component 



47 

 

gets data stream via its input port process the data stream and sends the resulting 

data over output port. Connector type defined for pipe-and-filter style is Pipe. 

Pipes are responsible for connecting filters to each other, thus, enabling data flow 

between them. A pipe is a unidirectional connector between source and target 

filters. It has in and out roles. A Pipe’s in role is connected to output port of the 

source filter and out role is connected to input port of the target filter. The 

components in pipe and filter style can have properties. The abstract syntax for 

pipe-and-filter style derived based on the above explanations is shown in Figure 

4.24. 

 

Figure 4.24. Abstract syntax for pipe-and-filter style 

The grammar for pipe-and-filter style is given in Figure 4.25. 



48 

 

 

Figure 4.26. Grammar for pipe-and-filter viewpoint 

The root node of the grammar is PipeFilterModel. It consists of Filters and Pipes. 

Filter components are identified by their name. A filter must have at least one 

Port. A Port can be either an InputPort or an Output Port. Both either and output 

port must specify the data type that it can consume or produce. Pipes are 

connector components and they are identified by their names. A pipe has one in 

and one out attribute. The input of a Pipe is connected to OutputPort of a Filter 

and the output of a Pipe is connected to InputPort of a Filter. Both pipes and 

filters can have properties. There is no predefined property type; it is a generic 

model element. The property’s name and value is defined at view level. An 

example pipe-and-filter view defined using the textual concrete syntax embedded 

in the grammar is seen in Figure 4.26. Note that first the filters are declared before 

pipes since pipe declarations require port information defined by filters. 

The visual concrete syntax for pipe-and-filter style defines filters as elements 

explicitly showing their ports. The pipes are defined as directed associations that 

originate from a filter’s output port to another filter’s input port. The visual form 

of the example given in textual concrete syntax is shown in Figure 4.27. 

In [] two important constraints are defined for pipe-and-filter style: 

 Pipes connects filter output ports to filter input ports 

 The connected filters must agree on the type of data being transferred. 



49 

 

 

Figure 4.26. Textual pipe-and-filter view 

The first constraint is satisfied with our abstract syntax definition. A pipe is 

associated with an input and an output ports. For the second constraint we write a 

Java validation code that checks the datatype attributes of ports and signals error 

in case of any incompatibility. 

 

Figure 4.27. Visual pipe-and-filter view 



50 

 

In addition to these constraints we define one more rule that prevents creating 

pipes when source and target filter is the same. We check this constraint by a 

simple Java code which signals error when a pipe is created with the same source 

and target filter. 

4.3.2.2. Shared Data Viewpoint 

Shared data viewpoint is another component-and-connector viewpoint which 

enables modeling the shared data repositories and the components that accesses 

those repositories together with their interaction. The viewpoint is useful 

whenever various data items have multiple accessors and persistence. Use of this 

viewpoint guides decoupling the producer of the data from the consumers of the 

data; hence this viewpoint supports modifiability, as the producers do not have 

direct knowledge of the consumers. Shared data view of a system supports 

analyses associated with performance, security, privacy, availability, scalability 

[7].  

We have defined DSL for shared data viewpoint and the metamodel for it is given 

and explained below. 

A shared data model consists of Elements and Attachments. An element can either 

be data accesor or a repository. Data accessors are attached to repositories by 

attachment relations which are named based on the purpose of the data access. An 

attachment can be data read, data write or data read/write. The grammar and 

abstract syntax model of shared data viewpoint are given in Figure 4.28. 



51 

 

 

 

 

 

Figure 4.28. Abstract syntax and grammar for shared data viewpoint 

An example shared data view for CMS is given in Figure 4.29. There are three 

data repositories in CMS system model. The application logic runs on CMS DB 

core. There is a back up for the main CMS DB and BackupManager process reads 

CMS DB_core and writes on DB_backup. For crisis resolution, CMS system is 

integrated with various organizations’ databases to know the current situation of 

the resources. Here in the model, we modeled hospital repository as 

Resource1DB. ResourceSync scripts run on a periodical manner to keep CMS 

database up-to-date about the current situation of the hospital. It reads from 

outsource database and writes into CMS main database.  



52 

 

 

Figure 4.29. Textual shared data view 

The topological constraints for shared data views are as follows: 

 There must be at least one data accessor for each repository 

 Each data accessor accesses at least one repository 

 A data accessor must have at least one read and one write data access 

relation. 

We have defined these topological constraints as well-formedness rules. 

4.3.2.3. Publish-Subscribe Viewpoint 

Publish-subscribe viewpoint [7] is defined to design event-based programs in a 

loosely coupled way by isolating event producers and event consumers from each 

other. In the publish-subscribe viewpoint, components interact via announced 

events. Components may subscribe to a set of events. It is the job of the publish-

subscribe runtime infrastructure to make sure that each published event is 

delivered to all subscribers of that event. Thus the main form of connector in this 

style is a kind of event bus. Components place events on the bus by announcing 

them; the connector then delivers those events to the components that have 

registered an interest in those events. The computational model for the publish-

subscribe style is best thought of as a system of independent processes or objects, 

which react to events generated by their environment, and which in turn cause 

reactions in other components as a side effect of their event announcements. 



53 

 

We have defined DSL for publish-subscribe viewpoint and the metamodel for it is 

explained below. 

A publish-subscribe view consists of Components, at least one Event Bus as 

connector and Attachment relations. A component is connected to an event bus via 

an attachment. Attachment can be either a Publish or Subscribe. Both components 

and buses have input/output ports over which they communicate. The grammar 

and abstract syntax for publish-subscribe viewpoint is given in Figure 4.30, 4.31. 

 

Figure 4.30. Abstract syntax for publish subscribe viewpoint 

 



54 

 

 

Figure 4.31. Grammar for publish subscribe viewpoint 

Figure 4.32 shows an example publish-subscribe view of CMS that is defined 

using our DSL. The common bus that enabled communication among processes is 

Communication Bus. Crisis Watcher publishes a crisis event to the bus. The bus is 

responsible for distributing the event to Crisis Handler and Crisis Reporter 

components which are subscribed to any crisis event. In similar way, Crisis 

Handler publishes crisis resolution action and the subscriber components Task 

Allocator and Resource Allocator are notified.  

 

Figure 4.32. Textual publish-subscribe view 



55 

 

As static semantics of the language we identified that there must be at least one 

bus in the view. Components are not attached to each other directly, they are 

attached to the buses via publish and subscribe ports. The connected ports’ data 

types must be compatible. 

4.3.2.4. Client-Server Viewpoint 

The client-server viewpoint presents a system view that separates client 

applications from the services they use [7]. It supports system understanding and 

reuse by factoring out common services. Because servers can be accessed by any 

number of clients, it is relatively easy to add new clients to a system. Similarly, 

servers may be replicated to support scalability or availability. 

We have defined DSL for client-server viewpoint and the metamodel for it is 

explained below. 

A client-server model simply consists of Client components, Server components 

and Attachments those connect clients to servers. Clients have input ports, servers 

have output ports. Each client must be connected to at least one server. A client 

can be attached to multiple servers via distinct ports. There must not be more than 

one attachment relation between a specific client and a specific server. The 

grammar and abstract syntax for the language are given in Figure 4.33, 4.34. 

 

Figure 4.33. Abstract syntax for client-server viewpoint 



56 

 

 

Figure 4.34. Grammar for client-server viewpoint 

Figure 4.35 shows a simple client-server view of CMS architecture. The server 

component is CMS Application Server. Two types of clients can connect to the 

server in order to initiate a crisis report, Mobile Client and Web Client. Crisis 

Handler component is also a client to application server. The visual notation is 

simple, easy to model and understand. 

