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Abstract

This paper provides evidence for scaling laws in emerging stock markets. Estimated parameters
using different definitions of volatility show that the empirical scaling law in every stock market
is a power law. This power law holds from 2 to 240 business days (almost 1 year). The scaling
parameter in these economies changes after a change in the definition of volatility. This finding
indicates that the stock returns may have a multifractal nature.

Another scaling property of stock returns is examined by relating the time after a main shock
to the number of aftershocks per unit time. The empirical findings show that after a major fall
in the stock returns, the stock market volatility above a certain threshold shows a power law
decay, described by Omori’s law.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

For some years, the equilibrium models of financial markets, such as the Capital
Asset Pricing Model [1,2] and the Arbitrage Pricing Theory [3], and the efficient market
hypothesis have dominated the finance literature [4,5]. A common feature of empirical
work in this area is that the analysis is conducted keeping the time interval fixed. Also,
market participants are usually regarded as homogeneous entities with identical time
horizons.
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In the early 1960s, Mandelbrot [6] introduced fractal models to describe certain
features of financial and economic time series. In this approach, the dynamics of a
given time series is analyzed at different time scales (daily, weekly, monthly, etc.).
In other words, the object (time series) is viewed at different resolutions and certain
characteristics are noted at each resolution. As a result, certain regularities have been
discovered in most of the economic and financial data leading to further research
to explain these regularities. Recent studies on multiscale analysis of financial and
economic time series using new techniques [7—10] provide further empirical support to
the idea that the agents have different time horizons and that they operate at different
time scales. In other words, homogeneous market participants operating at a single time
scale is a rare exception, rather than a rule, according to empirical work.

Multiscale analysis of economic and financial data points out certain “scaling laws”,
such as a “pure power law” [11-18]. Although some of the empirical scaling laws do
not say anything specific about the data generating stochastic process, they are useful
because (i) they stimulate the search for interpretive frameworks, (ii) they impose dis-
cipline on theory formation (the theory must generate data consistent with the observed
scaling result), (iii) (they) give clues to properties of the space of possible underlying
data generating process [19].

Recently, some studies claim that visual power laws and empirical long memory
reported in the finance literature might be an artifact. LeBaron [20] provided a sim-
ple stochastic volatility model which is able to produce visual power laws and long
memory similar to those from actual return series using comparable sample sizes. He
pointed out that these are small-sample features for the stochastic volatility model,
since asymptotically the model does not posses these properties. However, Stanley and
Plerou [21] showed that the simple stochastic volatility model provided by LeBaron
[20] cannot produce power laws and long memory. (See, also, other articles on this
issue in the November 2001 issue of Quantitative Finance.)

Scaling behavior of financial time series is investigated by employing different meth-
ods in different studies [7,11-17,22-24]. One approach is to estimate the tail index. The
tail index estimation is accomplished by keeping the time interval of returns constant
and investigating the behavior of the tails of the distribution. For example, Gengay
and Selguk [8] studies the tail behavior of the return distributions in emerging markets
(same sample used in this study) in a value-at-risk framework. According to tail index
estimations in Ref. [8], the return distributions in emerging markets are fat-tailed and
the fat-tailness of returns is much bigger than what is observed in developed markets.

Another approach to study the scaling behavior of financial time series is accom-
plished by examining the dynamics of volatility (defined as absolute returns) as a func-
tion of the time interval on which the time series is measured. Matteo et al. [15,16]
use this approach to estimate the Hurst exponent of different financial time series in
several developed and developing economies. They show that the deviations from pure
Brownian motion is associated with the degree of development of the markets. Par-
ticularly, they found that there is a clear tendency for mature liquid markets to have
a Hurst exponent less than or equal to 0.5, whereas less developed markets shows a
tendency to have a Hurst exponent significantly greater than 0.5 [15].
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Recently, a series of papers investigates the behavior of volatility in financial markets
before and after big crashes. An early work by Sornette et al. [25] showed that the
implied volatility in the S&P500 after the 1987 financial crash has a power-law-periodic
decay. More recently, Lillo and Mantegna [26,27] showed that number of S&P500
index returns above a large threshold following a large shock is well described by a
power law function which is analogous to Omori’s law in geophysics.

