
\Ш ІМіЭТ ЗіІЖЯМШ îis
C S t - f · ΐώ s Ά ; ···* J ■.. î ** У ’ ' Ц ί> ' г 3 i «« ̂ .V ̂ ,1 ,>· jj; ■ · · ̂ ÿ̂· ■.· :. i

£6ê ù .s
' « · 5 · ^
/ ά θ β

VIDEO OBJECT SEGMENTATION FOR
INTERACTIVE MULTIMEDIA

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Tolga Ekmekçi
November 1998

τι<
6680.5

•E5(í

? , G 4 5 1 4 3

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Levent Onural (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

/()_
Assist. Prof. Dr. Orhan Ankan

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Gözde Bozdağı

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Bar^
Director of Institute of Engineerii Sciences

11

ABSTRACT

VIDEO OBJECT SEGMENTATION FOR
INTERACTIVE MULTIMEDIA

Tolga Ekmekçi
M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Onural
November 1998

Recently, trends in video processing research have shifted from video com­
pression to video analysis, due to the emerging standards MPEG-4 and MPEG-7.
These standards will enable the users to interact with the objects in the audiovi­
sual scene generated at the user’s end. However, neither of them prescribes how
to obtain the objects. Many methods have been proposed for segmentation of
video objects. One of the approaches is the “Analysis Model” (AM) of European
COST-211 project. It is a modular approach to video object segmentation prob­
lem. Although AM performs acceptably in some cases, the results in many other
cases are not good enough to be considered as semantic objects. In this thesis, a
new tool is integrated and some modules are replaced by improved versions. One
of the tools uses a block-based motion estimation technique to analyze the motion
content within a scene, computes a motion activity parameter, and skips frames
accordingly. Also introduced is a powerful motion estimation method which uses
maximum a posteriori probability (MAP) criterion and Gibbs energies to obtain
more reliable motion vectors and to calculate temporally unpredictable areas. To
handle more complex motion in the scene, the 2-D affine motion model is added
to the motion segmentation module, which employs only the translational model.
The observed results indicate that the AM performance is improved substantially.
The objects in the scene and their boundaries are detected more accurately, com­
pared to the previous results.

Keywords: Video processing, video object segmentation, data fusion, object
tracking, interactive multimedia, MPEG-4, content-based search, MPEG-7

111

ÖZET

e t k il e ş im l i ç o g u l o r t a m l il ik iç in v id e o n e s n e

BÖLÜTLEMESİ

Tolga Ekmekçi
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Onural
Kasım 1998

Geliştirilmekte olan MPEG-4 ve MPEG-7 standartlan, verilerin nesneler ha­
linde saklanmasını ve yapılacak işlerin bu nesneler üzerinde yürütülmesini öngör­
mektedir. Ama bu standartlar bu nesnelerin nasıl elde edileceğini tamrnlamamak-
tadır. Video nesnelerinin bölütlenmesi için bir çok metod önerilmiştir. Avrupa
Topluluğu tarafından organize edilen projelerden GOST-211*®’’ çerçevesinde geliş­
tirilen “Analiz Modeli” de bunlardan biridir. Analiz Modeli’nin performansı bazı
durumlarda kabul edilebilir olmakla birlikte diğer birçok durumda elde edilen
sonuçlan “anlamlı nesneler” olarak değerlendirmek mümkün değildir. Bu çalışma­
da Analiz Modeli’nin modüler tasarımı sayesinde modele yeni bir modül ek­
lenmiş, eski modüller daha iyi çalışan yenileriyle değiştirilmiş ve sonuç olarak
modelin daha başarılı olması sağlanmıştır. Yeni eklenen modül içinde hareket
kestirimi modülü kullanılarak bir parametre hesaplanmış, ve bu parametre video
karelerinin atlanmasında kullanılmıştır. Varolan hareket kestirimi modülüne en
büyük sonsal olasılık kriteri (MAP) ve Gibbs enerjilerine dayanan yeni bir metod
eklenmiş, böylece daha doğru hareket vektörleri elde edilmiştir. 3-B düzlemsel
nesnelerin hareketlerini açıklayan modelin hareket bölütlemesi modülüne ilave
edilmesiyle Analiz Modeli’nde daha karmaşık hareketleri inceleyebilmek mümkün
olmuştur. Elde edilen sonuçlar Analiz Modeli’nin performansının önemli ölçüde
iyileştiğini göstermektedir.

Anahtar kelimeler·. Video işleme, video nesne bölütlemesi, veri tümleşimi,
nesne takibi, etkileşimli çoğulortamhiık, MPEG-4, içeriğe dayalı arama, MPEG-7

IV

ACKNOW LEDGM ENTS

I feel indebted to my supervisor Dr. Levent Onural. I appreciate his super­
vision and suggestions throughout the development of this thesis. I have also
enjoyed his guidance about many “off-topic” talks, which I will miss a lot. :)

I would like to express my gratitude to the other members of my committee,
Dr. Orhan Ankan and Dr. Gözde Bozdağı, for taking their valuable time to read
this thesis and commenting.