 

Figure 4.35. Visual client-server view 

As static semantics of the language we identified that there must be at least one 

server and one client in the view. Components are not attached to each other 

directly, they are attached via ports. The connected ports’ data types must be 

compatible. 

4.3.2.5. Peer-to-Peer Viewpoint 

In the peer-to-peer viewpoint [7], components directly interact as peers by 

exchanging services. Peer-to-peer communication is a kind of request/reply 



57 

 

interaction without the asymmetry found in the client-server viewpoint. That is, 

any component can, in principle, interact with any other component by requesting 

its services. Each peer component provides and consumes similar services, and 

sometimes all peers are instances of the same component type. Connectors in 

peer-to-peer systems may involve complex bidirectional protocols of interaction, 

reflecting the two-way communication that may exist between two or more peer-

to-peer components.  

We have defined DSL for peer-to-peer viewpoint and the metamodel is given 

below. 

The abstract syntax and grammar for peer-to-peer viewpoint is given in Figure 

4.36. A peer-to-peer view model consists of elements and attachment relations. 

An element is either a Peer or a Connector. The peers can directly be attached to 

the connector via their ports. Requested services and provided services must be 

defined in the port declarations. There must be at least one connector in the view 

model. 

 

Figure 4.36. Abstract syntax for peer-to-peer viewpoint 



58 

 

 

Figure 4.37. Grammar for peer-to-peer viewpoint 

A visual peer-to-peer view of CMS architecture is shown in Figure 4.38.  The 

components are Crisis Resolver, Task Allocator and Resource Allocator. They 

communicate view Peer Connector. Crisis Resolver requests task services and 

resource services from the network which are produced by Task Allocator and 

Resource Allocator. Crisis Resolver also produces crisis action to the network 

which will be consumed by other components in the architecture. 

 

Figure 4.38. Visual peer-to-peer view 

4.3.2.6. SOA Viewpoint 

Service-oriented architectures consist of a collection of distributed components 

that provide and/or consume services. In SOA, service provider components and 

service consumer components can use different implementation languages and 



59 

 

platforms. Services are largely standalone: service providers and service 

consumers are usually deployed independently, and often belong to different 

systems or even different organizations. The main benefit and the major driver of 

SOA is interoperability. SOA viewpoint provides guidelines for defining views 

for service oriented architectures [7]. 

We have defined DSL for SOA viewpoint and the metamodel for it is given 

below. 

A SOA view model consists of Service Providers, Service Consumers, Service 

Bus, Service Manager and Service Registry components and their attachments. 

Service providers and consumers are possibly different applications, service 

registry is a persistent object and service manager is a process. Each of the 

components directly attached to service bus and communicates to each other 

through it. Each service bus must be definitely attached to a service registry and 

service manager. The service providers and service consumers are attached to the 

bus via their ports. Since the grammar is very complex and crowded, we cannot 

provide the grammar and abstract syntax for SOA viewpoint here due to space 

limitations. 

An example visual SOA view for CMS application is given in Figure 4.39. CMS 

Service Bus enables CMS application to consume services of outsource 

applications such as State Registry, Weather Forecasting Application, Traffic 

Monitoring System, Map Services.  



60 

 

 

Figure 4.39. Visual SOA view 

4.3.3. Allocation Viewpoints 

4.3.3.1. Deployment Viewpoint 

Deployment viewpoint, which is a kind of allocation viewpoint that is used to 

show how the software elements are allocated to hardware of a computing 

platform [7]. It is useful for analyzing and tuning certain quality attributes of the 

system such as performance, reliability and security. The DSL we have defined 

for V&B deployment style is presented in following sections. 

The abstract syntax defined for deployment style is shown in Figure 4.40. The 

abstract syntax describes the elements of the language, which are Software 

elements and Hardware elements. The software elements are statically allocated to 

hardware elements by allocated to relation. In abstract syntax definition, we do 

not explicitly show this relation. It is implicit in the aggregation relation between 

hardware element and software element. The allocation of software to hardware 

does not have to be static. Migration relations are defined to support dynamic 

allocation schemes. There are three types of migration relations: migrates to, copy 

migrates to, execution migrates to. In addition to these viewpoint specific 



61 

 

elements and relations, in order to reflect the topology of the platform Connection 

links between hardware elements are required. 

 

Figure 4.40. Abstract syntax for deployment viewpoint 

The grammar for deployment style is also provided in Figure 4.41. 

 

Figure 4.41. Grammar for deployment viewpoint 



62 

 

An example deployment view specified using both textual and visual concrete 

syntax for CMS architecture is provided in Figure 4.42. The visual concrete 

syntax defined for deployment view models software and hardware elements as 

elements, migrations and connections as relations.  

 

 

 

Figure 4.42. Textual and visual deployment views 

We have identified four well-formedness rules for deployment style and 

implemented these as validation code. These rules are: (1) Every hardware 

element must be connected to at least one other hardware element. (2) An element 

cannot connect to itself (3) All types of migration relations have to be between 

two distinct hardware elements. (4) The source and target software element names 

referenced in migrates to and copy migrates to relations must be the same (i.e. the 

same software migrates from one hardware element to another). 



63 

 

4.3.3.2. Install Viewpoint 

The install viewpoint allocates components of a C&C viewpoint to a file 

management system in the production environment. It helps to describe what 

specific files should be used and how they should be configured and packaged to 

deploy the system in a new environment. In addition it forms a guide for  

developers, deployers, and operators in order them to carry out their tasks 

properly. 

The abstract syntax and the grammar for install viewpoint are given in Figure 

4.43. The root element of install view model is Model. A model consists of 

Directories. Each directory consists of other directories, files or components. The 

components are run-time software elements. Directories, files and software 

components can have various properties. 

 

Figure 4.43. Abstract Syntax for install viewpoint 

 

Figure 4.44. Grammar for install viewpoint 



64 

 

 

Figure 4.45 shows an example visual install view of CMS system. The root 

directory is CrisisManagementSystem. Various directories are nested in it 

recursively. In the root directory CMS.conf file exists which contains 

configuration properties for crisis management system which can be edited at run-

time. Reporting subdirectory includes crisis reports in it. CrisisHandling directory 

contains CrisisListener and CrisisResolver jobs in it.  

 

Figure 4.45. Visual install view 

There are no additional topological constraints for install viewpoint except for all 

the directories, files and software components must be organized in a tree 

structure. We didn’t need to implement any well-formedness rule for this because 

this constraint is already satisfied by our grammar definition. 

4.3.3.3. Work Assignment Viewpoint 

The work assignment viewpoint allocates modules of a module viewpoint to the 

groups and individuals who are responsible for the realization of a system. It 

defines the responsibility for implementing and integrating the modules to the 

appropriate development teams.  

The abstract syntax and the grammar for work assignment viewpoint is shown in 

Figure 4.46, 4.47. The root element of the grammar is Model. A work assignment 

model consists of Software elements and Environmental elements. A software 

element can be a Module or Subsystem. An environmental element can be a 



65 

 

Person, Team or Department. Software elements are assigned to environmental 

elements via responsible for relation. Every element in the model can have various 

properties. The name and value of the property must be specified by the view 

definer. 

 

 

Figure 4.46. Abstract syntax for work allocation view 

 

Figure 4.47. Grammar for work allocation view 

4.4.   Evaluation of Architectural Viewpoint Frameworks 

Architectural views represent an important input for defining the documentation 

of the architecture that consists of the description of multiple views and 

information beyond views. Documenting the architecture using architectural 



66 

 

views helps improve modeling and likewise the early review of the system during 

architectural analysis. Yet, it appears that this review process has been basically at 

the level of architectural views and the evaluation of viewpoints has not been 

considered. However, if the architectural viewpoints are not well-defined then 

implicitly this will have an impact on the quality of the views and likewise the 

documentation of the architecture. We present an evaluation framework for 

assessing architectural viewpoints based on software language engineering 

techniques. The approach does not assume a particular architecture framework 

and can be applied to existing viewpoints or newly defined viewpoints. We 

illustrate our approach for reviewing viewpoints of the Views and Beyond 

approach. 

