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Abstract
Electrostatic force microscopy at cryogenic temperatures is used to probe
the electrostatic interaction of a conductive atomic force microscopy tip and
electronic charges trapped in localized states in an insulating layer on a
semiconductor. Measurement of the frequency shift of the cantilever as a
function of tip–sample bias voltage shows discrete peaks at certain voltages
when the tip is located near trap centres. These discrete changes in
frequency are attributed to one by one filling of individual electronic states
when the quantized energies traverse the substrate conduction band Fermi
energy as the tip–sample voltage is increased. Theoretical analysis of the
experiment suggests that such a measurement of the cantilever frequency
shift as a function of bias voltage can be interpreted as an AC force
measurement, from which spectroscopic information about the location and
energy of localized states can be deduced. Experimental results from the
study of a sample with InAs quantum dots as trap centres are presented.

1. Introduction

As the semiconductor device size continues to shrink,
new methods for characterization of electrical properties of
materials and novel devices on the nanometre scale are
required [1]. Detection of impurities, characterization of
complex material stacks and interfacial properties, non-
destructive electrical characterization of ultra-thin gate and
capacitor dielectrics and 3D dopant profiling are a few of the
challenges faced as the device size decreases to the nanometre
scale. The challenge of electrical characterization of novel
devices with smaller numbers of atoms motivates development
of a technique that provides qualitative information about
individual electronic states available within the devices.

Since its introduction [2], the atomic force microscope
(AFM) and its spin-off techniques have been widely used
in imaging and characterization of semiconductor surfaces.
Electrostatic force based imaging techniques [3] such as Kelvin
probe microscopy (KPM), scanning capacitance microscopy
(SCM) and scanning spreading resistance microscopy (SSRM)
among others have been used to electrically characterize
surfaces. Still, an in situ, non-destructive technique for
characterization of semiconductor surfaces and sub-surface

structures at the single electronic state level is greatly desirable.
Because of its high force sensitivity, AFM has been used to
detect the presence of individual electronic charges on the
sample surface or inside layers near the surface as well as
individual electron tunnelling events [4–7]. However, to be
able to use the AFM to characterize individual states we still
need to develop a method of obtaining information about
the location, energy and dynamics of states on or near the
semiconductor surface through force measurements. There has
been significant work on this subject using force and frequency
shift measurements to characterize localized states [8–10].

In this paper, to address this problem, we present a
technique based on the measurement of electrostatic forces
between a conducting AFM tip and charges localized at near-
surface electronic states. A conducting AFM tip is used both as
a gate electrode and as an electrometer that senses accumulated
charge on the sample. Measurement of electrostatic forces
between the tip and the sample as a function of the tip–sample
bias voltage provide information about the location, energy
and tunnelling dynamics of localized states. Regarding this
measurement technique as a spectroscopy, we refer to it as
electrostatic force spectroscopy (EFS) from here on. In the
following sections, we begin by formulating the problem,
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defining the sample structure to which this technique applies,
give a theoretical analysis of the EFS experiment and provide
experimental results.

2. Theoretical analysis of electrostatic force
spectroscopy of localized states

When a biased conducting AFM tip is brought near a
conducting sample surface, due to the finite tip–sample
capacitance, charges of opposite sign accumulate in the tip
and on the sample surface. This electrostatic interaction can
be measured through deflection of the cantilever or through
perturbation of its resonance frequency. If the sample is a
semiconductor or a layered semiconductor/insulator structure
with localized states, the electrostatic interaction between
the tip and the sample deviates from a simple capacitor
and the presence of localized states has to be accounted
for in the analysis of the electrostatic forces. Based
on a model of the sample, measurement of electrostatic
interaction as a function of tip location and tip–sample
bias voltage can provide data that can be inverted to give
information about the location and energy of localized states
or doping concentrations. Characterization of electronic
states associated with traps inside thin dielectrics, states at
semiconductor interfaces, states due to defects and the presence
of adsorbates are important for the semiconductor technology.
Therefore, we choose to restrict ourselves to a metal–insulator–
semiconductor configuration with low density of localized
states, as described in the following subsection.

