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ABSTRACT
A video based wildfire detection system that based on spatio-
temporal correlation descriptors is developed. During the
initial stages of wildfires smoke plume becomes visible be-
fore the flames. The proposed method uses background sub-
traction and color thresholds to find the smoke colored slow
moving regions in video. These regions are divided into
spatio-temporal blocks and correlation features are extracted
from the blocks. Property sets that represent both the spatial
and the temporal characteristics of smoke regions are used
to form correlation descriptors. An SVM classifier is trained
and tested with descriptors obtained from video data contain-
ing smoke and smoke colored objects. Experimental results
are presented.

1. INTRODUCTION

Most surveillance systems already have built-in simple de-
tection modules (e.g. motion detection, event analysis). In
recent years there has been significant interest in developing
real-time algorithms to detect fire and smoke for standard
surveillance systems [1]-[7]. Video based smoke detection
can be used to replace traditional point sensor type detectors,
since a single camera can monitor a large area from a dis-
tance and can detect smoke earlier than a traditional point
detector if a robust detection algorithm is used. Although
video based smoke detection is a promising alternative to tra-
ditional smoke detectors, it has some drawbacks that need
to be resolved before a perfect system is realized. Smoke
is difficult to model due to its dynamic texture and irregu-
lar motion characteristics. Unstable cameras, dynamic back-
grounds, obstacles in the viewing range of the camera and
lighting conditions also pose important problems for smoke
detection. Therefore current wildfire detection systems re-
quire human assistance and there is always room for im-
provement.

Smoke plume observed from a long distance and ob-
served from up close have different spatial and temporal
characteristics. Therefore, generally different algorithms are
designed to detect close range and long range smoke plume.

Jerome and Philippe [1, 2] implemented a real-time auto-
matic smoke detection system for forest surveillance stations.
The main assumption for their detection method is that the
energy of the velocity distribution of smoke plume is higher
than other natural occurrences except for clouds which, on
the other hand have lower standart deviation than smoke. In
the classification stage they use fractal embedding and linked
list chaining to segment smoke regions. This method was
used in the forest fire detector “ARTIS FIRE”, commercial-
ized by “T2M Automation”.

Another smoke detection method with an application to
wildfire prevention was described in [3]. This method takes
the advantages of wavelet decomposition and optical flow al-
gorithm for fire smoke detection and monitoring. The op-
tical flow algorithm is used for motion detection. Wavelet
decomposition based method was used to solve the aperture
problem in optical flow. After the smoke is detected and seg-
mented, smoke characteristics such as speed, dispersion, ap-
parent volume, maximum height, gray level and inclination
angle of the smoke can be extracted using the video frames
or image sequences.

Damir et. al. [4] investigated different colour space
transformations and feature classifiers that are used in a
histogram-based smoke segmentation for a wildfire detec-
tion system. They provide evaluations of histograms in
YCrCb, CIELab, HSI, and modified HSI colour spaces. They
use look up tables and two different naive Bayes classifiers
with different density estimation methods to classify the his-
tograms. The best performances are achieved with HSI and
RGB colour spaces when using the Bayes classifier. The
method described is one of the algorithms used in the In-
telligent Forest Fire Monitoring System (iForestFire) that is
used to monitor the coastline of the Republic of Croatia.

Qinjuan et. al. [5] proposed a method for long range
smoke detection to be used in a wildfire surveillance system.
The method uses multi-frame temporal difference and OTSU
thresholding to find the moving smoke regions. They also use
colour and area growth clues to verify the existence of smoke
in the viewing range of the camera.

In [6] a real-time wildfire detection algorithm is devel-
oped based on background subtraction and wavelet analysis.
In [7] an algorithm for long range smoke detection is devel-
oped to be used in a wildfire surveillance system. The algo-
rithm is an online learning method that updates its decision
values using the supervision from an oracle (security guard at
the watch tower). The main detection algorithm is composed
of four sub-algorithms detecting (i) slow moving objects us-
ing adaptive background subtraction, (ii) gray regions using
YUV colour space, (iii) rising regions using hidden Markov
models (HMM), and (iv) shadows using RGB angle between
image and the background. Decisions from sub-algorithms
are combined using the Least Mean Square (LMS) method
in the training stage.

This is a review article describing our ongoing research
in FP-7 FIRESENSE project [8]. Most smoke detection sys-
tems first find the moving regions using background subtrac-
tion. These regions are then analyzed spatially and tempo-
rally to detect the characteristics of smoke. In this work, we
use a different approach by combining color, spatial and tem-
poral domain information in feature vectors for each spatio-
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temporal block using region covariance descriptors [9, 10].
The blocks are obtained by dividing the smoke colored re-
gions into 3D regions that overlap in time. Classification of
the features is performed only at the temporal boundaries of
blocks instead of every frame. This reduces the computa-
tional complexity of the method.