4.4.1. Evaluation Framework 

We provide an assessment framework for evaluating existing or newly defined 

architectural viewpoints. Our basic premise is that viewpoints can be considered 

as domain specific languages and likewise the evaluation of the viewpoint also 

considers the language aspects of the viewpoint. 

Given the elements of a language we can now evaluate viewpoints, the 

‘languages’ for defining views. A coarse-grained evaluation would be to check 

whether the language elements of abstract syntax, static semantics and concrete 

semantics, are defined for the viewpoints. This does not really provide much 

information since all the viewpoints seem to somehow describe the above 

elements albeit in a different degree, and as such the architectural viewpoint 

evaluation would not be of less practical value. To be able to refine the degree to 

which each element is addressed we propose to model each viewpoint explicitly 

as a domain specific language (DSL).  The overall process for evaluating an 

architectural framework consisting of different viewpoint is shown in Figure 4.48. 



67 

 

Select Viewpoint

Model Viewpoint

Provide Overall 

Assessment

Assess Viewpoint

[all viewpoints 

considered]

[viewpoints remaining]

Decide

 

Figure 4.48. Overall Process for Assessment of Architectural Viewpoint 

After selecting an architectural viewpoint, the viewpoint is modeled and in 

parallel the assessment of the corresponding viewpoint takes place. After all the 

viewpoints have been modeled and assessed, the overall assessment for the 

architectural framework is provided. Based on the overall assessment of the 

viewpoint(s) it is decided on what actions to take. Let’s discuss each of these 

activities in more detail.  

The activity Select Viewpoint selects a viewpoint that is provided either by a 

given architecture framework, or that has been newly introduced by viewpoint 

designers. Note that with this activity we mean the selection for evaluation of the 

viewpoint. Alternatively, required viewpoints are selected to derive architectural 

views based on the viewpoint. This is, for example, described by Clements et al. 

[7] in which viewpoints are selected with respect to the needs of stakeholders, 

available budget, the schedule, and the available skills.  

The activity Model Viewpoints defines the DSL for the selected viewpoint and the 

detailed steps for this are shown in Figure 4.49. We have already explained this 



68 

 

process in detail throughout chapter 4. For this, the description of the viewpoint in 

the literature (e.g. textbook) is analyzed.  

Identify Architectural Components 

and Relations of Viewpoint

(Abstract Syntax)

Identify and Model Composition 

Rules (Grammar)

Identify and Model Topology 

Constraints (Static Semantics)

Identify and Define Notation 

(Concrete Syntax)

Validate using Example

[require update]

[done]

 

Figure 4.49. Activity Diagram for Activity Model Viewpoint 

The first step in the activity Model Viewpoints is the identification and definition 

of the architectural component and relation types. This is necessary to define the 

abstract syntax of the viewpoint. As stated before, the abstract syntax defines both 

the concepts (architectural component and relation types) of the language and the 

relations among these concepts. To represent the abstract syntax either a model-

based approach or a grammar-based approach is adopted [23][35]. In the model-

based approach, typically a UML model is provided defining the language 

concepts and their relations. In the grammar-based approach a grammar (e.g. 

EBNF grammar) is defined. In our approach we provide both a UML model and 

an EBNF-based grammar of the viewpoint. The composition rules are identified in 

the activity Identify and Model Composition Rules.  



69 

 

After the abstract syntax and the corresponding grammar/model have been 

defined the topology constraints (i.e. static semantics) are identified and modeled. 

The next activity is to Identify and Define the Notation (Concrete Syntax). 

Finally, the activity Validate using Example aims to define example models using 

the modeled viewpoint. The outcome of this activity might require iterating to the 

previous activities.  

In parallel with the execution of the activity Model Viewpoints, also an evaluation 

of the viewpoint is carried out (activity Assess Viewpoint as shown in Figure). 

For evaluating the viewpoint we focus in particular on the elements of abstract 

syntax, concrete syntax and static semantics. We adopt the evaluation framework 

as defined in Table 1. 

Table 1. Assessment framework for evaluating Architectural Viewpoints 

Evaluation 

Level 

Description 

L1 Not defined 

L2 Incomplete, Informally defined  

L3 Complete, Informally defined 

L4 Incomplete, Formally defined  

L5 Complete, formally defined 

 

The table distinguishes among four levels L1 to L5 indicating the quality and 

completeness of the corresponding element. As it can be seen in the table, a lower 

quality indicates that the corresponding element has not been described (missing, 

not defined) whereas a higher value indicates that the given element is completely 

defined and validated. 

The activity Provide Overall Assessment in Figure 4.48 defines the summary of 

the overall evaluations of the viewpoints for the given architecture framework or 

set of viewpoints.  

The final activity Decide in Figure 4.48 describes the recommendations and 

decisions on the usage of the selected viewpoints. In case the selected viewpoint is 

well-defined typically no action will be undertaken and the viewpoint can be used 

as is. If the viewpoint is not well-defined one may decide to enhance the 



70 

 

viewpoint of the original viewpoint description. In that case, the assessment level 

(L1 to L5) will increase as well.  

4.4.2. Evaluation of Views and Beyond Framework 

 

Throughout Chapter 4, we have provided detailed explanation of meta-models 

created for Views and Beyond architecture viewpoint framework together with 

evaluation of their original viewpoint specifications from meta-modeling 

perspective. We have implemented all architectural viewpoints of V&B 

framework as domain specific languages and we state that the mapping of each 

viewpoint and its discussion is interesting by itself. The adopted approach was 

similar as defined in the previous section. As stated before, the domain specific 

language engineering approach has two benefits: (1) it helps to make the 

viewpoints executable (2) it provides insight in the degree of precision of the 

analyzed viewpoints.  

In this section, we present an overall summary of our experience in mapping V&B 

architectural viewpoints to domain specific languages. For this we will use again 

our meta-model evaluation framework as we have defined in Table 1. We have 

applied the framework on each viewpoint defined by V&B. The viewpoints to 

evaluate are collected from both the first edition [6] and the second edition of the 

V&B book [7]. The evaluation results are presented in dot charts. 

There are five levels in meta-model evaluation framework. The abstract syntax 

specifications in V&B framework do not exceed level L3. For both the editions of 

the book, the abstract syntax definition is in L3 for most of the viewpoints. This 

means that, no metamodel or grammar is provided for defining the abstract 

syntax. However, a clear textual specification is provided that can be easily 

mapped to model.  

Figure 4.50 shows a dot chart that compares the degree of language precision of 

viewpoints in both editions of the V&B approach. With respect to the abstract 

syntax we can conclude that there is not much deviation between two editions of 



71 

 

the book. Aspects, Data Model and SOA viewpoint values are in L1 for the first 

edition of the book, because those viewpoints are later introduced in the second 

edition. The same situation also applies to the communicating processes 

viewpoint for the second edition of the book, since it is excluded in the second 

edition. For most of the remaining viewpoints, abstract syntax definition levels 

overlap for both editions of the book. For generalization and publish-subscribe 

viewpoints a more clear textual description is provided in the second edition. 

 

Figure 4.50. Abstract syntax definition levels for V&B (both editions of the 

book) 

When we consider the concrete syntax definitions the deviation between two 

editions of the book is higher. For the module viewpoints (i.e. the first 6 

viewpoints of the chart in Figure 4.51), the concrete syntax definitions are mostly 

in level L4, indicating that there is semi-formal concrete syntax definition for 

those viewpoints in both editions of the book. Mostly, UML is recommended as 

modeling notation explicitly showing how to use UML while realizing views for 

module viewpoints. For component-and-connector viewpoints (i.e. from 7th 

viewpoint to 13th viewpoint), the second edition of the book is still at L4. 