The thesis bears only my name as the creator, but I feel this is unfair to
many friends who provided support during the creation of this work. The “Image
Processing Lab” people, Aydın Alatan, Ertem Tuncel, Tunç Bostancı, and Serkan
Kiranyaz did not leave me alone at any stage of the thesis work. In fact. Aydın
and Ertem deserve special mention since this thesis would not see the sunlight
without their never-ending contributions.

Priends in Bilkent also deserve to be mentioned here, since they will be the ones
to remember after I leave the university. I am thankful to -in alphabetical order-
Arçm Bozkurt, Ayhan Bozkurt, Deniz Başkent, Deniz Gürkan, Güçlü Köprülü,
Gülbin Akgün, Gün Akkor, Lütfiye Durak, Tolga Kartaloğlu, and Yamaç Dik­
melik and to the ones that I have forgotten to mention. They have suffered a lot
during my thesis work. I am grateful they have chosen not to leave me alone in
spite of all the nuisance I have caused.

Nothing I can do to acknowledge my family is sufficient to describe what they
have experienced during the development of this thesis. They felt pain as I did,
they felt joy as I did; I am sure they are now sharing my all-rnixed-up feelings.

This thesis is devoted to my family. It nowhere compensates what my mom,
sister, grandrnom have given me so far; it is just a little reimbursement. If only
dad could see these days... I am sure he would be proud.

Contents

1 Introduction 1
1.1 Motivation and Aim 1
1.2 Outline of the thesis .. 2

2 Standardization Activities in Video Communication 3
2.1 Completed Standards: H.261, MPEG-1,

MPEG-2, H.263 ... 3
2.1.1 H.261 .. 3
2.1.2 M PEG -1... 4
2.1.3 M PEG -2... 4
2.1.4 H.263 .. 4

2.2 Standard in development: M PE G -4... 5
2.3 Standard being planned: MPEG-7.. 6
2.4 Relationship of Object Segmentation to

MPEG-4 and M PE G -7... 6

3 COST-211 Analysis Model 8
3.1 Color Segmentation.. 9
3.2 Local Motion A n a ly sis .. 10
3.3 Local Motion Segmentation .. 11
3.4 Local Motion Com pensation.. 11
3.5 Global Motion Estimation/Compensation.. 12
3.6 Scene Gut D e tec tio n .. 12
3.7 Change D etection.. 12

3.7.1 Computation of the initial CDM ... 13
3.7.2 Relaxation of initial C D M .. 13
3.7.3 Temporal coherency of the object sh a p e s 13

3.8 Rule Processor 14

VI

3.8.1 Mode 1: Detection of moving objects and background re­
gions [2] ... 14

3.8.2 Mode 2: Extraction of moving objects [1], [3], [4] 15
3.9 Post Processing... 18

4 Video Object Segmentation 19

5 Improved COST-211 Analysis Model: Version 4 32
5.1 Adaptive Frame Skip and Interpolation... 33
5.2 Sub-Pixel Accurate Motion V ecto rs... 39
5.3 Local Motion Com pensation.. 41
5.4 Local Motion A n a ly sis ... 43
5.5 Local Motion Segmentation 48

6 Conclusions 53

A Issues about the Analysis Model Software, Version 4.0 59

Vll

List of Tables

3.1 HBM parameters used in each level 10

vin

List of Figures

2.1 COST-211 Analysis Model: KANT - Broad Overview. (Reprinted
as a courtesy of Alatan et al. [1]) .. 7

3.1 COST-211 Analysis Model. (Reprinted as a courtesy of Alatan et

al. [1]) ... 8
3.2 An example to segmentation using the color in fo rm ation 9
3.3 An example to segmentation using the motion information 11
3.4 An example to change detection mask (C D M)............................... 14
3.5 The projection of color regions onto (and correction of bound­

aries). (Reprinted as a courtesy of Alatan et al. [1]) 16
3.6 A simple example for Mode 2. (Reprinted as a courtesy of Alatan

et al. [1])... 17
3.7 The structuring e le m e n t.. 18
4.1 An example to demonstrate difficulties in object definition: What

should be considered as objects in this scene? 19
5.1 COST-211 Analysis Model. (Reprinted as a courtesy of Alatan et

al. [1]) ... 32
5.2 Frame selection algorithm currently employed in AM: constant

frame s k ip .. 33
5.3 Proposed frame selection algorithm: Adaptive frame s k ip 34
5.4 Results from AM run without AFS, Hall M o n ito r 36
5.5 Results from AM run with AFS, Hall M o n ito r......................... 36
5.6 Results from AM run without AFS, A k iy o 37
5.7 Results from AM run with AFS, A k iy o 37
5.8 Results from AM run without AFS, Container S h ip 38
5.9 Results from AM run with AFS, Container S h ip 38
5.10 Results with full-pixel accurate motion vectors. Container Ship . . 40
5.11 Results with sub-pixel accurate motion vectors. Container Ship . . 40