In this study, the scaling behavior of emerging stock market returns is investigated
by examining the dynamics of volatility (defined as absolute returns) as a function of
the time interval on which the returns are measured. Furthermore, the scaling behavior
of volatility is examined for different powers of the absolute return series. This enables
us to obtain some information about the multiscaling and changing distribution charac-
teristic of the emerging stock market returns. Another contribution of the paper is that
we discover a scaling law of volatility after a major shock. Specifically, it is shown
that the volatility (described as absolute daily returns) above a certain threshold shows
a power-law decay after a major crash in these markets. The next section introduces the
data set and reports certain scaling properties of this sample. We conclude afterwards.

2. Data and estimation
2.1. Preliminary analysis

We study daily stock market data from Argentina, Brazil, Hong Kong, Indonesia,
Korea, Mexico, Philippines, Singapore, Taiwan and Turkey. The sampling period ends
in December 2000 for each country. The beginning date is determined according to
data availability in datastream, and extends as far back as 1973 (Hong Kong and
Taiwan). The tail behavior of the stock market returns in these countries has been
studied previously [28]. This study provides further insight about the scaling behavior
of the stock market returns in these emerging markets from a different perspective. The
descriptive statistics of daily stock returns in each country are presented in Table 1.
The daily returns are defined as

¥ip = log(x; /xi—1) = (logx;, — logx;,—1), (1)

where x;, is the daily closing value of the stock market index in country i on day ¢.

The average daily returns in Table 1 imply unusual (annual compound) returns as
high as 161 percent in Brazil and 77 percent in Turkey. This result should not be
surprising since these two countries experienced high rates of price inflation during the
sample period. The annual rate of inflation (consumer prices) in Brazil was over 2000
percent per year in 1993 and 1994 before it was stabilized under 10 percent later. The
annual rate of inflation (consumer prices) in Turkey fluctuated between 60 and 120
percent during 1988—1999.

According to the sample kurtosis estimates and the sample skewness, the daily
rate of returns are far from being normally distributed. The sample kurtosis estimates
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Table 1
Descriptive statistics of the daily returns, log(x;/x,—1) X 100, from nine emerging stock markets

n Mean Std Ku Sk Min Max
Argentina 1935 0.01 1.9 9.19 0.00 —13.6 11.9
Brazil 2086 0.37 3.0 10.56 0.54 —17.2 28.8
Hong Kong 7305 0.04 2.0 36.64 —1.43 —40.5 17.2
Indonesia 2085 0.04 1.1 16.92 —1.29 —11.8 6.7
Korea 2868 —0.02 2.1 7.36 0.27 —12.5 14.6
Mexico 1453 0.06 2.0 10.90 —0.20 —15.0 13.3
Philippines 1076 —0.02 1.5 6.78 0.10 -7.9 9.1
Singapore 3910 0.04 1.4 61.25 —-2.21 —-29.2 15.5
Taiwan 7305 0.04 1.9 11.82 0.09 —19.7 19.9
Turkey 3223 0.22 3.2 8.04 0.15 —19.8 30.5

n=sample size; Mean =sample mean; Std =standard deviation; Ku=kurtosis; Sk =skewness; Min=
minimum observed daily return; Max =maximum observed daily return. Source: Datastream. Sample
periods: Argentina: August 2, 1993, to December 29, 2000; Brazil: January 1, 1993, to December 29, 2000;
Hong Kong: January 1, 1973, to December 29, 2000; Indonesia: January 4, 1993, to December 29, 2000;
Korea: January 3, 1990, to December 29, 2000; Mexico: June 6, 1995, to December 29, 2000; Singapore:
January 4, 1985, to December 29, 2000; Taiwan: January 1, 1973, to December 29, 2000; Turkey: January
8, 1988, to December 29, 2000. Data source: Datastream.

(the lowest: 6.8 in Philippines and the highest: 61.2 in Singapore) indicate that the
return distributions in all the markets are fat-tailed. The sample skewness shows that
the daily returns have a symmetric distribution only in Argentina. In all other coun-
tries, the returns have either positive or negative skewness. The sample skewnesses are
negative in Hong Kong, Indonesia, Mexico and Singapore. This indicates that the asym-
metric tail extends more toward negative values than positive ones. Positive skewness
in other countries ranges from 0.09 (Taiwan) to 0.54 (Brazil).