However, in the first edition of the book most of the C&C viewpoints are in L3-

informal concrete syntax level. In the first edition, UML is mentioned roughly for 



72 

 

the overall C&C viewpoints, however, it is not depicted how to use them for the 

specific viewpoints. In the second book, UML discussion for C&C viewpoints is 

again done for all viewpoints together, however, this time the discussion is 

detailed enough to specify how to use UML notations required for each viewpoint. 

For none of the viewpoints of the two editions, L5-formal concrete syntax level is 

reached. Although some formal modeling techniques such as ADLs are 

mentioned, it is not described how to use those ADLs for modeling with specific 

viewpoints. 

 

Figure 4.51. Concrete syntax definition levels for V&B (both editions of the 

book) 

The static semantics definition for no viewpoint exceeds level 3-complete 

constraints in natural language. The constraints are always defined in natural 

language. There is some refinement of the constraint definitions in the second 

edition compared to those described in the first edition. In the first edition, 11 

viewpoints are in L2 and L3 meaning that no constraints are specified or they are 

incomplete. In the second edition, four of those moves to L4 (uses, generalization, 

pipes&filters and publish-subscribe) meaning that they are still in natural 

language form however the constraints on language constructs are completely 

specified. 



73 

 

 

Figure 4.52. Static semantics  definition levels for V&B 

(both editions of the book) 

We can conclude from this analysis that abstract syntax definition for V&B 

viewpoints are mostly in L3 and that these can be easily mapped to validated 

models as we do while defining DSLs. The concrete syntax definitions are mostly 

in L4. Informal and semi-formal notations are introduced and their usage is 

properly explained. However, no formal notations are provided. The constraints 

on viewpoint elements and relations are always provided in natural language 

form. This informality causes incomplete specification of constraints: there are 

only few viewpoints in L4. By defining DSLs for V&B approach, we have made 

the viewpoint definitions in L5 for each category: abstract syntax, concrete syntax 

and static semantics. 

 

 

 

 

 



74 

 

 

 

 

Chapter 5 

 

 

SAVE-Bench Tool 

 

 
We have combined the DSLs we have defined for viewpoints in our tool 

SAVE(Software Architecture View Modeling Environment)-Bench. Save-Bench 

is an architectural modeling environment that enables architecture stakeholders to 

develop textual and visual view models. Save-Bench is implemented using 

various MDE tools and published as an Eclipse plug-in. It is open to new domain 

specific language(viewpoint) additions. 

Throughout the thesis, we have explained how we defined viewpoints as domain-

specific languages in an abstract way. In this section, we first explain Save-Bench 

architecture from the point of view of language developer. We present the MDSD 

tools we have used and how we used them to define DSLs. Then, we explain 

Save-Bench, from the user (view modeler) point of view. We describe how a view 

modeler can use Save-Bench. 

 

5.1. Save-Bench Architecture 

 

Tool support has been found essential in the comparison of ADLs [27]. This holds 

also for mapping viewpoints to DSLs. We have implemented the domain specific 



75 

 

languages for all the 15 architectural viewpoints in an Eclipse plug-in tool that we 

call Software Architecture Environment for Modeling Views (SAVE-Bench). 

SAVE-Bench enables the creation of architecture projects and the modeling of 

architectural views based on the defined viewpoints. In the following we describe 

the architecture of Save-Bench toolset together with how to extend the tool with a 

new viewpoint DSL. 

View Modeling

xText Language 

Generator

EuGENia

Emfatic

MyViewpoint.xtext

input for

Textual DSL for 

MyViewpoint

generates

MyViewpoint.ecore

update

provided to

Visual Syntax 

for 

MyViewpoint

extracts

generates

SAVE-

Bench

2

3

3

4

6

7

Exported as Plug-in 8

Viewpoint Definer

1

write grammar define visual syntax using

5

 

Figure 5.1. Process for defining Viewpoints as DSLs and generating SAVE-

Bench 

Figure 5.1 shows the process of defining example viewpoint MyViewpoint as a 

domain specific language and exporting it as Eclipse plug-in. Various tools such 

as Xtext [39], GMF [16], EuGENia [13] and EMFatic [12] are used in the 

language definition process. Their roles will be explained in the following. 



76 

 

Firstly, the viewpoint definer creates an empty Xtext project and writes grammar 

for MyViewpoint. The grammar definition is written into the file with .xtext 

extension using the Xtext editor and following the rules of Xtext’s EBNF like 

grammar definition language. Xtext [39] is a part of Eclipse TMF (Textual 

Modeling Framework) project and it enables creation of domain specific 

languages from grammar definitions. After writing the grammar, Xtext language 

generator is run and it builds full implementation of the domain specific language 

for the written grammar. The DSL implementation runs on Java virtual machine. 

After generation, the DSL implementation is ready to be exported as plug-in to 

Eclipse. If required, the generated Java code may be modified before exporting. 

For example, we modify it in order to add well-formedness rules to our language 

model. The language generator generates empty validation class for a model. We 

implement validation class for a viewpoint with the constraints of that viewpoint 

that cannot be satisfied by metamodel definition. 

The grammar definition is in fact a metamodel definition where textual concrete 

syntax is embedded in it. The Xtext language generator extracts the metamodel 

from grammar and outputs it as Ecore metamodel. We use this Ecore metamodel 

as the abstract syntax definition while defining visual concrete syntax for our 

DSL. 

In order to explain the process of defining visual concrete syntax for our DSLs, 

we need to introduce some graphical modeling tools. Traditionally, GMF 

(Graphical Modeling Framework) tools [16] are used in order to define visual 

concrete syntax based on an Ecore metamodel.  GMF tools provide a set of 

generative components for generating diagram editors in Eclipse. However, the 

process of defining a visual editor using GMF is a bit complex and requires 

knowledge of low level details related to editor. That is why; we use the tool 

EuGENia [12] that is introduced in order to raise the level of abstraction in GMF. 

It automatically generates required models for GMF diagram generation from a 

single annotated Ecore metamodel.  In order to be able to annotate the Ecore 

metamodel with visual concrete syntax information, we utilize EMFatic.  



77 

 

With the help of EMFatic tool, the viewpoint definer annotates the Ecore 

metamodel with visual concrete syntax information. This annotation is done using 

a special language provided by EuGENia. Shortly, in the annotation process, the 

viewpoint definer states which elements of metamodel are represented by which 

graphical notations. The resulting Ecore metamodel is given as an input to 

EuGENia generator. Eugenia generates required models for GMF diagram editor 

generation. From those models, GMF diagram editor is directly generated. 

Lastly, both textual and visual editors defined for viewpoint are exported as plug-

ins to Eclipse. A view modeler can use those editors to model architecture views 

based on the viewpoint. Both visual and textual models run on the same model 

instance, that is why, a change to one of those models affects both models. 

5.2. Using Save-Bench 

As described in the previous section the Save-Bench tool runs on the Eclipse 

Platform. It consists of a set of predefined DSLs for modeling architectural views. 

The tool provides visual and textual editors that runs based on those DSLs. In this 

section, we describe the tool and show how it can be used to model architectural 

views. 

In order to use the languages provided by Save-Bench, the view modeler must 

first open an empty project. Then, the desired view model files can be created by 

using the file creation wizard. A sample view from Eclipse’s file creation wizard 

showing the SAVE category that we have added is shown in Figure 5.2. In order 

to create architectural views using textual concrete syntax, the model files must be 

created. In order to use visual concrete syntax, diagram files must be created.  