IX

5.12 Results with full-pixel accurate motion vectors, Hall Monitor . . . 41
5.13 Results with sub-pixel accurate motion vectors, Hall Monitor . . . 41
5.14 A “zoomed” view of a pixel and its “regions” 42
5.15 (a) How neighbors are selected, (b) If integer valued vectors are

used, algorithm executes in a manner compatible with the old mod­
ule.. 43

5.16 Results obtained by using HBM, Hall M on ito r............................... 46
5.17 Results obtained by using Gibbs-based algorithm. Hall Monitor 46
5.18 Results obtained by using HBM, Container S h ip 46
5.19 Results obtained by using Gibbs-based algorithm. Container Ship 47
5.20 PSNR plot of Hall M onitor... 48
5.21 PSNR plot of Container Ship ... 48
5.22 Results with translational motion model, Ertem sequence............ 51
5.23 Results with affine motion model, Erteni sequence......................... 51
5.24 Results with translational motion model, Ertem sequence (using

AES, sub-pixel accurate vectors, and the Gibbs-based motion es­
timation m ethod).. 52

5.25 Results with affine motion model, Ertem sequence (using AFS,
sub-pixel accurate vectors, and the Gibbs-based motion estimation
m e th o d)... 52

6.1 Results from Container Ship Sequence runs. Left to Right: orig­
inal, with AFS, with AFS -t- sub-pixel, with AFS -I- sub-pixel -t-
Gibbs ... 54

6.2 Results from Akiyo runs. Left to Right: original, with AFS, with
AFS -f- sub-pixel, with AFS -I- sub-pixel 4- G i b b s 54

6.3 Results from Akiyo and Container Ship. Left: results obtained by
using AFS, sub-pixel, and Gibbs. Right: results obtained by using
AFS, sub-pixel, Gibbs, and affine model... 54

6.4 An example of occlusion regions. Hall M onito r................................ 56
6.5 Frames 1 and 22 of Hall Monitor, and the segmentation mask 56

Chapter 1

Introduction

1.1 M otivation and Aim

Research on video processing commences in many fields [5]. As a result, different
standards aiming different functionalities have been developed. With the progress
in the area, new standards are still being developed and some others are being
planned. Among these standards, major ones can be named as MPEG-1, MPEG-
2, MPEG-4, MPEG-7, H.261, H.263.

Also, other parties’ work affected these standards: ITU Standard H.261 (a
standard for videoconferencing) is basically a result of the project COST-211*’®̂.
Similarly, COST-211*® ̂ project recommendation formed the basis for the ITU
standard H.263 (videotelephony over regular phone lines).

Recent trends in multimedia research led to standardization activities MPEG-
4 and MPEG-7. MPEG-4 has been developed with interactive multimedia in
mind, while MPEG-7 targets “content-based indexing and querying”. Both of
these standards assume their input data is composed of “objects” in some form.

MPEG-4 and MPEG-7 work on an “object basis” , i.e., the unit of action
will be an object defined according to some criteria. However, neither of the
standards defines how to obtain these objects. In case of video, if the source data
is not already in the form of objects, “object segmentation” is a must to extract
the objects in the scene. When the source is not already in the form of objects,
neither MPEG-4 nor MPEG-7 can work without object segmentation.

COST-211 group has focused on the standardization activities of MPEG-4 and
MPEG-7. The group has developed an “Analysis Model” (AM), which contains “a
full description of tools and algorithms for automatic and semi-automatic image

sequence segmentation (object detection, extraction and tracking)” [2]. The main
idea is fusion of information from various sources by a set of rules yields better
segmentation results.

Results of AM are acceptable in some cases. However, in many other cases,
what is obtained is not good enough to be classified as “semantically meaningful
objects” in the scene (i.e., boundaries of detected objects do not coincide well with
the objects in the scene). For MPEG-4 and MPEG-7 to work satisfactorily, the
objects should be identified properly (suitable for the purposes of the application).

In short, the model needs improvement to obtain “better” segmentation re­
sults. Fortunately, the model is modular; improving the performance simply
requires removal of the old modules and insertion of better performing ones.
This thesis involves replacement of several modules of the current AM to achieve
“better segmentation” .

1.2 Outline of the thesis

Ghapter 2 gives information about the multimedia standards mentioned in this
chapter, with an emphasis on the recent activities MPEG-4 and MPEG-7. Also,
issues regarding objects and object segmentation will be discussed. Chapter 3
discusses COST-211 AM, with detailed information about the modules and their
functions. Chapter 4 is a survey about various methods and algorithms in the
literature about video object segmentation. Chapter 5 explains the work done
to improve the COST-211 AM. Detailed information about the new modules
are presented here. With these improvements, AM is upgraded to Version 4.0.
Chapter 6 concludes the thesis, with comments on the obtained results and future
work.

Chapter 2

Standardization Activities in
Video Communication

2.1 Completed Standards: H.261, M PEG-1,
M PEG-2, H.263

2.1.1 H.261

Activities on ITU standard H.261 were completed in 1990. H.261 is a standard for
videoconferencing over ISDN (px 64 kbs, 1 < p < 30) [6]. H.261 follows mainly
from COST-211^” proposal “Redundancy Reduction Techniques for Coding of
Broadband Video Signals” [7].