Table 1 also shows the highest and lowest one-day return from each country. The
highest one-day positive returns are in Turkey (30.5 percent) and Brazil (28.8 percent).
The highest one-day losses are in Hong Kong (40.5 percent), Singapore (29.2 percent)
and Turkey (19.8 percent). Notice that given the sample standard deviation and the
mean of logarithmic returns, a normal distribution assumption would imply that the
probability of observing a 5¢ loss in a given day (as in Korea) is less than 107 while
the probability of observing a 10¢ loss in a given day (as in Indonesia) is 10723, In
addition to evidence provided by previous research [15,16,28]), the sample statistics
indicate once again that the stock market returns in these countries are far from being
normally distributed. Therefore, a Gaussian scaling of volatility, so called “square root”
formula, is not valid and the scaling behavior of the return distributions in each market
should be examined in more detail.

2.2. Scaling and multifractality

Following Mandelbrot [12] and Dacorogna et al. [7], the average volatility in each
stock market is measured as a certain power of the absolute returns observed over
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Fig. 1. (a-i) Scaling laws in different emerging stock markets. The mean absolute return, £|r¢|, is plotted as
a function of the aggregation period, At, on logarithmic scale in nine different emerging stock markets. The
aggregation periods are 1-15, 20, 60, 120 and 240 business days. The last aggregation period corresponds
to approximately 1 year.

different time intervals At¢:
{E[r| 1} = c(g) AP (2)

where E is expectations operator, c¢(q) and D(q) are deterministic functions of gq.
Dacorogna et al. [7] calls D(g) the drift exponent. For a Gaussian random walk, the
drift exponent is constant (0.5) regardless of the choice of volatility definition (different
gs). If the drift exponent is constant but different than 0.5 for different definitions of
volatility, the process is said to be unifractal (or uniscaling). A typical indication of
multifractality and changing distributions is to observe different drift exponents for
different definitions of volatility.

Fig. 1 plots the log of the mean absolute return, E|ry|, as a function of the log of
the aggregation period, Az, in nine different emerging stock markets. The aggregation
periods are 1-15, 20, 60, 120 and 240 business days. The last aggregation period
corresponds to approximately one year since there are around 260 business days in 1
year. It is clear that the empirical scaling law in every stock market is a power law
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Table 2
The estimated drift exponent D(g) in Eq. (2) and 95 percent bootstrap confidence intervals

D(1) D(2) D(3) D(4)
Argentina 0.55 £ 0.03 0.50 £ 0.03 0.45 £ 0.03 0.40 £ 0.03
Brazil 0.59 +0.03 0.54 £ 0.03 0.49 £ 0.02 0.43 +0.03
Hong Kong 0.57 £ 0.01 0.50 £ 0.01 0.41 £ 0.02 0.32 £0.03
Indonesia 0.56 +0.03 0.50 + 0.02 0.43 £ 0.04 0.36 + 0.04
Korea 0.55 £ 0.03 0.50 £ 0.02 0.45 £ 0.03 0.42 £ 0.03
Mexico 0.55 +0.04 0.50 = 0.04 0.44 + 0.04 0.39 + 0.05
Philippines 0.55 +0.04 0.50 £ 0.04 0.45 £ 0.04 0.41 £ 0.05
Singapore 0.57 £ 0.02 0.50 = 0.02 0.39 £ 0.03 0.29 4+ 0.04
Taiwan 0.56 + 0.02 0.50 £ 0.02 0.47 £ 0.03 0.43 £ 0.03
Turkey 0.55 £ 0.02 0.50 + 0.02 0.47 £0.03 0.43 +0.03
Simulation 0.50 + 0.02 0.50 £ 0.03 0.50 £ 0.03 0.50 + 0.03

The empirical drift exponent D(1) in column one is significantly greater than 0.5 for all countries. This
is in line with the results reported by Matteo et al. [15,16]. The empirical drift exponent changes for all
countries after a change in the definition of volatility (¢ = 2,3,4). This result implies that the distributions
are also changing. For sample periods and data source, see Table 1. The last row reports estimated drift
exponents from a simulated random walk with sample size 3000.

as all data points lie on a straight line. This power law holds from 2 to 240 business
days (almost 1 year).!

The estimated drift exponent D(gq) for different values of ¢ in Eq. (2) is presented
in Table 2. In order to obtain robust estimates, we changed the highest aggregation
factor from 5 to 15, 20, 60, 120 and 240 business days in our estimations and calcu-
lated the average drift exponent. In addition, 95 percent confidence intervals and drift
exponent estimates are obtained through the bootstrapping method [31]. The bootstrap
is implemented by sampling without replacement from the data to produce a new data
set each time and from this new data new estimates are calculated. The procedure is
replicated 100 times. Reported drift exponents in Table 2 are averages of these boot-
strap estimates which also utilized the changing highest aggregation period. In order
to check the robustness of this procedure, we generated a random walk series with
a sample size of 3000. Estimated draft exponents using the same procedure for this
simulated series in Table 2, last raw show that the procedure performs well.