2.1. Tip–sample configuration for an EFS experiment

The proposed sample configuration is schematically shown
in figure 1(a). The conductive AFM tip is placed above an
insulator-on-conductor structure, with a tip–sample separation
of zts. In an actual experiment, the insulating layer can be a
dielectric material deposited or grown on top of the highly
conductive region, or a thin dielectric film otherwise placed on
a flat conductive sample. In the analysis presented here, the
sample is assumed to be a monolithic semiconductor where
the conductive region and the insulating dielectric layer is
defined by doping. The band diagram in such a configuration
is illustrated in figure 1(b). The localized states can be due
to impurities, dislocations, interface traps or intentionally
introduced states due to the presence of quantum dots. The
sample structure presented here has certain benefits. The
localized states are inside an insulating layer so charge trapped
in these states is not screened by free carriers. Also, since there
is no doping in the top layer, the 3D potential profile generated
by the tip is simple to analyse analytically. Moreover, the
localized states can be charged and discharged by tunnelling of
carriers from the bulk through the insulator. This modulation
of the charge and resulting perturbation of the electrostatic
force forms the basis of the proposed detection method.

2.2. Electrostatic model for calculating local potentials

Analysis of the EFS scheme begins with a model that describes
the electrostatic force between the tip and sample and the
potential profile inside the insulating layer. The electrostatic
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Figure 1. Schematic diagram of the EFS experiment.
(a) Configuration of the tip and the sample that contains the states to
be studied. States with energies Ei at heights hi are located inside
an insulating layer (semi-insulating GaAs) on top of a highly
conductive ground plane (n+ GaAs). In the analysis and experiments
presented in this work, the sample is chosen to be a monolithic
semiconductor. The insulating and conducting regions are
determined by doping. (b) Illustration of the energy band diagram.
A filled state below the sample Fermi level Ef,sample is shown with a
filled ellipse. The states are dynamically charged and discharged by
tunnelling of carriers from the n+ GaAs Fermi sea as the local
potential is modulated.

problem described by the tip–sample system can be analysed
analytically through a piecewise model of the tip. The
charge density on the tip surface and the potential profile
in the insulating region can be calculated approximately by
modelling the tip as the union of a conic section and a
spherical section as shown in figure 2. The overall tip–sample
capacitance is assumed to be the sum of individual dihedral
capacitances [11] formed by infinitesimal surface elements on
the tip (shown as location (A) in figure 2) and corresponding
surface elements on the surface (location (B) in figure 2).

The sphere–cone model of the tip can be used to estimate
the local potential V (x, z) (see figure 2) inside the insulating
layer. The calculation of V (x, z) can be done by noting that
coordinate x is related to the geometrical model variable ϕ by
a single-valued function g(ϕ) as

x = g(ϕ) = r sin ϕ +
1 − cos ϕ

sin ϕ
[zts + r(1 − cos ϕ)]. (1)

The local potential V (x, z) is then given by

V (x, z) = Vtsz

εr

[
ϕ[zts + r(1 − cos ϕ)]

sin ϕ
+

dins

εr

]−1

(2)

where ϕ = g−1(x). Equation (2) agrees with a finite element
analysis solution of the potential within 5% if dins/εr � zts

and r , zts � r and |x | � 4r .
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Figure 2. Description of the sphere–cone model of the tip–sample
interaction. The AFM tip is modelled as the union of spherical and
conical sections. The electrostatic problem is solved by integrating
contributions of individual dihedral capacitors formed between
surface elements on the tip (point (A)) and corresponding surface
elements on the sample (point (B)). The tip–sample electrostatic
force and potential profile V (x, z) inside the dielectric can be
accurately described by the model.

For a flat metal sample, the electrostatic force estimated
through this model (sphere–cone model) can be expressed in
terms of the tip length Htip, tip radius r , tip–sample separation
zts, and tip half-cone angle θ0 as the sum of conical and
spherical contributions

Fsc = Fsphere + Fcone (3)

where the spherical and conical terms are given by

Fsphere = V 2
tsπε0r 2 1 − sin θ0

zts[zts + r(1 − sin θ0)]
(4)

Fcone = V 2
tsπε0 sin θ0

2

(π/2 − θ0)2

[
ln

Htip

zts + r(1 − sin θ0)
− 1

+
r tan θ0

zts + r(1 − sin θ0)

]
. (5)

The validity of this model can be tested through
measurements of force gradients of a biased tip as a function
of the tip–sample separation. It is seen from the data presented
in figure 3 that by fitting only the tip radius the model given in
equation (3) predicts the tip–sample capacitance qualitatively
with less than 5% error in the range r/2 � zts � 4r .

2.3. Model for charging of the localized states

For a given tip–sample geometry, and a given bias voltage Vts,
the energy of a localized state i , a distance x away from the
tip axis and at a height hi from the ground plane (see figures 1
and 2), is given by

Ei = Ei,0 − eV (x, hi ) (6)

where e is the electronic charge, V (x, hi ) is given by
equation (2) and Ei,0 is the energy of the state under zero bias.