The spatial block resolution in H.261 is either 8 x 8 pixels (for INTRA coded
frames - frames coded directly, without a reference to the previous frame) or 16 x
16 pixels (for INTER coded frames, frames coded with reference to the previous
frame). In INTER coding, a prediction error is calculated between a macroblock
(a region of size 16 x 16 pixels) in the current frame and the corresponding
rnacroblock in the previous frame. Both INTRA frames and prediction errors are
coded using the discrete cosine transform (DCT). Next step is the quantization of
DCT coefficients and coding of these coefficients using entropy coding (Huffman
coding) to achieve further compression.

For INTER frames, motion compensation is utilized for compression, i.e., the
current frame is predicted using previous frame and motion information obtained
from current and previous frames.

ISO standards MPEG-1 and MPEG-2 followed H.261 with minor modifica­
tions.

2.1.2 MPEG-1
MPEG-1 studies were completed in 1992. It is related to “coding of moving-
pictures and associated audio for digital storage media up to 1.5 Mb/s” [8] [9].
The media mentioned here is mainly CDROM. Basically MPEG-1 deals with
storing/retrieving audio/video to/frorn CD-ROM. The limit 1.5 Mbs is the limit
of the CD-ROM technology of those years.

Block-based motion estimation algorithms (at a suitably chosen spatial res­
olution) are utilized for motion estimation. The so obtained motion vectors are
used in motion compensation to obtain a prediction of the frame to be coded.
The prediction error is coded using DOT. This compensation is performed in
three ways: by using a previous frame (and related motion information) to es­
timate current frame, by using a future frame to estimate the current frame, or
by using both approaches in the estimation of current frame. Final bitstream
containing information from motion estimation and DCT is coded using variable
length codes.

2.1.3 MPEG-2
Work on MPEG-2 was completed in 1994. It is related to “generic coding of
moving pictures and associated audio information” [10] [11]. The standard deals
with bit rates up to 20 Mbs, aiming Digital TV and HDTV applications. An­
other intention is the transfer of digital audio/video content between production
studios.

MPEG-2 builds on the coding tools of MPEG-1 for video and audio compres­
sion. These are grouped in different “profiles” to offer different functionalities.
The main improvement here is “scalability”, such as “SNR scalability” (the abil­
ity to play with the bit rate) or “spatial scalability” (the ability to change the
spatial resolution).

2.1.4 H.263

H.263 related activities were completed in 1994. This ITU standard has been
designed for low bit rate communication (i.e., videotelephony over regular phone

lines); early drafts specified bit rates less than 64 Kbits/s (p x 8 kbs, p<8) [12].
Later this limitation has been removed and H.263 is used in many areas, not just
low bit rate communications.

H.263 improves upon H.261 in many ways. Half-pixel accurate motion vec­
tors are utilized in motion compensation (H.261 uses full-pixel accurate motion
vectors). Some parts of the (hierarchical) bitstream structure are now optional,
so H.263 can be configured flexibly for a lower bit rate (or better error recovery).
Also implemented is the optional forward and backward frame prediction similar
to that of MPEG. These prediction algorithms help achieving better quality than
is provided in H.261, at the same bit rate. In addition to QCIF (176 x 144) and
GIF (352 X 288) that have been supported in H.261, the formats SQCIF (128 x
96), 4CIF (704 X 576), and 16CIF (1408 x 1152) have been introduced.

2.2 Standard in development: M PEG-4

Research activities on MPEG-4 are completed. It will be an international stan­
dard in December 1998 [13].

Algorithms such as H.261 deal with coding (compression) of video frames
without any semantic content analysis, which makes these algorithms unsuitable
for interactive multimedia. They further assume that the video is composed
of moving blocks. This is not always true, since objects in real life may have
arbitrary shapes.

The spirit of MPEG-4, however, is “objects” . Any information (audio, video
etc) to be sent from one place to another is required to be in the form of an object
(or a compound object, which is composed of “simple” objects). MPEG-4 is a
standard on how these objects are represented, how compound objects are to be
formed, and how these objects (along with their composition information) are to
be transmitted.

In case of video, MPEG-4 defines “video objects” which correspond to distinct
objects in the scene and “video object planes” which are the instances of these
objects at a given time. Each object (plane) is coded separately and at the
destination, the video is recomposed using the information from the objects and
the composition information sent along with these objects.

2.3 Standard being planned: M PEG-7

Activities on MPEG-7 have formally started with a “call for proposals” in Octo­
ber 1998. It is formally named as “Multimedia Content Description Interface”.
MPEG-7 will be a standardized description of various types of multimedia infor­
mation. This description will be associated with the content itself, to allow fast
and efficient searching for material that is of interest to the user [14].

In other words, MPEG-7 will deal with “labeling multimedia information”, in
order to be able to search that multimedia information like text search of today.