The empirical drift exponent D(1) in column one is significantly greater than 0.5 for
all countries. This is in line with the results reported by Matteo et al. [15,16]. When we
change the definition of volatility from absolute returns (¢g=1) to the powers of absolute
returns (¢ =2,3,4), the empirical drift exponent changes for all countries and becomes
smaller with increasing g. Note that these volatility measures put more emphasis on the
tails than simple absolute returns. Similar result have been reported earlier for foreign
exchange rates of developed countries and Eurofutures in [7,17] which use the same

I Although it is not clearly visible in these plots, a small deviation from linearity is observed in some
countries especially at 5 and 10 days aggregation periods. This is probably due to strong weekly seasonality
in absolute returns in those countries. Although it is difficult to define an optimum seasonal adjustment
procedure in general [29], a seasonal filter, as in [22,30] might be employed to extract seasonality because
seasonal components are nonscaling, and may induce some bias in estimations.



312 F. Sel¢uk | Physica A 333 (2004) 306316

definitions of volatility in Eq. (2). The changing drift exponent might be interpreted
as an indication of the changing form of distribution under aggregation and also as a
sign of multifractality.

2.3. Aftershocks and Omori’s law

A major earthquake in a region is usually followed by smaller ones, labelled as
“aftershocks”. There are several approaches to describe the dynamics of aftershocks.
A well-known simple rule is the Gutenberg—Richter relation [32], which says that the
number of earthquakes of magnitude M or greater, N(M) is given by

logN(M)=a — bM , (3)

where @ and b are two constants. In several studies, b is found to be within the range
of 0.7-1 regionally. However, for larger geographical arcas and the world, the slope
parameter b is usually 1. Notice that fitting the tails of a return distribution in finance
literature is analogous to this relation.

Another approach relates the time after the main shock to the number of aftershocks
per unit time, n(¢). This is known as the Omori law [26,27,33]. Omori’s law states
that the number of aftershocks per unit time decays with power law n(¢) oc 7. In
order to avoid divergence at t =0, Omori’s law is rewritten as

n(t)=K(t+1)"?, (4)

where K and 7 are constants. By integrating Eq. (4) between 0 and ¢, the cumulative
number of aftershocks between the main shock and the time ¢ can be expressed as

N(1)=K[(t+ )77 = <'77]/(1 = p) (5)

when p # 1 and N(¢) =K In(¢/1 + 1) for p =1 [26].

Recently, a series of papers investigates the behavior of volatility in financial markets
after big crashes. An early work by Sornette et al. [25] shows that the implied volatility
in the S&P500 after the 1987 financial crash has a power law-periodic decay. More
recently, Lillo and Mantegna [26,27] showed that number of S&P500 index returns
above a large threshold after a large shock in the market is well described by a power
law function which is analogous to Omori’s law in Eq. (5).

In our sample countries, the two largest one-day drops (in percentage terms) in the
stock market during the sample period are considered to be “financial earthquakes”.
As a result, we have twenty major shocks from different markets. Table 3 gives the
dates of these “financial earthquakes”, corresponding daily percent loss, sample standard
deviation and relative shocks (percent loss divided by the sample standard deviation).
Each country in the sample except Hong Kong and Taiwan experienced a major shock
during 1997 or 1998. The largest one day fall in percentage terms is observed in
Hong Kong (33.3 percent, October 1987). The smallest one-day fall is Philippines (7.2
percent, January 1998). The relative shock measure, daily percent loss divided by the
sample standard deviation, indicate that these major shocks lie within the range of 4.5¢
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Table 3
Stock market crashes and Omori’s law
Date % Loss a Rel. Shock P