In the following sections we describe the building blocks
of our algorithm.

2. BUILDING BLOCKS OF WILDFIRE
DETECTION ALGORITHM

Watch towers are widely available in forests all around the
world to detect wildfires. Surveillance cameras can be placed
in these surveillance towers to monitor the surrounding fore-
stal area for possible wildfires. Furthermore, they can be
used to monitor the progress of the fire from remote centers.

Cameras, once installed, operate at forest watch towers
throughout the fire season for about six months which is
mostly dry and sunny in Mediterranean region. It is usu-
ally not possible to view flames of a wildfire from a camera
mounted on a forest watch tower unless the fire is very near
to the tower. However, smoke rising up in the forest due to
a fire is usually visible from long distances. A snapshot of
a typical wildfire smoke captured by a watch tower camera
from a distance of 5 km is shown in Fig. 1.

Figure 1: Snapshot of a typical wildfire smoke captured by a
forest watch tower which is 5 km away from the fire.

Smoke at far distances exhibits different spatio-temporal
characteristics than nearby smoke and fire [11]-[12]. There-
fore different methods should be developed for smoke detec-
tion at far distances rather than using nearby smoke detection
methods described in [13].

The proposed wildfire smoke detection algorithm con-
sists of three main sub-algorithms: (i) slow moving ob-
ject detection in video, (ii) smoke-colored region detection,
(iii) correlation based classification.

2.1 Slow Moving Region Detection
For moving object detection we use a Gaussian mixture
model (GMM) based background subtraction method [14].
For a few seconds we update the background very fast and
after this learning duration we update the background very

slowly so that we can detect small and slow moving objects.
We also use a second GMM background model that is op-
timized to detect fast moving objects and use it to discard
ordinary moving objects.

2.2 Smoke Color Model
Smoke colored regions can be identified by setting thresh-
olds in YUV color space [7]. Luminance value of smoke
regions should be high for most smoke sources. On the other
hand, the chrominance values should be very low in a smoke
region.

The conditions in YUV color space are as follows:

Condition 1 Y > TY

Condition 2 |U −128|< TU & |V −128|< TV

where Y , U and V are the luminance and chrominance val-
ues of a pixel. The luminance component Y takes real val-
ues in the range [0,255] in an image and the mean values of
chrominance channels, U and V are increased to 128 so that
they also take values between 0 and 255. The threshold TY is
an experimentally determined value and taken as 128 on the
luminance (Y) component in this work. TU and TV are both
taken as 10.

2.3 Correlation Method
2.3.1 Correlation Descriptors for Videos

Covariance descriptors are proposed by Tuzel, Porikli and
Meer to be used in object detection and texture classification
problems [9, 10]. We propose temporally extended correla-
tion descriptors to extract features from video sequences.

Covariance descriptors provide very good description of
a given image region when the property set of a region in
an image can be described by a wide-sense stationary mul-
tivariate normal distribution [9]. Wide-sense stationarity is
a reasonable assumption for a smoke colored image regions
because such regions do not contain strong edges in video.
Therefore, covariance descriptors can be used to model spa-
tial characteristics of smoke regions in images. It is exper-
imentally observed that wide-sense stationarity assumption
is valid temporally as well. To model the temporal varia-
tion in smoke regions we introduce temporally extended and
normalized covariance descriptors in this article. To the best
of our knowledge spatio-temporal parameters have not been
used to construct covariance descriptors by other researchers.

Temporally extended correlation descriptors are designed
to describe spatio-temporal video blocks. Let I(i, j,n) be the
intensity of (i, j)th pixel of the nth image frame of a spatio-
temporal block in video and Luminance, ChrominanceU ,
ChrominanceV represent the color values of pixels of the
block. The property parameters defined in Equation (1) to
Equation (8) are used to form a covariance matrix repre-
senting spatial information. In addition to spatial parame-
ters we introduce temporal derivatives, It and Itt which are
the first and second derivatives of intensity with respect to
time, respectively. By adding these two features to the previ-
ous property set, correlation descriptors can be used to define
spatio-temporal blocks in video.