2.4 Relationship of Object Segmentation to

M PEG-4 and M PEG-7

Both MPEG-4 and MPEG-7 work with objects, but neither has a prescription on
how to obtain the objects. This issue is very important for video part of MPEG-
7 since the amount of data that exist in the “usual” form (not in the form of
objects) is much larger than the data obtained as a composition of objects (i.e.,
by using a technology such as “blue screen”). In order to utilize this vast amount
of data, a method which will decompose a given video into its objects is required.
It is vital for MPEG-4 and MPEG-7 that such a segmentation algorithm feeds
the objects to the MPEG-4 (-7). Without such an algorithm, both standards are
useless.

The solution proposed by COST-211 is shown in Figure 2.1 [1]. The structure
KANT (Kernel of Analysis for New multimedia Technologies) is the abstract layer,
from which the particular solution, the COST-211 Analysis Model is developed.
In particular, the shaded region is the Analysis Model that feeds the objects to
the MPEG-4 coder. Although an MPEG-4 Coder is depicted as the coding block,
any block that takes objects as input can benefit from the KANT approach (in
particular, MPEG-7).

Kernel of Analysis for New multiniedia Technologies

K A N T

Figure 2.1. COST-211 Analysis Model; KANT - Broad Overview. (Reprinted as
a courtesy of Alatan et al. [1])

The standards do not dictate any particular algorithm for object segmenta­
tion, however their performance strongly depends on the performance of those
algorithms. Various studies on video object segmentation are discussed in Chap­
ter 4.

Chapter 3

COST-211 Analysis Model

As indicated in Chapter 1, the aim of COST-211 Analysis Model (AM) is the fu­
sion of information from various sources by a set of rules for a better segmentation
result [2]. Currently motion information, color information, intensity changes and
results from previous frames are fused by the rules.

The block diagram is in Figure 3.1 [1].

Figure 3.1. COST-211 Analysis Model. (Reprinted as a courtesy of Alatan et
al. [1])

COST-211 Analysis Model has two modes of operation:

• Mode 1 gives a binary mask which distinguishes between foreground (mov­
ing) and background (stationary) objects.

• Mode 2 can differentiate between moving objects.

The functions of the blocks in Figure 3.1 are as follows:

8

This module handles the segmentation of the current frame into a predefined num­
ber of regions using only color information. For this purpose, a recursive-shortest-
spanning-tree (RSST) based method [15] is used. The advantage of RSST is that
the only input it requires is the final number of regions in the segmented image.
This lets the user set the amount of detail in the resulting segmented image (“seg­
mentation mask”). Results on the performance of the algorithm can be found
in [16].

RSST initially maps input image into a weighted graph. Nodes of the graph
forms the regions and links between the nodes denote the “distance” between two
neighboring regions. Initially each pixel is a node.

After initialization, RSST checks all links, and merges the two regions of
the link which minimizes the distance measure. Merging continues until desired
number of regions is reached.

Distance measure is as follows [2], [17]: For regions Ri and R 2

3.1 Color Segmentation

^(^Ri} R‘2) /-̂ 2̂
N r , X N R2
N a,+ N iIi2

Y
avg

u,avg

avg

(3.1)

Here, N denotes the number of pixels in each region, ¡j, is the “feature vector” for
each region. In color segmentation, it consists of region averages of F (luminance),
U, and V (chrominance) values. First term in the expression forces RSST to join
“similar” regions, and second term inhibits joining of large regions. Joining large
regions is undesirable since it may lead to loss of object boundaries.

An example to segmentation with RSST is given in Figure 3.2. Here, the
number of regions is set to 256.

Figure 3.2. An example to segmentation using the color information

3.2 Local M otion Analysis

Motion between two consecutive (previous and current) frames is estimated. For
this purpose, an estimation algorithm based on block matching, “Hierarchical
Block Matching (HBM)” [18], has been used.

In HBM, the estimation is performed in three levels [2], [3]. In all these three
levels, a sparse version of the exhaustive search is performed on current and
previous frames.

One motion vector is found for each 4 x 4 block. The estimated block motion
vectors are interpolated using 0*^-order interpolation in order to obtain a dense
motion field.

Table 3.1 shows the hierarchical search parameters used at each level:

H ierarchy Level 1 2 3
Measurement window size 32 16 4
Search Range 16 8 2
Search Step Size 2 2 1
Spatial Resolution of measured vector field 4 4 4

Table 3.1. HBM parameters used in each level

The error criterion is the Mean of Absolute Differences (MAD) between the
measurement window on the current Y-frame and the displaced measurement
window in the previous Y-frame. If the measurement window goes out of borders,
MAD is calculated only for the part that is inside the frame.

Finally, in order to force the resultant motion vector for a 4 x 4 block to (0,0),
the following is applied: The 4 x 4 block MAD for the (0,0) vector is calculated.
Then a predetermined constant (currently set to 1.0) is subtracted from it. If
the result is less than the MAD of the winner motion vector of the last hierarchy
level, then the vector for that block is set to (0,0). Otherwise, the motion vector
found at the last hierarchy level is preserved. This procedure is to guard against
noisy motion vectors. Vector (0,0) is favored a little bit more for a more uniform
vector field.