Argentina 27-Oct-97 12.7 1.9 6.7 1.05
Argentina 10-Sep-98 10.3 5.4 0.52
Brazil 20-Oct-97 15.0 3.0 5 1.32
Brazil 10-Sep-98 15.8 53 1.12
Hong Kong 26-Oct-87 333 2.0 16.7 1.04
Hong Kong 05-Jun-89 21.7 10.9 0.60
Indonesia 28-Oct-97 11.2 1.1 10.2 0.55
Indonesia 17-Apr-00 7.4 6.7 0.76
Korea 24-Nov-97 10.6 2.1 5 0.89
Korea 17-Apr-00 11.7 5.6 0.76
Mexico 02-Oct-95 12.4 2.0 6.2 1.41
Mexico 27-Oct-97 14.0 7 0.65
Philippines 28-Aug-97 7.6 1.5 5.1 0.58
Philippines 09-Jan-98 7.2 4.8 0.69
Singapore 10-Oct-87 13.1 1.4 9.3 0.63
Singapore 28-Oct-97 9.2 6.6 0.62
Taiwan 14-Aug-73 12.5 1.9 6.6 0.64
Taiwan 28-Mar-83 11.1 5.8 1.05
Turkey 03-Jan-90 17.9 3.2 5.6 0.98
Turkey 11-Nov-98 14.5 4.5 0.69

The table shows the two largest one day fall (in percentage) in each country during the sample period.
Daily percent loss and the sample standard deviation (¢) of logarithmic returns are also shown for each
country. Notice that given the sample standard deviation and the mean of logarithmic returns, a normal
distribution assumption would imply that the probability of observing a 5o loss in a given day (as in Korea)
is less than 10~ while the probability of observing a 10c loss (as in Indonesia) is 1023, The last column
shows the estimated values of parameter p in Eq. (5). For sample periods and data source, see Table 1. For
estimation purposes, the cumulative number of aftershocks for 100 days after the main shock is employed
except Indonesia (1997), Brazil (1998), Hong Kong (1989), Philippines (1998), Turkey (1990, 1998) where
the estimation periods were 200 days. An aftershock is defined as a daily absolute return greater than lo
(the sample standard deviation).

(Turkey, November 1998) and 16.7¢ (Hong Kong, October 1987). The dispersion of
relative shocks is small since most of them are around 60. Assuming a standard normal
distribution for the return series, the probability of observing a 6¢ loss in any given
day is approximately 10~'° (assuming 250 business days in one year, it corresponds
to one day in 40 million years)!

Having determined the dates of two major shocks in each country, an aftershock is
defined as daily absolute return greater than 1o immediately after the major shock. The
number of cumulative aftershocks N(¢) for = 100 is calculated and an estimate of p
in Eq. (5) is obtained for each country. The estimated exponent p differs from country
to country and from one aftershock to another aftershock period in the same country.
The p value is found to be within the range of 0.52 (Argentina, after September 1998
crash) to 1.41 (Mexico, after October 1997 crash). However, majority of estimated
exponents (14 cases out of 20) is less than 1, concentrating between 0.50 and 0.70.
Fig. 2 plots a sample of cumulative number of aftershocks, N, (dotted line) and the
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Fig. 2. Cumulative number of aftershocks and Omori’s Law in different emerging markets. Plots show the
cumulative number of aftershocks, N (dotted line) and the best fit of Eq. (5) for each market. An aftershock
is defined as a realized daily absolute return greater than lo (the sample standard deviation of logarithmic
returns). Plots shows 100 days after the crash of (a) 27-October-1997 in Argentina, (b) 20-October-1997
in Brazil, (¢) 26-October-1987 in Hong Kong, (d) 17-April-2000 in Indonesia, (e) 17-April-2000 in Ko-
rea, (f) 27-October-1997 in Mexico, (g) 9-January-1998 in Philippines, (h) 28-March-1983 in Taiwan and
(i) 3-January-1990 in Turkey. These crashes are one of the two biggest daily losses in each country during
the sample period. (See Table 2.)

best fit of Eq. (5) for each market. Clearly, the aftershock sequence in each market is
well described by the power law function in Eq. (5).

3. Conclusion

This paper provides evidence for empirical scaling laws in emerging stock market
returns. Estimated drift exponents for different definitions of volatility show that the
empirical scaling law in every stock market is a power law. This power law holds
from 2 to 240 business days (almost one year). The changing drift exponent after a
change in the definition of volatility in these economies indicate that the stock returns
may have a multifractal nature.

Another scaling property of stock returns in these economies is examined by relating
the time after a main shock to the number of aftershocks per unit time. The empirical
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findings show that after a major fall in the stock returns, the stock market volatility
above a certain threshold shows a power law decay, described by Omori’s law.
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