Figure 3. Electrostatic force gradient ∂ Fe/∂z measured through
frequency shift of the cantilever and theoretical estimation through
equation (3) by fitting the tip radius. (a) A fresh tip has a fitted
radius of r = 21.3 nm. (b) After contact imaging and deposition of
metal on the surface through pulsing of the bias voltage, the tip
radius increases to r = 81 nm.

For a given sample, if we define the dimensionless parameter
α(x, zts) as

α(x, zts) = z + dins/εr

ϕ(zts + r(1 − cos ϕ))/ sin ϕ + dins/εr
(7)

where ϕ is related to x through equation (1), we can rewrite
equation (6) as

Ei = Ei,0 − eVtshi

ztsεr + dins
α(x, zts). (8)

It worth noting that, for states on the tip axis, α(0, zts) = 1
and equation (8) reduces to a simple voltage divider.

In thermal equilibrium, charge qi of state i can be
calculated through thermal statistics as

qi = − e

1 + exp[(Ei − E f )/kBT ]
(9)

where kBT is the thermal energy.
When Ei is modulated in time, if the tunnelling time�−1

i is
finite but does not strongly depend on Vts, the time dependent
charge q̃i can be calculated through a first order differential
equation as

�−1
i

dq̃i

dt
= −q̃i + qi (t). (10)
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Here qi(t) denotes qi calculated through equation (9), and the
time dependence is due to modulation of Vts or zts. �i stands for
the tunnelling rate for state i for the given DC bias condition.
The approximation presented in equation (10) would be valid
only for a small signal modulation of the charge, since �i

depends exponentially on the potential barrier and cannot be
assumed constant over a large modulation of the barrier. If a
small signal sinusoidal modulation of Vts or zts with frequency
ω is present, q̃i will be given by a sinusoid that has a phase φ

that depends on the modulation frequency and tunnelling rate
�i as

φ = − arctan(ω/�i). (11)

The modulated charge amplitude q̃i can be calculated through

q̃i =
〈

∂qi

∂Vts

〉
Ṽts +

〈
∂qi

∂zts

〉
z̃ts (12)

where the derivatives are calculated through equations (2), (6)
and (9); averages denoted by brackets are taken over the
modulation ranges of respective modulated variables. Here
Ṽts and z̃ts are the modulation amplitudes of bias and tip–
sample separation respectively. It is important to note
that equation (12) refers to the AC modulated charge only.
However, as the state falls below the Fermi level of the bulk,
there is a DC shift in the charge, namely, the state goes from
zero charge occupation to single charge occupation. This
causes a DC frequency shift, as will be noted in the following
section.

2.4. Electrostatic force model in the presence of localized
states

The electrostatic interaction of the tip and the ground plane can
be analysed accurately through the sphere–cone model. In the
presence of localized states with charges qi , there is additional
contribution to the force from individual charges. For the
sake of simplicity, the electrostatic force Fe that includes
contributions from the localized charges and the background
will be approximated by a parallel plate capacitor model given
by [6]

Fe
∼= ε2

r ξ

(εr zts + dins)2

[
πr 2ε0V 2

ts

2
+

∑
i

2hi qi Vts

εr

]
(13)

where ξ is a geometric correction factor that can be calculated
by equating Fe of equation (13) with all qi being identically
zero, to the electrostatic force of equation (3). In the parameter
range r/4 < zts < 2r , ξ varies from 0.9 to 4.2 being equal to
1 if zts/r = 0.4. It is important to note that equation (13)
is written assuming that the interaction is due to localized
charges on the tip axis and a lumped charge due to tip–sample
capacitance concentrated at the tip apex. In reality, force due
to each localized state has to be corrected by integrating the
force between qi and the charge distribution on the tip. Also,
extension of equation (13) to include the effect of charges
away from the tip axis can be done by including the effect of
geometry. The simplification made in derivation of the force
in equation (13) assuming a lumped parallel plate capacitor
model will only have an effect on the magnitude of the forces
from individual charges.

2.5. Modulation of electrostatic force: localized state
signatures

When an AC modulation of the tip–sample separation or tip–
sample bias voltage is present, equation (13) can be used
to estimate the AC modulated electrostatic force. Since
the objective of the EFS experiment proposed in this work
is to extract information about localized states through
measurement of forces, in this subsection we will analyse the
contribution from the localized states only. The AC force due
to localized states can be calculated through

F̃e =
∑

i

∂ Fe

∂qi
q̃i (14)

where Fe and q̃i are given by equations (13) and (10)
respectively. Equation (14) includes only the contribution
due to modulation of the charges in the localized states and
does not account for the modulated background force due
to the presence of the bulk of the sample. The background
contribution can be calculated by direct differentiation of
equation (13) with respect to zts or Vts with qi set to zero.
This background contribution will be analysed in the following
subsections, since it proves to be a significant effect in the
detection process.