10

As in the color segmentation block, R.SST is used for motion segmentation. The
only difference from color segmentation is the use of estimated motion vector
field components as input during the segmentation. The distance measure for
this block is defined as follows [2] [17]:

3.3 Local M otion Segmentation

d{B,i,R2) = ll/iR, -
Nn, X N,̂ 2
Nr, + NRi

H =
Mx^avg

M,y,avg

(3.2)

Here, Mx̂ avg aiid Mŷ avg denote the averages of horizontal and vertical components
of the motion vectors for a region, respectively.

The number of regions in the final segmentation in Figure 3.1) is set
to four. This number is arbitrary, and determines the maximum number of
objects that can be observed in the same frame. The number four is found to
be appropriate for a number of sequences, but it may be changed to accomodate
more/less number of objects in a sequence.

The boundaries of the regions are coarse, due to the matching errors inherent
in the motion estimation. However, the object locations are found correctly.

An example to motion segmentation with RSST is given in Figure 3.3.

Figure 3.3. An example to segmentation using the motion information

3.4 Local M otion Compensation

Using the previous segmentation results and the motion information, it is possible
to predict the locations of the objects in the current frame. Using results from
previous segmentation masks is necessary in order to be able to track the objects
throughout the sequence. Many methods in the literature work only on two

11

frames at a time, therefore they can not guarantee the temporal coherency of
the detected objects in the rest of the sequence. In AM, this information is used
in determining the status of the objects in the current frame (for example, “the
object is still moving”, or “a new object has appeared”). Motion compensated
result mask is denoted as in Figure 3.1.

3.5 Global M otion Estim ation/C om pensation

Given the current and previous frames It and A-i, a possible camera motion
is estimated and compensated, as explained in [19] [21]. Camera motion is
modeled by the perspective motion field model by 8 parameters.

Next step is a postprocessing step which finds the regions where the model has
failed. In such regions, motion vector field accuracy is improved by performing a
full search within an area of a predetermined size.

In current version of AM, this module is not utilized by Mode 2.

3.6 Scene Cut D etection

Scene cut detector tries to detect the frames in a sequence where scene content
has changed a lot such that further analysis based on information obtained from
previous frames (previous result mask, for example) is meaningless. In such a
case, parameters are reset to their initial value (values at the beginning of the
execution).

To detect a scene-cut, the difference between the current frame It and the cam­
era motion compensated previous frame is calculated. If this difference exceeds a
given threshold, it is decided that a scene-cut has occured.

In current version of AM, this module is not utilized by Mode 2.

3.7 Change D etection

The change detection mask (COM) between two successive frames is estimated.
In this mask, pixels for which the image luminance has changed due to a moving
object are labeled as changed.

The algorithm for estimation of the CDM [20] - [22] can be subdivided into
several steps which are described in the following subsections. The final CDM is

12

simplified and small regions are eliminated.
The steps to obtain the final CDM are explained below.

3.7.1 Computation of the initial CDM

The initial CDM (CDMi) is calculated from the camera motion compensated
previous frame and current frame, by a thresholding operation on the squared
luminance difference image [23].

3.7.2 Relaxation of initial CDM

Boundaries in the CDMi are smoothed by a relaxation technique as explained
in [23] and [24]. Here, every border pixel is decided whether it will be in the
changed area or unchanged area. For this purpose, a local threshold for each
border pixel is calculated, taking into account the neighborhood of that pixel.
The relaxation is processed iteratively, until only a small number of pixels are
changed by relaxation or the maximal number of iteration steps N is reached.
Final CDM is denoted as CDMs.

3.7.3 Temporal coherency of the object shapes
In order to finally get temporally stable object regions, the previous object masks
are taken into account. In the CDMs, additionally all pixels which belong to
the changed area in the pixel memory are set to changed. This memory keeps
information about the last L CDM’s. This dynamic memory is updated according
to Equation 3.3 [22]:

{ L , i f CDMs(t)(x,y) = 1
MEM(t)(x,y) = I wv

[max{0,MEM(^t-i){x,y) - 'i·) , i f CDMs(t){x,y) - 0
(3.3)

The current CDMs is then updated by a logical OR operation (Equation 3.4)
between CDMs and the previous output mask, taking into account the memory
MEM. This CDM is denoted as Rf® in Figure 3.1.

CDM^t)(x,y) = CDMs^t){x,y) V
^? {x ,y) , i f MEM^t){x,y) > 0
0 , i f MEM^t){x,y) = 0

(3.4)

13

An example change detection mask is given in Figure 3.4.

k
Figure 3.4. An example to change detection mask (CDM)

In current version of AM, this module is not utilized by Mode 2.

3.8 Rule Processor

The information from four sources (R[, and R f^) are fused in this
module, to obtain the object segmentation mask, R f [1] - [4].