Yi, j,n = Luminance(i, j,n), (1)

Ui, j,n =ChrominanceU(i, j,n), (2)
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Vi, j,n =ChrominanceV (i, j,n), (3)

Ii, j,n = Intensity(i, j,n), (4)

Ixi, j,n =

∣∣∣∣∂ Intensity(i, j,n)
∂ i

∣∣∣∣ , (5)

Iyi, j,n =

∣∣∣∣∂ Intensity(i, j,n)
∂ j

∣∣∣∣ , (6)

Ixxi, j,n =

∣∣∣∣∂ 2Intensity(i, j,n)
∂ i2

∣∣∣∣ , (7)

Iyyi, j,n =

∣∣∣∣∂ 2Intensity(i, j,n)
∂ j2

∣∣∣∣ , (8)

Iti, j,n =
∣∣∣∣∂ Intensity(i, j,n)

∂n

∣∣∣∣ , (9)

Itti, j,n =
∣∣∣∣∂ 2Intensity(i, j,n)

∂n2

∣∣∣∣ (10)

2.3.2 Computation of Correlation Values in Spatio-
temporal Blocks

In this section details of correlation features computation in
video is described. We first divide the video into blocks
of size 10× 10×Frate where Frate is the frame rate of the
video. Computing the correlation parameters for each block
of the video would be computationally inefficient. We use the
first two sub-algorithms to find the candidate smoke regions.
Therefore, only pixels corresponding to the non-zero values
of the following mask are used in the selection of blocks. The
mask is defined by the following function:

Ψ(i, j,n) =
{

1 if M(i, j,n) = 1
0 otherwise (11)

where M(., .,n) is the binary mask obtained from the first two
sub-algorithms. In order to reduce the effect of non-smoke
colored pixels, only property parameters of pixels that are
obtained from the mask used in the estimation of the corre-
lation based features, instead of using every pixel of a given
block.

A total of 10 property parameters are used for each pixel
satisfying the color condition. To further reduce the compu-
tational cost we compute the correlation values of the pixel
property vectors

Φcolor(i, j,n) = [ Y (i, j,n) U(i, j,n) V (i, j,n) ]
T (12)

and

ΦST (i, j,n) =



I(i, j,n)
Ix(i, j,n)
Iy(i, j,n)
Ixx(i, j,n)
Iyy(i, j,n)
It(i, j,n)
Itt(i, j,n)

 (13)

separately. Therefore, the property vector Φcolor(i, j,n) pro-
duces 3∗4

2 = 6 and the property vector ΦST (i, j,n) produces
7∗8

2 = 28 correlation values, respectively and 34 correlation

parameters are used in training and testing of the SVM in-
stead of 55 parameters.

During the implementation of the correlation method, the
first derivative of the image is computed by filtering the im-
age with [-1 0 1] and second derivative is found by filtering
the image with [1 -2 1] filters, respectively. The lower or up-
per triangular parts of the correlation matrix, Ĉ(a,b), that is
obtained by normalizing the covariance matrix, Σ̂(a,b), form
the feature vector of a given image region. We use the cor-
relation matrix estimation formula given in Equation (15),
that can be started to calculate without waiting for the entire
data. The feature vectors are processed by a support vector
machine (SVM).

Σ̂(a,b) =
1

N −1

(
∑

i
∑

j
Φi, j(a)Φi, j(b)−CN

)
where (14)

CN =
1
N

(
∑

i
∑

j
Φi, j(a)

)(
∑

i
∑

j
Φi, j(b)

)

Ĉ(a,b) =


√

Σ̂(a,b) if a = b
Σ̂(a,b)√

Σ̂(a,a)
√

Σ̂(b,b)
otherwise

(15)

We also assume that the size of the image frames in video
is 320 by 240. If not the video is scaled to 320 by 240 in order
to run the smoke detection algorithm in real-time.

3. TRAINING AND TESTING

For training and testing, 10×10×Frate blocks are extracted
from various video clips. The temporal dimension of the
blocks are determined by the frame rate parameter Frate
which is between 10 and 25 in our train and test videos.
These blocks do not overlap in spatial domain but there is
50% overlap in time domain. This means that classification is
not repeated after every frame of the video. After the blocks
are constructed, features are extracted and used to form a
training set. A support vector machine (SVM) [15] is trained
for classification.

The classification is done periodically with the period
Frate/2. This decreases the cost of classification.

During the implementation, in each spatio-temporal
block, the number of smoke colored slow moving pixels,
∑i ∑ j ∑n Ψ(i, j,n), is found. If this number is higher than
or equal to 2

5 of the number of the elements of block (10×
10×Frate) then that block is classified as a smoke block. This
thresholding is done because only smoke colored pixels ac-
cording to the YUV color model described in [7] is used in
correlation analysis. If the number of possible smoke-pixels
is enough, then classification is done by the SVM classi-
fier using the augmented feature vector described in Sec-
tion 2.3.2.

In this article, 13 positive and 12 negative video clips are
used for training. Negative video clips contain smoke colored
moving regions. For positive videos (video clips containing
smoke) only parts of the video clips that contain smoke are
used.
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At the final step of our smoke detection method a confi-
dence value is determined according to the number of posi-
tively classified video blocks and their positions. After ev-
ery block is classified spatial neighborhoods of the block are
used to decide the confidence level of the alarm. If there is
no neighbor block classified as smoke, the confidence level
is set to 1. If there is a single neighbor block, which is clas-
sified as smoke, then the confidence level is set to 2. If there
are more than 2 neighbor blocks classified as smoke then the
confidence level of that block is set to 3 which is the highest
level of confidence that the algorithm provides.