 



78 

 

 

Figure 5.2. SAVE-Bench model file creation wizard 

Figure 5.3 shows a sample screenshot from the SAVE-Bench tool. SAVE-Bench 

provides a user interface with 5 different panes; 1) Navigator Pane (top-left), 2) 

Outline Pane (bottom-left), 3) Properties Pane (bottom-right), 4) Textual Editor 

Pane (middle), and 5) Visual Editor Pane (right). Navigator Pane is for managing 

view models. All of the views created for the architecture are listed there. The 

views can be opened or new views can be created using Navigator Pane. Outline 

Pane shows the current structure of selected view as a list. Properties Pane is 

useful when using visual editor and it enables the view modeler to modify the 

properties of elements for which visual concrete syntax is not defined. 

The textual editor pane enables modeling the view by writing model code. The 

language for model code was previously defined by grammar of DSL for that 

view. Help documentation is provided for each view, in order to explain the 

syntactic rules to be followed while modeling that view textually. The textual 

editor eases the view modeler’s task by providing highlighting and auto-

completion functionality. The keywords specified for a view such as module are 

highlighted by textual editor. Also, while writing the model code, the auto-

completer guides the view modeler. 

 



79 

 

Navigator 
Pane

Textual 
Editor

Visual 
Editor

Outline
Pane

Properties 
Pane

 

Figure 5.3. Snapshot of the SAVE-Bench tool for modeling architectural views 

The visual editor pane enables modeling the view by using diagram components 

in a drag-and-drop manner using the provided tool palette. When a model is 

created using visual editor, the textual model is automatically created for that. The 

visual editor is useful for view modeler’s that are not familiar with the syntactic 

rules and constraints imposed by textual editor. Visual concrete syntax is mostly 

developed for only elements and relations; it does not support to manage details of 

them. The properties pane is useful for defining those details (e.g. interface 

visibility property of a module) for which visual concrete syntax is not defined. 

The visual and textual models runs on the same virtual model, that is why, when 

any one of them are changed, the other is also affected by that change. 

Project Creation: The tool can be used to document the views for an architecture 

for a given software project. An Eclipse workbench is started in which the Save-

Bench plug-in is already installed. The tool offers a so-called project wizard in 

which the project details such as, the name and location of the project is specified. 

In addition, first one of the available architecture framework approaches (e.g. 



80 

 

V&B) is selected, and then the viewpoints that are necessary for the project. The 

selection of the viewpoints can be carried out as defined by the architectural 

viewpoint selection process in [7]. The tool also provides means to define the 

details of the stakeholders and their interest for the particular views. 

Definition of Textual Architectural Views: The textual model for a view is 

constructed obeying the syntactic rules that are defined by the corresponding 

DSL. An explanation of those rules for each view is provided in the help section 

menu prepared for Save-Bench project. When the syntactic rules are not satisfied 

in the designed model, errors and warnings are given. 

Generation of Visual View: After defining the textual view model, the visual 

form of it can be generated. For this, first the textual model file needs to be 

selected from Project Explorer window. After which diagram creation wizard can 

be started. In the wizard, metadata for the diagram such as target folder and 

diagram root element is specified and the selected view is created and opened. 

The user can modify the view using either textual or visual model. Whenever one 

of these models is modified, the other one is automatically updated. 

Definition of Visual Architectural View: Instead of generating visual model 

from textual model, the visual model can also be defined from scratch. Using new 

file creation wizard of Eclipse, the desired diagram type is selected. The 

architectural view is modeled as diagram using the “Palette”. No generation is 

required for getting textual model from visual model. When visual model is 

created, the textual model is automatically created and updated according to 

modifications on visual model. 

A screenshot from Save-Bench project is seen Figure 5.4. Work assignment view 

of architecture is defined textually and visually.  



81 

 

 

 

Figure 5.4. SAVE-Bench screenshot 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

 

 

 

 

Chapter 6 

 

 

Automatic Architecture Document 

Generation 

 

 
Defining DSLs for viewpoints is a way of formalizing the viewpoints. We can 

benefit from this formalization in various ways such as automatic model 

validation, model generation etc. In this section, we will explain how we used the 

DSLs for viewpoints to support automatic architecture documentation generation. 

Every architecture needs a documentation to guide architecture stakeholders about 

how to benefit from the architecture and clarify ambiguous points. Architecture 

documentation is a communication artifact for all stakeholders and it is used 

during the whole lifecycle of the architecture. It contains both natural language 

descriptions about system and formal architecture models.  We utilize our DSLs 

for architecture viewpoints in order to automatically generate the architecture 

view related part of the architecture documentation. The generation is done via 

Model-to-Text (M2T) transformation. 

A model transformation takes as input a model that conforms to a given 

metamodel and produces as output another model that conforms to another 

metamodel. A M2T transformation is a special case of model transformation 

where target is just strings. We applied model-to-text transformation on the view 



83 

 

models in order to generate architecture documentation. Figure 6.1 shows the 

process for generating architecture document from view models.  

 
 

 
 

Architectural 

View

Architecture

Documentation

KEY
View x Transformation

model flow Conforms torefers

ViewsToDocument

Transformation

 Meta-Model

Document DSLArchitectural

Viewpoint

 

Figure 6.1. Model-to-text transformation pattern for architecture documentation 

generation 

A set of architecture views is given as input to ViewsToDocument transformation 

engine. Each view conforms to its viewpoint. The engine transforms the required 

information to target strings and combines them into architecture documentation. 

The output model conforms to Document DSL which describes the organization 

of knowledge that is collected from architectural views. We decided to organize 

the knowledge as follows: A view is documented with rationale behind producing 

that view, the stakeholders interested in that view and an element catalog. Since 

our view models do not have rationale and stakeholder information, we left those 

fields blank in the generated document for the architect to fill in after generation is 

completed. An element catalog lists the elements used in the view together with 

natural language explanation and some selected important properties of elements. 

In order to better explain the view to document transformation process, we present 

Figure 6.2. We need to have our view models at hand before we run 

transformation. The architect is responsible for defining the view models or 

ensuring they are already defined by the responsible stakeholders, selecting the 

viewpoint types to give as an input to transformation engine, running 

transformation and doing final revision on the generated architecture document. 

The transformation engine for each viewpoint is different, so, they are run 

separately. The output of a transformation is output text which is appended to the 



84 

 

end of output document. After the document is generated the architect needs to do 

review the documentation to fill in blank parts such as rationale for view, 

stakeholders and view model figures etc. if required.  

View Model 1
View Model 1

View Model 1

Transformation for 
Viewpoint 1

Architecture 
Documentation

Defin
e

 view m
odels

Run document generator
 for selected viewpoints

Do final revisions 

on the document

 

Figure 6.2. Architecture documentation generation process 

So far, we have explained the overall process of generating architecture 

documentation from views. Here, we will go further to explain the tools and 

techniques we used when defining the architecture document generator. The 

transformation language we have used is Xpand [38] which is part of the Eclipse 

M2T project. It allows defining templates for transforming models to texts. An 

example transformation template that is written for decomposition view is shown 

in Figure 6.3.  



85 

 

 

Figure 6.3. M2T transformation template for decomposition viewpoint 

The first line shows that uses metamodel is imported. “main” template is defined 

for Model which denotes a decomposition view model. The output file is 

indicated on 5th line of the code as archdoc.doc. The strings that will be directly 

printed on the output document are freely written. The values of model elements 

are taken in «..» block.  FOREACH blocks are used to traverse list of model 

elements. For example, the FOREACH block on 18th-20th line of the code 

traverses the elements of decomposition model and prints required model values 

such as element name, explanation. EXPAND statement calls the write element 

info block, which recursively traverses elements and subelements of the view 

model and writes information about them. The explanation of a view element is 

defined as property in the view model where we have reserved “expl” named 

property for this purpose. In the document generator for decomposition view, we 

only pass “expl” named properties to output document as element explanation. 