Each term in the sum on the right-hand side of
equation (14) contains information about the corresponding
localized state, and we shall refer to it as the signature of that
particular state. The signature force is a function of Vts, the
tip location with respect to the sample zts, the energy of the
state Ei,0 and its height from the ground plane hi . Therefore,
measuring the modulated force for a set of values of Vts and zts

we can estimate Ei,0 and hi .
When only a modulation of the bias voltage Ṽts is present,

and the tip location is fixed, z̃ts = 0, the signature for state i is

F̃e,i = 2εr hiξVts

(εr zts + dins)2

〈
∂qi

∂Vts

〉
Ṽts. (15)

Conversely, when only tip–sample separation is modulated and
Ṽts = 0, the signature is

F̃e,i = 2εr hiξVts

(εr zts + dins)2

〈
∂qi

∂zts

〉
z̃ts. (16)

The dependence of the signatures in equations (15)
and (16) on Vts and zts is presented in figures 4 and 5, for a
set of typical experimental parameters. It is seen from figure 4
that each state appears as a distinct peak when we plot F̃e

against Vts. This can be intuitively understood noting that, as
the bias voltage is increased, the energy of the state traverses
the Fermi energy of the ground plane and it is charged. Only
when the state energy is close to the Fermi energy can the state
charge be modulated by a modulation of the local potential.
This modulation amplitude has the energy dependence of the
derivative of the thermal distribution and thus the AC force
amplitude appears as a peak when plotted versus Vts. The
signature voltage Vs,i at which the force has peak amplitude is
given through equation (8) for a state a distance x away from
the tip axis as

Vs,i = Ei,0(εr zts + dins)

ehiα(x, zts)
(17)
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Figure 4. Theoretical force signatures of two states (top) under
modulation of the tip–sample separation at T = 77 K. Curves (A)
and (B) are calculated for a state with the parameters Ei,0 = 0.1 eV,
hi = 10 nm, with modulation amplitude z̃ts = 1 and 0.1 nm
respectively. Curves (C) and (D) are for a state with the parameters
Ei,0 = 0.1 eV, hi = 20 nm. Bottom, the same as the top except
T = 4 K. The voltage at which the force peak occurs, and the width
of the peak in terms of bias voltage, provide information about the
energy and location of the state. The sample is chosen to be GaAs,
with εr = 13.6. The thickness of the insulating section is
dins = 30 nm. The tip radius is r = 20 nm and zts = 20 nm.
Negative amplitudes denote the fact that the modulated force has
opposite phase to the modulation of the tip–sample separation.

– 4 – 3.5 – 3 – 2.5 – 2 – 1.5 – 1 – 0.5 0
0

0.5

1

1.5
x 10

– 12

Bias, Volts

A
C

 fo
rc

e 
am

pl
itu

de
, N

t

– 4 – 3.5 – 3 – 2.5 – 2 – 1.5 – 1 – 0.5 0
0

1

2

3

4

5

6

7
x 10

– 13

A 

B 
C 

D 

A 

B 

C 

D 

Figure 5. Theoretical force signatures of two states (top) under
modulation of the bias voltage Vts at T = 77 K. Curves (A) and (B)
are calculated for a state with the parameters Ei,0 = 0.1 eV,
hi = 10 nm, with modulation amplitude Ṽts = 10 and 100 mV
respectively. Curves (C) and (D) are for a state with the parameters
Ei,0 = 0.1 eV, hi = 20 nm. Bottom, the same as the top except
T = 4 K. Sample parameters are the same as in figure 4. Positive
amplitudes denote the fact that the modulated force has the same
phase as Ṽts.

and in the limit of infinitesimal modulation amplitude the width
�Vs,i of the peak in terms of bias voltage is

�Vs,i = 2kBT (εr zts + dins)

ehiα(x, zts)
. (18)

It is noted from figure 4 that, as the temperature is
decreased and kBT becomes small compared to the modulation
of Ei , the averaging of the derivative of qi (denoted by the
brackets in equations (15) and (16)) over the modulation range
causes the signature to deviate from a Gaussian-like peak, and
equation (18) no longer applies.

If �Vs,i can be measured accurately, then we can estimate
Ei,0 from equations (17) and (18) as

Ei,0 = 2kBT Vs,i

�Vs,i
. (19)

To reduce the error in estimation of state parameters, one
can repeat the EFS measurement changing only the tip location.
From a set of EFS data taken at different values of the zts,
it is possible to determine Vs,i , �Vs,i and ∂Vs,i /∂zts. These
parameters can then be used to solve for the three unknowns
x , Ei,0 and hi through equations (17), (18) and (19) uniquely.