4. EXPERIMENTAL RESULTS

The proposed system is compared with the wildfire detection
method in [6]. In the decision process, if the confidence level
of any block of the frame is greater than or equal to 2 then
that frame is marked as a smoke containing frame. Results
are summarized in Table 1 and Table 2 in terms of the true
detection and the false alarm ratios, respectively. In Tables 1
and 2 the true detection rate in a given video clip is defined as
the number of correctly classified frames containing smoke
divided by the total number of frames which contain smoke.
Similarly, the false alarm rate in a given test video is defined
as the number of misclassified frames, which do not contain
smoke divided by the total number of frames which do not
contain smoke.

Table 1: Correlation based method is compared with the
method proposed in [6] in terms of true detection rates in
video clips that contain smoke.

True Detection Rates

Video name New Method Old Method

posVideo1 726
768 = 94.53% 584

768 = 76.04%

posVideo2 215
260 = 82.69% 84

260 = 32.30%

posVideo3 307
419 = 73.26% 64

419 = 15.27%

posVideo4 292
430 = 67.90% 246

430 = 57.20%

posVideo5 774
1350 = 57.33% 780

1350 = 57.77%

posVideo6 324
360 = 90.00% 163

360 = 45.27%

posVideo7 124
210 = 59.04% 0

210 = 0.00%

posVideo8 268
545 = 49.17% 5

545 = 0.91%

Average 71.74% 35.59%

15 video clips are used to test the proposed system. First
8 videos contain actual wildfire smoke or artificial test fires
that we recorded and the remaining 7 videos do not contain
smoke but contain smoke colored moving objects like clouds
and shadows. In Table 1 the true detection rates of the two
algorithms are presented for the 8 videos containing smoke.
In Table 2 the false alarm rates of the two algorithms are
presented for the 7 videos that do not contain smoke.

Compared to the previous method the new method has
higher true detection rate in all video clips that contain ac-
tual smoke plumes. “posVideo7” and “posVideo8” are actual
forest fire videos recorded with cameras that are mounted on
high poles which shake in the wind when they are zoomed

(a) posVideo1 - new method (b) posVideo1 - old method

(c) posVideo5 - new method (d) posVideo5 - old method

(e) posVideo7 - new method (f) posVideo7 - old method

(g) posVideo8 - new method (h) posVideo8 - old method

(i) negVideo7 - new method (j) negVideo7 - old method

Figure 2: Detection results from test videos.

in. Since the old method [6] assumes a stationary camera
for background subtraction it cannot correctly classify most
of the actual smoke regions in these videos. Although the
true detection rate is low in some videos, we do not need
to detect all smoke frames correctly to issue an alarm. It is
enough to detect smoke in a short time without too many
false alarms. The first detection time is less than 10 seconds
in all the test video clips. In most of the videos that do not
contain smoke the new method has a lower false alarm rate
than the old method.

In Figure 2 the detection results of the new method and
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Table 2: Correlation based method is compared with the
method proposed in [6] in terms of false alarm rates in video
clips that do not contain smoke.

False Alarm Rates

Video name New Method Old Method

negVideo1 100
6300 = 1.59% 623

6300 = 9.88%

negVideo2 0
3500 = 0.00% 81

3500 = 2.31%

negVideo3 0
4000 = 0.00% 419

4000 = 10.47%

negVideo4 30
1500 = 2.00% 52

1500 = 3.46%

negVideo5 30
1000 = 3.00% 10

1000 = 1.00%

negVideo6 0
360 = 0.00% 0

360 = 0.00%

negVideo7 82
2900 = 2.83% 92

2900 = 3.17%

Average 1.34% 4.32%

old method are shown on some of the test videos. The new
method significantly improved detection results compared to
the old method.

The proposed method is computationally efficient. The
experiments are performed with a PC that has a Core 2 Duo
2.66 GHz processor and the video clips are generally pro-
cessed around 15-20 fps when image frames of size 320 by
240 are used. The processing speed might decrease when
there are too many smoke colored moving regions since this
increases the number of blocks that are classified by the
SVM.

The detection resolution of the algorithm is determined
by the video block size. Since we require two neighboring
blocks to reach the highest confidence level the smoke should
occupy a region of size 10 by 20 in video.

5. CONCLUSIONS

A real-time video smoke detection system is proposed that
uses correlation descriptors with an SVM classifer. An im-
portant contribution of this article is the use of temporal cor-
relation information in the decision process. Most smoke de-
tection methods use color, spatial and temporal information
separately, but in this work we use temporally extended cor-
relation matrices to use all the information together. The pro-
posed method is computationally efficient and it can process
320 by 240 frames at 15-20 fps in a standard PC.
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