As mentioned before, AM incorporates two modes of operation: The first
mode segments the scene into foreground (moving) and background (stationary)
areas. Mode 2 distinguishes different objects in a scene.

3.8.1 Mode 1: Detection of moving objects and back­
ground regions [2]

In this mode, the results from the change detection, color segmentation and local
motion analysis are used in order to distinguish foreground and background areas.

Initially, the uncovered background areas are eliminated from Rf® as in [22],
[25], resulting in a preresult mask. A pixel is set to foreground if both the starting
and ending points of the corresponding displacement vector are in the changed
area of the change detection mask. If not, the pixel is set to background.

The color segmentation mask R[has accurate boundary information; there­
fore color segmentation boundaries are utilized as object boundaries whenever
appropriate. The color segmentation mask is projected onto the preresult mask
and the following decision rules are applied to obtain the resulting object mask [2]:

14

R ule 1: Foreground detection
If the number of foreground pixels mapped onto a color segmentation region

is above a predetermined threshold, all foreground pixels mapped onto this color
region are set to foreground. In addition, all pixels within a range of N pixels
with respect to the boundary of the preresult mask are set to foreground.

R ule 2: Background detection
This rule is the dual of Rule 1: if the number of foreground pixels mapped onto

a color segmentation region is below a predetermined threshold, all background
pixels mapped onto this color region are set to background. In addition, all pixels
within a range of M pixels with respect to the boundary of the preresult mask
are set to background.

Currently, the threshold is taken to be 80% of the color region’s area, and M
and N are set to 2.

3.8.2 Mode 2: Extraction of moving objects [1], [3], [4]
Mode 2 execution starts with mapping of each color segmentation (Rj) region
onto one region in Rj and one region in The rule for mapping is as in the
following:

• Map a color region onto the Rf^ region (and onto the R^*^’ region) with
maximum intersection area.

In Figure 3.5 [1], an example is given to mapping of color regions onto
regions.

Second step is labeling of each region in R ^ as “moving” or “stationary” by
comparing its average motion with a given threshold. Each color region has the
label of the motion region it is projected onto, and each R^*^’ has its label from
previous segmentation mask.

The following rules are applied to obtain the mask at the output of the rule
processor R f mask [3], [4]:

R ule 1: Tracking of O bjects

• If all color regions mapped onto the same Rf^^' region have the same label,
merge those color regions.

This rule indicates the existence of a previous object in current scene (object
tracking): the color regions that belonged to some object in the previous mask

15

Color Segmentation

Motion Compensated Segmentation

Color Segmentation projected on
Motion Compensated Segmentation

Corrected boundaries of
Motion Compensated Segmentation

Figure 3.5. The projection of color regions onto (and correction of bound­
aries). (Reprinted as a courtesy of Alatan et al. [1])

also show up here, still as part of that particular object. No new objects have
appeared in the scene.

Rule 2: Newly Exposed Objects

• Else if a R ^^’ region is stationary

— Merge the stationary color regions mapped onto this R ^^’ region

— Merge the moving color regions mapped onto same Rf^ region

This rule indicates a stationary object has changed its label, possibly due to the
fact that a smaller still object (inside this larger stationary object) has started
moving. Thus the old object is now split into two: one of them is the remnant of
the old stationary object, and the others are the new (moving) objects.

Rule 3: Articulated Motion of Objects

• Else if a Rf^^' region is moving

— Merge the stationary color regions mapped onto this R^*^’

— Merge the moving color regions mapped onto this R^*^’

16

This rule is the dual of Rule 2: Now a moving region has changed its label, possibly
because this moving object actually consisted of many objects, and some of them
stopped moving. Therefore the old moving object is now split into two objects:
one of them consists of the moving parts of the old object, and the second one
consists of the recently stopped parts.

An example for the application of the proposed rules
Consider the example in Figure 3.6, which is taken from [1] (courtesy of Alatan

et at). Color regions are mapped on one motion (Rf^) region (one ob­
ject) and color regions [E, F, G} are mapped to another motion region. These two
motion regions are labeled as moving. The remaining color regions, {A, B, C, D},
are labeled as stationary and belong to the third motion region. However, there
are only two regions in one region which contains color regions {E, F, G},
and a second region which contains the rest.

SEGMENT
COLOR Z_

se g m p:n t \
MOTION Z_

moving regliyii ■ {II,

moving region ■ (E,F

/ 1
stationary region » {A,B,C,D}

previous stationary Object 0 = { A,Ii,(

MOTION _
COMPENSATE N

PREVIOUS /
SEGMENTATION

A

previous moving Object 1« {E,F,G}

Object 0 - (A,B,C,I)}

Object 1 » {E,F,G}

Figure 3.6. A simple example for Mode 2. (Reprinted as a courtesy of Alatan et
al. [1])

Color regions {E, F, G}, which belong to a moving region in also belong
to a moving region in Rf^. Rule 1 says that this object is not new, it has been

17

tracked from previous frame. So, these color regions are merged and labeled as
part of object-1 in current object mask R^.