For different views, we sometimes needed to pass other selected properties to 



86 

 

output document. The transformation definition for each viewpoint of Save-Bench 

is given in Appendix A. 

The decomposition view part of sample generated architecture documentation is 

shown in Figure 6.4. 

 

Figure 6.4. Decomposition view part of generated architecture documentation 

Figure 6.5 shows the generation template for pipe and filter viewpoint. Here no 

expand statements are used recursively since there is not recursively nested 

elements in this model. Names and explanations of the filters are listed, and then 

the pipes are listed showing that from which filter they do flow data to which 

other filter. The pipes can also have explanations. Figure 6.6 shows the pipe and 

filter part of the generated output document.  



87 

 

 

Figure 6.5. M2T transformation template for pipe and filter viewpoint 

 
Figure 6.6. Pipe and filter view part of generated architecture documentation 

 

 



88 

 

 

  

 

Chapter 7 

 

 

Related Work 

 

 
Architecture description languages (ADLs) have been proposed to model 

architectures. For a long time there have been little consensus on the key 

characteristics of an ADL. Different types of ADLs have also been introduced. 

Some ADLs have been defined to model a particular application domain, others 

are more general-purpose. Also the formal precision of the ADLs differ; some 

have a clear formal foundation while others have been less formal. Several 

researchers have attempted to provide clear guidelines for characterizing and 

distinguishing ADLs, by providing comparison and evaluation frameworks. 

Medvidovic and Taylor [27] have proposed a definition and a classification 

framework for ADL which states that an ADL must explicitly model components, 

connectors, and their configurations. Furthermore, they state that tool support for 

architecture-based development and evolution is needed. These four elements of 

an ADL include other sub-elements to characterize and compare ADLs. The focus 

in the framework is thus on architectural modeling features and tool support. In 

adopting a software language engineering approach we have focused on the three 

language elements of abstract syntax, concrete syntax and static semantics. In fact 

we could analyze also existing ADLs based on the approach in this thesis. That 

could be complementary to earlier evaluations of ADLs.  



89 

 

Model-driven development and language engineering concepts have had their 

impact on architectural modeling. ACME was one of the earlier ADLs that was 

developed as an architecture interchange language across ADLs . ACME has 

resulted from an analysis of notations for modeling architectures and was 

considered as the least common denominator of the existing ADLs. Because ADL 

would support the mapping of architectural specifications from one ADL to 

another, it would also enable integration of support tools across ADLs. Mapping 

between ADLs is a special case of model transformations as defined in the model-

driven software development. A similar problem can occur in mappings of 

viewpoints of different viewpoint frameworks. Currently there is no explicit 

support for this in the literature. Our vision in this thesis is that once we have 

defined viewpoints as domain specific languages then this would also ease the 

mapping among different views.  A viewpoint similar to ACME should then be 

defined using software language engineering techniques. We consider this as part 

of our future research. 

xADL[18] has been introduced to support modularity and extensibility of 

architectural modeling. Despite earlier ADLs xADL is not a single fixed ADL but 

encapsulates various ADL features in modules that can be composed to form new 

ADLs. This is achieved by using the extension mechanisms provided by XML 

and XML schemas. xADL forms the basis for the ArchStudio 4 [18], an open-

source software and systems architecture development environment including 

tools for modeling, visualizing, analyzing and implementing software and systems 

architectures. It is based on the Eclipse open development platform. Similar to our 

tool it is an architecture meta-modeling environment that can be used to define 

new views. In ArchStudio, new viewpoints could be defined by extending the core 

language. In our approach we focus on the software language engineering 

elements of abstract syntax, concrete syntax and static semantics. In addition 

viewpoints can be defined from scratch using Xtext or extended. 

In addition to proper definition of viewpoints several authors have indicated the 

need for integration of viewpoints. For this the relations among architectural 



90 

 

viewpoints and views need to be made explicit. A good overview and motivation 

for characterizing the relations among views is given by Boucké et al. [4]. They 

indicate that in the current literature on architecture view modeling relations 

among architectural views are not first-class abstractions. Based on a literature 

study Boucké et al. propose a framework for analyzing approaches to relations 

between views in three dimensions: usage, scope and mechanism. Each of the 

criteria focuses on a particular aspect of view relations. We believe that most of 

the issues addressed in [4] can be mainly achieved by adopting a software 

language engineering approach. In addition to specifying architectural views we 

could also define the relations among views. This is not addressed yet in our work 

but we will address this in the future. 

Tekinerdogan et al. [36] has discussed the impact of evolution of concerns in 

architectural views. In case of evolution of the software system the related 

architectural views need to be adapted accordingly. To synchronize the 

architectural views it is necessary that the dependency links among the 

architectural concerns in the architectural views can be easily traced. They have 

documented explicit trace relations between architectural concerns, the 

architectural elements that address the concerns, and between architectural 

elements in general. In case of evolution of concerns one can follow the trace 

links to update and synchronize architectural views, keeping the software 

architecture consistent. In this thesis, we have now an approach for more formally 

specifying the viewpoints. Since architectural views can now be interpreted by the 

tool, we can now better provide support for automatic impact analysis over the 

architectural views and the (semi-) automatic update and synchronize architectural 

views.  

So far, in the domain of software architecture the notion of architectural 

viewpoints has been basically viewed at the level of blueprints. Yet, in the 

enterprise architecture domain several authors have focused on the formalization 

of architectural viewpoints. Different attempts have been made before to model 

viewpoints as domain specific languages. 



91 

 

ArchiMate [2] is an enterprise architecture (EA) modeling language that is 

specified by concepts that focus on business, applications and technology 

domains. Those concepts form the base metamodel of ArchiMate language. A set 

of viewpoint languages are defined by composing the concepts available in the 

metamodel. Contrary to their approach, our viewpoint languages does not depend 

on a predefined set of concepts, each viewpoint has an independent language that 

defines its own concepts. This design choice makes it easy to introduce new 

viewpoints to the framework. However, it is impossible to define new viewpoints 

in ArchiMate if the required concepts are not available at the base metamodel. An 

additional extension mechanism is needed for this purpose [32].  

Another example to attempts on formalizing EA viewpoints is about RM-ODP 

viewpoints. Vallecillo et al. initially focused on formally specifying the abstract 

languages provided by viewpoint specifications using a rewriting logic based 

framework Maude [10]. Later on, they also tackle the viewpoint formalization 

problem from model-driven development perspective and defined UML profile 

for viewpoints of RM-ODP [19] [33]. Lastly, they define textual notation for ODP 

specifications together with tool support [15]. The main difference of their 

approach and our study is the level of formality of the targeted viewpoint 

specifications. RM-ODP is specified by a standard that precisely defines the 

syntax and semantics of the language. So, the task of formalizing RM-ODP 

viewpoint specifications is transforming the present languages to executable 

languages and defining notations for using the language. However, in our work, 

we also address viewpoint specifications those are not specified precisely as 

languages. We offer software language engineering as a method for lifting 

existing viewpoint specifications to formal language level and provide a complete 

description of the method. 

 

 

 



92 

 

 

 

 

Chapter 8 

 

 

Conclusions 

 

 
The discipline of software architecture description has substantially evolved in the 

last decades. We can characterize the evolution from the following two 

perspectives.  

First of all, the awareness that architecture should be modeled using multiple 

views. Having multiple views of the architecture helps to separate the concerns 

and as such support the modeling, understanding, communication and analysis of 

the software architecture for different stakeholders. In the literature, initially 

views were not explicit, later a fixed set of viewpoints has been proposed to model 

and document the architecture. Because of the different concerns that need to be 

addressed for various systems, the current trend recognizes that the set of views 

should not be fixed but open-ended. The second dimension of evolution considers 

the formal precision of the architectural descriptions. Initially software 

architecture was represented using arbitrary box-and-lines notations leading to 

ambiguous interpretations. Later on, it was acknowledged to provide more formal 

support for architectural modeling, both visually and textually. 