In a case where measurement of �Vs,i has large error
bounds due to imperfections of the measurement set-up,
another method has to be devised to extract location, height and
energy of the state. Due to the cylindrical symmetry of the tip,
the potential of equation (2) will have circular equipotential
contours. If the tip is scanned in the x–y plane keeping Vts

and zts constant, and Vs,i is plotted as a function of x and y,
the resulting image will exhibit circular patterns whose radii
can be related to the experimental parameters and parameters
of the state i using equation (17). The data resulting from
such a measurement can also be used to estimate hi as will be
illustrated in the experimental sections.

Another important issue that has to be noted is the DC
frequency shifts introduced by charging of individual states.
As the charge of a state (equation (9)) is increased from zero to
single electronic charge, the rightmost terms of the electrostatic
interaction given by equation (13) cause a DC frequency
shift. This is an extension to the signatures as calculated in
equations (15) and (16). However, for our parameter range, this
extension is about an order of magnitude smaller than the AC
modulated charge signatures. This DC frequency shift effect
gets less pronounced as the tip–sample separation is increased.
Although this is a measurable effect, in the following sections,
we ignore the DC frequency shifts due to individual charges
and focus on the modulated charges.

2.6. Measurement of electrostatic forces: self-oscillation
technique

The electrostatic force, modulated or DC, causes a deflection of
the cantilever which can then be detected through a secondary
detector, such as a laser interferometer. The minimum
detectable electrostatic force is given by the thermomechanical
noise limit, regardless of measurement frequency or technique.
However, modulation frequency or measurement technique
can be important in optimization of the signal-to-noise ratio
(SNR), since a secondary detector cannot be assumed to
be noiseless. For example, a typical laser interferometer
used for cantilever deflection detection in our experiments
has a noise floor of 2 × 10−3 Å Hz−1/2. Referring to the
figures 4 and 5, modulated electrostatic forces due to single
states are on the order of 10−12 N for a typical experimental
configuration. If a cantilever with a spring constant of say
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k0 = 1 N m−1 and quality factor Q ∼ 104 is used, the
peak deflection amplitude for a state signature will be on the
order of 10−12 m if the modulation frequency is near DC
and 10−8 m if the modulation frequency ω is on resonance
with the cantilever mechanical resonance ω0. The secondary
detection limited charge sensitivity can be estimated to be
0.1 e (Hz)−1/2 near DC and 10−5 e (Hz)−1/2 on resonance.
However, the thermomechanical noise floor for our cantilevers
is 4 × 10−16 N Hz−1/2 at 4 K independent of ω, and it
corresponds to a fundamental limit for charge resolution of
4 × 10−4 e (Hz)−1/2. Thermomechanical noise is dominant in
the overall force measurement if ω � ω0.

Modulation frequency and technique is also important in
realization of the EFS experiment. In order for the analysis
presented for the modulation of Vts to hold, zts must be kept
constant, otherwise equation (15) will no longer describe the
signature force correctly. In practice, this can be done by
suppression of the cantilever oscillation by a feedback loop.
However, modulation of the bias voltage with ω � ω0 requires
tracking of the frequency shift of the cantilever due to the z-
gradient of the background electrostatic force which is given
by

�ω = − ω0ξπε3
r ε0r 2V 2

ts

2k0(εr zts + dins)3
(20)

where k0 is the spring constant of the cantilever.
The difficulties one has to overcome in order to realize

the EFS experiment by modulating Vts can be solved if zts is
modulated instead of Vts. Modulation of zts has two benefits:
first, there is no need actively to suppress modulation of Vts to
validate assumptions made in analysis, since it can be biased
by an external DC voltage source. Second, if the cantilever is
oscillated by positive feedback or a phase-locked loop system
on its resonance, the modulation of zts will automatically
be always on resonance with the cantilever. These benefits
motivate the use of self-oscillation of the cantilever.

A technical description of self-oscillation feedback can be
found elsewhere [12, 13]. The self-oscillation technique was
generally used to detect the force gradients due to time invariant
interactions. This method can be applied to measurement
of AC forces through frequency shift measurements. The
method uses feedback to sustain the oscillation of the cantilever
on its resonance, by measuring the AC deflection z̃ts, phase
shifting by π/2, conditioning it for amplitude control and
feeding it back as a drive force F̃D. The effect of the external
feedback can be written by setting z̃ts(t) = z̃ts sin(ωt) and
F̃D(t) = F̃D cos(ωt). When an external signal force F̃s(t) =
F̃s sin (ωt + φ) is present, the oscillation amplitude z̃ts and
oscillation frequency δω can be calculated through

z̃ts
∼= Q

k0
(F̃D + F̃s sin φ) (21)

and
δω ∼= ω0

2k0 z̃ts
F̃s cos φ (22)

where Q is the quality factor of the cantilever. Approximations
presented in equations (21) and (22) can be assumed valid if
δω � ω0.

Inserting F̃s = F̃e,i from equation (16), the signature of a
state can be measured in the frequency shift of the cantilever
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Figure 6. Signal-to-noise ratio for a single localized state in the
frequency measurement technique as a function of temperature and
oscillation amplitude z̃ts. The state parameters are Ei,0 = 350 meV,
hi = 14 nm. The total dielectric thickness is dins = 30 nm and
εr = 13.6. The cantilever resonance frequency is ω0/2π = 73 kHz,
and the spring constant is k0 = 2.8 N m−1. The tip–sample
separation is zts = 12 nm. The frequency detection is limited by the
noise of the electronics at higher oscillation amplitudes. This fact
causes the SNR to decrease if the oscillation amplitude is increased
above an optimal value which is about 1 Å at 10 K.

in the self-oscillation configuration as

δωi = ω0εr hiξVts cos φ

k0(εr zts + dins)2

〈
∂qi

∂zts

〉
. (23)

The effect of temperature and oscillation amplitude on
the overall SNR for this measurement scheme is illustrated in
figure 6. The phase φ can be estimated by measuring z̃ts and
δωi for a single state. The tunnelling rate �i for the state can
then be related to φ through equation (11).

In the self-oscillation method based measurement of
the signatures, the total frequency shift is the sum of the
background frequency shift of equation (20) and signature
frequency shifts given by equation (23) as

�ωefs = �ω +
∑

i

δωi . (24)

The minimum detectable charge in the frequency shift
method is again given by the thermomechanical detection limit
although the method of detection is through measurement of
the frequency shift instead of deflection. Also, the presence
of the self-oscillation feedback does not affect the value of
the minimum detectable force. The only difference is that
force noise translates to a fundamental frequency noise given
by δ f = √

f0kBT B/πk Q〈a2〉 where f0 is the cantilever
resonance frequency, kB is the Boltzmann constant, T is
the temperature, k is the spring constant, Q is the quality
factor and 〈a2〉 is the oscillation amplitude squared [12].
Note that this frequency noise can be obtained by inserting a
thermomechanical force noise in place of F̃s in equation (22).
The signal-to-noise ratio for an example state is shown in
figure 6.
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3. Experiment

The EFS experiments presented here use a home built low
temperature AFM system that can operate down to 4.2 K. A
fibre interferometer serves as the secondary detector. The laser
wavelength is λ = 1310 nm, with 100 µW optical power
incident on the cantilever, and the measured noise floor for
deflection detection is 2 × 10−3 Å Hz−1/2. Commercial Pt/Ir
coated cantilevers with spring constants of k0 = 2.8 N m−1

and resonant frequencies of ω0 = 75 kHz are used. Supplier
specified tip lengths are Htip � 10 µm and the half-cone
angle of the tip is 20◦. The tip radius is not specified but can
be extracted through force measurements to be r � 20 nm.
The quality factor of the cantilevers Q is around 150 in air
and 15 000 at room temperature in vacuum, and ranges from
30 000 to 45 000 as the temperature is decreased from 77.3 to
4.2 K. Mechanical actuation of the cantilever oscillation using
a piezoelectric element can produce spurious frequency shifts
because mechanical structures can have multiple resonances
near the operation frequency. Therefore, an electrostatic
actuation scheme is used to oscillate the cantilever because
of the constant phase and amplitude response in the frequency
range of interest.

The sample is chosen to contain InAs QDs embedded in
insulating GaAs since similar samples have been previously
extensively studied for characterization of QD energy levels
by optical and electrical methods [14, 15]. Based on previous
capacitance spectroscopy experiments [16] incorporating
similar InAs QDs, we expect the QD energies to be from 250
to 100 meV below the GaAs conduction band edge. It is also
estimated that the number of confined energy levels and values
of confined energies depend on QD size and up to 12 confined
energy levels are estimated as the QD base diameter approaches
40 nm. Growth conditions have a strong effect on QD energy
levels [14, 17] since gallium can replace indium in the dots
and this alloying affects the QD bandgap. Although it is not
possible to know the quantized energies of QDs only knowing
the growth conditions, a rough estimation of the energy levels is
still important for choosing the right experimental parameters
of tip–sample separation and bias voltage range.