The work that we have presented in this thesis aims to elaborate on the evolution 

of these two dimensions. To provide an open ended-viewpoint approach in which 

viewpoints are formally specified we have stated that a software language 



93 

 

engineering approach is necessary. The key premise behind this assumption is that 

viewpoints are in essence domain specific languages, and as such should be 

considered and developed like that. To validate our statement we have analyzed 

the viewpoints in the Views and Beyond approach, and defined all these 

viewpoints as domain specific languages. We have compared both the first edition 

and second edition of the Views and Beyond approach and illustrated the 

differences in formal precision.  

We believe that by adopting a software language engineering approach for 

architectural viewpoints we have also shown the connection with software 

architecture design modeling and the fields of software language engineering and 

model-driven software development in general. We hope that this work has paved 

the way for further research in this direction.  

In our future work we will apply the same approach to other architecture 

viewpoint frameworks. The V&B approach was a case study for us but we do not 

foresee serious obstacles in applying the same approach for other software 

architecture viewpoints and enterprise architecture viewpoints. We will elaborate 

on the tool and consider the integration of viewpoints for nonfunctional concerns. 

Further, we plan to enhance the tool for supporting architectural analysis.  

 

 

 

 

 

 

 

 



94 

 

 

 

 

Bibliography 

 
[1]  Acceleo – transforming models into code, http://www.eclipse.org/acceleo/, last 

accessed on Sep, 2012. 

[2]  Archimate 1.0 Specification, The Open Group, Tech. Rep. C091, Feb. 2009.  

[3]  J. Bézivin. On the Unification Power of Models. Software and System 

Modeling (SoSym) 4(2):171-188, 2005. 

[4]  N. Boucké, D. Weyns, R. Hilliard, T. Holvoet, A. Helleboogh. Characterizing 

relations between architectural views. In: Proc. Of European Conference on 

Software Architecture (ECSA 2008). Paphos, Cyprus, September 29 - October 01, 

Springer, LNCS, 2008. 

[5]  A.W. Brown, Model driven architecture: principles and practice. SoSyM 3(3), 

314–327, 2004. 

[6]  P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J. 

Stafford. Documenting Software Architectures: Views and Beyond. First Edition. 

Addison-Wesley, October 2002. 

[7]  P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, 

R. Nord, J. Stafford. Documenting Software Architectures: Views and Beyond. 

Second Edition. Addison-Wesley, 2010. 

[8]  A. van Deursen, P. Klint, J. Visser. Domain-Specific Languages: An 

Annotated Bibliography, 2000. 

[9]  DoD Architecture Framework, U.S. Department of Defense, 

http://dodcio.defense.gov/dodaf20.aspx, last accessed on Sep, 2012. 

[10]  F. Durán and A. Vallecillo. Formalizing ODP Enterprise specifications in 

Maude. Computer Standards & Interfaces, vol. 25, no. 2, pp. 83–102, Jun. 2003. 

http://www.eclipse.org/acceleo/
http://dodcio.defense.gov/dodaf20.aspx


95 

 

[11]  Eclipse Modeling Framework Web Site, 

http://www.eclipse.org/modeling/emf/, last accessed on Sep, 2012. 

[12] Eclipse Modeling Framework Technology – EMFatic Project, 

http://www.eclipse.org/modeling/emft/?project=emfatic, last accessed on Sep, 

2012. 

[13]  EuGENia, http://www.eclipse.org/gmt/epsilon/doc/eugenia/, last accessed 

Sep, 2012. 

[14]  M. Fowler, S. Scott, G. Booch. UML distilled, Object Oriented series, 179 p. 

Addison-Wesley, Reading, 1999. 

[15]  D. R. González, A. Vallecillo, J. R. Romero. On the Synchronization of ODP 

Textual and Graphical Specifications, In Proc. Of WODPEC 2010, pp. 376-381, 

Vitoria, Brazil, 2010. 

[16] Eclipse Graphical Modeling Framework, http://www.eclipse.org/gmf/, last 

accessed on Sep, 2012. 

[17] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. 

Addison-Wesley, NJ, USA. 

[18] ISR, Institute for Software Reseach. ArchStudio 4.0 tool set for the xADL 

language, http://www.isr.uci.edu/projects/archstudio/, last accessed on Sep, 2012. 

[19] [ISO/IEC 10746-2:1996] Information Technology - Open Distributed 

Processing - Reference Model: Foundations (ISO/IEC 10746-2). 1996. 

[20] [ISO/IEC 42010:2007] Recommended practice for architectural description 

of software-intensive systems (ISO/IEC 42010). (identical to ANSI/IEEE 

Std1471–2000), July 2007. 

[21] J. Kienzle, N. Guelfi and S. Mustafiz. Crisis Management Systems A Case 

Study for Aspect-Oriented Modeling. In Transactions on aspect-oriented software 

development VII, Springer-Verlag, Berlin, 2010. 

[22] F. Jouault, and I. Kurtev. Transforming Models with ATL,  Model 

Transformations in Practice Workshop, October 3rd 2005, part of the MoDELS 

2005 Conference. 

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emft/?project=emfatic
http://www.eclipse.org/gmt/epsilon/doc/eugenia/
http://www.eclipse.org/gmf/
http://www.isr.uci.edu/projects/archstudio/


96 

 

[23] A. Kleppe. Software Language Engineering: Creating Domain-Specific 

Languages Using Metamodels. Addison-Wesley Longman Publishing Co., Inc., 

Boston, 2009. 

[24] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 

12(6):42–50, 1995. 

[25] T. Kuehne. Matters of (meta-) modeling.  Software and System Modeling 

5(4): 369-385, 2006. 

[26] A.J. Lattanze. Architecting Software Intensive Systems: A Practitioner’s 

Guide, Auerbach Publications, 2009. 

[27] N. Medvidovic and R. N. Taylor. A classification and comparison 

framework for software architecture description languages, IEEE Trans. Software 

Eng., vol. 26, no. 1, pp. 70–93, 2000. 

[28] S.J. Mellor, K. Scott, A. Uhl, D. Weise. MDA Distilled: Principle of Model 

Driven Architecture, Addison Wesley, Reading , 2004. 

[29] P.A. Muller, F. Fondement, and B. Baudry. Modeling Modeling, In: A. 

Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 2–16, 2009. 

Springer-Verlag Berlin Heidelberg, 2009. 

[30] OMG: Model Driven Architecture (2003). http://www.omg.org/mda/, last 

accessed on Sep, 2012. 

[31]    OMG, MOF 2.0 Query/Views/Transformations RFP, OMG  document 

ad/2002-04-10, 2002. 

[32] C. Peña, J. Villalobos. An MDE Approach to Design Enterprise 

Architecture Viewpoints, IEEE 12th Conference on Commerce and Enterprise 

Computing (CEC), vol., no., pp.80-87, 2010. 

[33] J. R. Romero, J. M. Troya, A. Vallecillo. Modeling ODP Computational 

Specifications Using UML, The Computer Journal 51: 435-450, 2008. 

[34] N. Rozanski and E.Woods. Software Systems Architecture – Working with 

Stakeholders using Viewpoints and Perspectives. Addison-Wesley, 2005. 

[35] T. Stahl, M. Voelter. Model-Driven Software Development, Addison-

Wesley, 2006. 

http://www.informatik.uni-trier.de/~ley/db/journals/sosym/sosym5.html#Kuhne06
http://www.informatik.uni-trier.de/~ley/db/journals/sosym/sosym5.html#Kuhne06
http://www.omg.org/mda/


97 

 

[36] B. Tekinerdogan, C. Hofmann & M. Aksit. Modeling Traceability of 

Concerns for Synchronizing Architectural Views, in Journal of Object 

Technology, vol. 6, no. 7, Special Issue: Aspect-Oriented Modeling, pages 7–25,  

2007. 

[37] TOGAF 1995 -The Open Group Architecture Framework, Version 8.1.1., 

1995. 

[38] Xpand, Model-to-Text transformation language,  

http://www.eclipse.org/modeling/m2t/?project=xpand, last accessed on Sep, 2012. 

[39] Xtext – Language Development Framework, http://www.eclipse.org/Xtext/,  

last accessed on Sep, 2011. 

[40] J.A. Zachman. A Framework for Information Systems Architecture. IBM 

Systems Journal, Vol.  26. No 3, pp. 276-292, 1987. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/


98 

 

 

 

 

Appendix A 

 
Model-to-Text transformation template for decomposition viewpoint 

 
«IMPORT org::xtext::example::mydsl::decomposition» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

__________________________________________________________________ 

 

«FOREACH elements AS e SEPARATOR '\n'-» 

«EXPAND writeElementInfo FOREACH elements-» 

«ENDFOREACH» 

 

«ENDFILE-» 

 

«ENDDEFINE» 

 

«DEFINE writeElementInfo FOR Element-» 

«name-»:«FOREACH properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

 

«EXPAND writeElementInfo FOREACH subelements-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for uses viewpoint 

 
«IMPORT org::xtext::example::mydsl::uses» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 



99 

 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Elements: 

«FOREACH elements AS e SEPARATOR '\n'-» 

«e.name-»:«FOREACH e.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

Relations: 

«FOREACH uses AS u SEPARATOR '\n'-» 

«u.source-» uses «u.target»«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for generalization viewpoint 

 
«IMPORT org::xtext::example::mydsl::generalization» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Elements: 

«FOREACH elements AS e SEPARATOR '\n'-» 

«e.name-»:«FOREACH e.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 



100 

 

 

Relations: 

«FOREACH relation AS r SEPARATOR '\n'-» 

«r.source-» is a «r.target»«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for layered viewpoint 

 
«IMPORT org::xtext::example::mydsl::layered» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Elements: 

«FOREACH layers AS l SEPARATOR '\n'-» 

«l.name-»:«FOREACH l.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

Relations: 

«FOREACH relation AS r SEPARATOR '\n'-» 

«l.source-» allowed to use «l.target»«FOREACH pp.properties AS p-

»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for aspects viewpoint 

 
«IMPORT org::xtext::example::mydsl::aspects» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 



101 

 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Elements: 

«FOREACH elements AS e SEPARATOR '\n'-» 

«e.name-»:«FOREACH e.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

Relations: 

«FOREACH crosscuts AS c SEPARATOR '\n'-» 

«c.source-» crosscuts «c.target» : «c.detail.expl» 

«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for pipe and filter viewpoint 
 

«IMPORT org::xtext::example::mydsl::pipe_and_Filter» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Filters: 

«FOREACH filters AS f SEPARATOR '\n'-» 

«f.name-»:«FOREACH f.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 



102 

 

Pipes: 

«FOREACH pipes AS pp SEPARATOR '\n'-» 

«pp.name-»:Flows data from «pp.filter1.name-» to «pp.filter2.name-

»«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for shared data viewpoint 

 
«IMPORT org::xtext::example::mydsl::shared_data» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Repositories: 

«FOREACH repository AS r SEPARATOR '\n'-» 

«r.name-»:«FOREACH r.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

DataAccessors: 

«FOREACH dataAccessor AS da SEPARATOR '\n'-» 

«da.name-»:«FOREACH da.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

Attachments: 

«FOREACH dataRead AS dr SEPARATOR '\n'-» 

«dr.name-»:Reads data from «dr.rp.name-» via «dr.da.name-» 

«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«FOREACH dataWrite AS dw SEPARATOR '\n'-» 

«dw.name-»:Writes data to «dw.rp.name-» via «dw.da.name-» 

«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 



103 

 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for client server viewpoint 
«IMPORT org::xtext::example::mydsl::client_server» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Servers: 

«FOREACH server AS s SEPARATOR '\n'-» 

«s.name-»:«FOREACH s.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

Clients: 

«FOREACH client AS c SEPARATOR '\n'-» 

«c.name-»:«FOREACH c.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

Attachments: 

«FOREACH attachment AS at SEPARATOR '\n'-» 

«at.name-»:Attaches «at.client.port-» to «at.server.port-» 

«FOREACH pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for deployment viewpoint 
«IMPORT org::xtext::example::mydsl::deployment» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 



104 

 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Elements: 

 

«FOREACH hardwareElements AS ee SEPARATOR '\n'-» 

«ee.name-»:«FOREACH se.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«EXPAND writeElementInfo FOREACH softwareElements-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

«DEFINE writeElementInfo FOR SoftwareElement-» 

«FOREACH softwareElements AS se SEPARATOR '\n'-» 

«se.name-»:«FOREACH se.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDDEFINE» 

 

«ENDFILE-» 

«ENDDEFINE» 

 

Model-to-Text transformation template for install viewpoint 
 

«IMPORT org::xtext::example::mydsl::install» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

__________________________________________________________________ 

 

«FOREACH directories AS d SEPARATOR '\n'-» 

«EXPAND writeElementInfo FOREACH directories-» 



105 

 

«ENDFOREACH» 

 

«ENDFILE-» 

 

«ENDDEFINE» 

 

«DEFINE writeElementInfo FOR Directory-» 

«name-»:«FOREACH properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

 

«EXPAND writeElementInfo FOREACH files-» 

«EXPAND writeElementInfo FOREACH components-» 

 

«ENDDEFINE» 

 

Model-to-Text transformation template for work assignment viewpoint 

 
«IMPORT org::xtext::example::mydsl::work_assignment» 

«EXTENSION templates::Extensions» 

 

«DEFINE main FOR Model-» 

«FILE "archdoc.doc"-» 

__________________________________________________________________ 

 

  «name-» VIEW 

__________________________________________________________________ 

 

  Stakeholders: 

 

  Rationale:  

__________________________________________________________________ 

   

Element Catalog 

 

Elements: 

«FOREACH softwareElements AS se SEPARATOR '\n'-» 

«se.name-»:«FOREACH se.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

«FOREACH environmentalElements AS ee SEPARATOR '\n'-» 

«ee.name-»:«FOREACH se.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

 

 

Allocations: 

«FOREACH allocation AS a SEPARATOR '\n'-» 

«a.software-» is allocated to «a.environment»«FOREACH 

pp.properties AS p-»«p.value-» 

 «IF p.name == "expl"-» 



106 

 

 «ENDIF-» 

«ENDFOREACH» 

«ENDFOREACH» 

«ENDFILE-» 

«ENDDEFINE» 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

 

Publications Related to This Thesis 
 

 

 

1. E. Demirli, B. Tekinerdogan. Software Language Engineering of Architectural 

Viewpoints, in Proc. of the 5th European Conference on Software Architecture 

(ECSA 2011), LNCS 6903, pp. 336–343, 2011. 

2. E. Demirli, B. Tekinerdogan. SAVE: Software Architecture Environment for 

Modeling Views. In Proc. of the 2011 9th Working IEEE/IFIP Conference on 

Software Architecture(WICSA '11). IEEE Computer Society, Washington, DC, 

USA, 355-358., 2011. 

3. B. Tekinerdogan, E. Demirli. Evaluation Framework for Software 

Architecture Viewpoint Approaches. Software and Systems Modeling, to be 

submitted. 