The sample is a molecular beam epitaxy (MBE) grown
GaAs structure. First, a GaAs buffer layer with silicon doping
of density 1018 cm−3 and thickness of 500 nm is grown,
followed by an undoped GaAs layer of 15 nm thickness. Then
a monolayer of InAs wetting layer was grown followed by a
single layer of InAs QDs. The dots were capped by an undoped
GaAs capping layer of 15 nm thickness. From a topographical
AFM image of a test sample grown under the same conditions
without a capping layer, the QDs were found to be about 20 nm
in diameter and about 4 nm tall, with a surface density of
1010 cm−2.

Contact mode topographic images of the surface were
obtained prior to the EFS experiment to ensure the flatness
and cleanliness of the surface. The force–distance curve with
Vts = 0 V provides information about the location of the
surface, zs. The drift of the scanner in x, y and z directions
was characterized by repeating imaging and force–distance
measurements with few-minute intervals, before and after the
experiments. It was seen that when the AFM is operated at
4 K the drift is insignificant (∼2 nm) over an hour and can be
ignored.
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Figure 7. Observation of the InAs wetting layer (WL). The
frequency shift due to background electrostatic forces follows a
parabola which shows a sudden jump, an indication of the presence
of a large number of states. The inset shows the theoretical
estimation of the signature voltage Vwl as a function of zts. Fitting to
the data, the state which causes the jumps is estimated to be
hwl = 14 nm above the ground plane and at an energy 25 meV
below the GaAs conduction band.

3.1. Observation of the wetting layer

It is known from previous experiments [14] that the InAs
wetting layer (WL) forms a two-dimensional electron gas
(2DEG). In a crude approximation, it can be regarded as a
collection of localized states and should present some form
of signature in the EFS data. Study of the charging of the
WL in our EFS experiment is interesting, since it produces a
large signal due to the large number of electronic states. Also,
the ground state energy of the WL with respect to the GaAs
conduction band edge can provide a reference for the EFS data.
Finally, the WL provides states at all locations on the sample
and we do not have to find a proper location to observe the WL.
It is known from optical and bulk capacitance spectroscopies
that the presence of the WL states does not affect charge
retention in individual InAs quantum dots. Therefore, WL
does not limit us in measuring the quantum dot states. The
bandgap of GaAs at room temperature is EGaAs = 1.52 eV at
4.2 K, and surface pinning is assumed to be at the middle of
the bandgap. In previous photoluminescence measurements of
similar structures, the WL optical transition occurs at 1.42 eV.
Therefore, if we assume for the sake of interpretation of the
EFS data that WL is a localized state, the corresponding
electron energy for that state under the zero-bias condition
will be Ewl,0 = 330 meV. The EFS data shown in figure 7
are collected with a tip–sample separation of zts = 14.5 nm,
where zts is measured by a force–distance curve. A sudden
change in the frequency shift indicates the presence of states
that are charged when Vts = 5.83 V. The EFS experiment is
repeated at different tip–sample separations to fit the height hwl

and Ewl,0, and we find that hwl = 14 nm, Ewl,0 = 360 meV
(shown in the inset of figure 7). The frequency shift jumps
are not due to loop instabilities, because they occur at different
absolute frequency shifts corresponding to different voltages.
The repeatability of the WL peaks also provides evidence that
this observation is not merely due to a loop instability. The
discrepancy of the EFS results of Ewl,0 = 360 meV from the
optically obtained Ewl,0 = 330 meV may be due to pinning of
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Figure 8. A single state signature can be isolated in the EFS data.
The signature voltage Vs,i moves to stronger biases as the tip–sample
separation zts is increased from 30 to 35 nm. The large parabolic
background is subtracted by high pass filtering and the curves are
shifted for clarity. The vertical axis is the absolute value of the
frequency shift. The fitted energy and location for this state are
Ei,0 = 0.105 eV, hi = 14 nm, located x = 51 nm from the tip axis.

the GaAs surface at a slightly different energy than the middle
of the bandgap, or due to the fact that any band-bending effects
were ignored in our model.

3.2. Observation of localized states

In the EFS experiments performed with the aim of identifying
QD energy levels, based on theoretical calculations and
preliminary information given by the observation of the WL,
choosing zts to be around 20 nm and z̃ts to be less than 1 nm, we
expect to obtain an SNR greater than ten in a 100 Hz bandwidth
for single states. In the capped sample, it is not possible
to locate the dots through topographical imaging since the
capping produces a flat surface. Therefore, EFS experiments
were performed on a grid of points on a flat region of the
sample.

Observation of isolated single signatures depends on the
presence of isolated single states in the sample. If there
are many states in the close vicinity of the tip, it is hard to
distinguish individual peaks from a single EFS measurement.

A single isolated state signature from an EFS measurement
is shown in figure 8. For this state, Vs,i shifts towards negative
voltages as zts moves from 30 to 35 nm. Since this signature is
well isolated, it is possible to estimate the energy and depth of
the state. Based on equations (17)–(19), we can estimate the
state parameters to be Ei,0 = 0.105 eV, hi = 14 nm, located
x = 51 nm from the tip axis.

Figure 9(a) is an example of EFS data with no signatures
of localized states. Slowly varying background forces due to
the presence of the ground plane were fitted and subtracted to
clarify that there are no distinct peaks. Figure 9(b) shows EFS
data for another location on the sample, with six distinct peaks
in both frequency shift and oscillation amplitude. Similar
signatures can also be observed near a QD in a sample grown
exactly the same but without a capping layer (figure 9(c)). In
the uncapped sample the signatures disappear when the tip is
moved away from the QD, demonstrating that the signatures
are indeed due to the QD. Energies can be fitted to each peak.
The energies estimated from figures 9(b) and (c) and energies

Figure 9. Observation of localized states. (a) Example of EFS data
with no signatures, (b) on a site where there are localized states as
evident from signatures. In the frequency shift data, the large
parabolic background is subtracted for clarity by high pass filtering.

Table 1. Electron energy levels inferred from previous capacitive
measurements for 20 nm base diameter capped dots, theory for
11.3 nm base diameter capped dots and this experiment involving
40 nm base diameter uncapped dot. Electron energies are shifted to
match the ground state energies Es−1.

Energy
level (meV) Theory Capacitance data EFS for capped QD

Es−1 0 0 0
Es−2 19 35
Ep−1 84 74 57
Ep−2 82 63
Ep−3 111 100 88
Ep−4 110 93

measured through conventional capacitance spectroscopy for
similar dots in a previous measurements [15, 18] are compared
in table 1 along with theoretical calculations by Wang et al [19].
The calculation by Wang et al does not take into account the
Coulomb charging effects and estimates Es−1 to be 231 meV
below the GaAs conduction band minimum.

To further illustrate the effect of tip location on Vs,i one
can plot the signature amplitude as a function of x and y in the
vicinity of a localized state. Three signatures appear at a bias
of −4.45 V (figure 10(e)), and as the voltage is increased to
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a b
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e f

Figure 10. Constant height mode images taken over the sample
with InAs quantum dots. The tip height is zts = 20 nm. (a) The bias
voltage is Vts = −4.5 V; a few bright spots and regions are visible.
(b) At a stronger bias, Vts = −5.2 V, a few spots are turned into
circular shapes as shown by arrows (500 nm image size). (c) A
close-up at Vts = −4.6 V on one of the spots. (d) At Vts = −5.2 V,
the spots turn into two tangent circles (100 nm image size). (e)
Signature amplitude plotted as a function of x–y position of the tip
in the vicinity of localized states. The tip height is zts = 20 nm and
the bias voltage is Vts = −4.45 V, (f) Vts = −5.15 V. The signature
located at point A first appears at Vts = −4.45 V and has a radius of
17.3 nm at Vts = −5.15 V. The theoretical estimate for the state
from equation (17), hi = 14.5 nm and Ei,0 = 205 meV, correctly
estimates the appearance and evolution of the signature (70 nm
image size).

−5.15 V (figure 10(f)) the location of the signature peak defines
a circular pattern, equivalent to an equipotential contour which
is defined by equation (6). The energy and height of the state
can be estimated as hi = 14.5 nm and Ei,0 = 205 meV by
fitting equation (6) to the data.

4. Conclusions

A simplified theory of EFS generalized to a family of
samples that has localized states inside a thin insulating

layer is presented. The technique is capable of extracting
information about individual localized states with a few-
nanometre resolution and 4 × 10−4 electronic charge
sensitivity. However, it must be noted that the presence
of multiple states closely situated in position or energy
complicates the inversion procedure. Application of the
technique to InAs quantum dots embedded in a semi-
insulating GaAs matrix is presented as a demonstration.
The presented theory gives guidelines for the choice of
cantilever and sample parameters for a given application of
EFS. Potential applications include high resolution 3D dopant
profiling in semiconductors, characterization of novel thin
gate dielectrics and nondestructive characterization of self-
assembled monolayer materials for nanoelectronic devices.
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