Rule 2 is in action in the rest of the scene. The color regions {A, B, C, D,
belonged to a stationary region in the previous object mask. Currently, some of
these color regions are still labeled as stationary, while some of them are labeled
as moving. These moving color regions {{H, I , J}) are merged to form the new
{moving) object in the scene (object-2), while the regions {A , B, C, D] make up
the stationary region (object-0).

3.9 Post Processing

Since the rule processor splits regions, it is likely that one semantic object is
broken up into multiple objects. Also, some very small regions (which are not
likely to be semantic objects themselves) may appear. Post processing tries to
improve the segmentation by merging erroneously split objects and by merging
the small regions to their neighbors.

Merging of small areas is done as follows: if the area of a region in R f is
smaller than a predefined threshold, then this region is merged with one of its
neighbors to form the final segmentation, R f . The neighbor with the same label
and largest area is chosen.

Merging of split objects is handled as follows: if a region in R f is moving
and if it is a neighbor to another moving region with a similar motion, these two
regions are merged in R f .

Final operation in this step is to refine the edges by using morphological
opening with a structuring element as in Figure 3.7.

The post-processor is used by mode 2 of AM only.

Figure 3.7. The structuring element

18

Chapter 4

Video Object Segmentation

The term “object segmentation” can be defined as “extracting objects from some
source” . Two immediate questions follow:

• What is an object?

• What can be the source?

A quick answer to second question could include a single image, an image
sequence (a sequence of frames, or video), an audio stream (a song, some mutter),
a movie etc. However, there is no easy, or “correct” answer to the first question.
The “object” may have different meanings under different conditions: Source
may be different (audio vs video); moreover, within the same source, what might
constitute an object (i.e., object features) may be different.

Consider Figure 4.1. Which sections should we classify as objects? The
woman’s mouth, eyes, face, head, the entire woman, or the screens behind the
woman?

Figure 4.1. An example to demonstrate difficulties in object definition: What
should be considered as objects in this scene?

19

This simple example shows that even human beings may not agree on what
should be classified in a scene. A rule of thumb could be “anything that has
a name can be an object” but this rule is too abstract for a computer to pro­
cess. Therefore, attempts in object segmentation have been concentrated on what
kind of low-level information can be obtained from a given scene, and how this
information is related to high-level, semantic objects.

When the source for object segmentation is a single image, extracting seman­
tically meaningful objects becomes harder (compared to extracting objects from
video, since video provides extra information in the form of more frames which are
temporally related). Therefore, methods which try to extract objects may bring
in extra constraints, or make prior assumptions, some of which may be due to
the nature of the desired application. In [26] and [27], a template-based approach
is utilized. The statistics (model parameters) of the template to be recognized
is obtained and compared to that of the image to be analyzed. An application
suitable for such an algorithm is recognition of traffic signs. In another applica­
tion, where airborne fiberglass particles are to be analyzed in a scanning electron
microscopy image [28], the description of objects is generated using a polygonal
approximation of their boundary.

Sometimes it is necessary to define new features, based on the immediate
observable features like color, intensity. In [29], for example, where a multi­
resolution color clustering algorithm is applied to images for indexing and retrieval
(in context of MPEG-7), a new color feature based on octree data structure is
introduced. Any input to this querying mechanism is an image. The newly
defined feature of input image is calculated and compared to the ones in the
database.

The type of information contained in an image may also be coming from
an application specific source. In [30], for example, a 3-D image segmentation
technique is described, where the input image is a range image (an image which
contains range information about an object when viewed at a particular distance
and angle).

Another issue is that many different approaches may be utilized to work on
the same type of information. Both the work in [31] and [32] rely on the texture
properties of the image. In [31], the image is segmented into regions using the
texture information by 2-D Wold decomposition. [32] also deals with segmentation
based on textures, but utilizes a hierarchical Markov Random Field (MRF) to

20

model the textures.
Video segmentation is a very different issue, however. Now source is much

broader; there are many frames to consider, and those frames are closely related
to each other. In other words, temporal relation gets into the scene and supplies
more information than individual frames do. The term “video segmentation”
actually refers to two different type of operations. First one is “extracting se­
mantically meaningful objects from a given video”, and second is “dividing video
into temporal segments where each segment can be described in a compact way.”
For example, in an MPEG-7 context, a “compact” description will be the one
which allows indexing and querying to be done fast and efficiently.

Video Segmentation: dividing video into temporal segments
In [33], for example, video is assumed to be in the format that MPEG-4

can decode, and that video is analyzed for “Decision Support Representatives
(DSR’s)” which properly represent each shot (video segment). Then queries to
that video will be processed using the DSR’s of its shots. A similar study is
presented in [34]. The aim is to extract effective discriminating features from
reduced sets (shots) and use them in indexing. The key frames are selected using
a discriminant function (based on eigenvectors obtained from the image). After
key frames are selected, another discriminant function is used to group similar
key frames, which allow each group to be treated as a unit.

The approach in [35] discusses a system for indexing of video using motion
information. The system, mainly developed for surveillance applications (in which
motion is assumed to have long trajectories and is mainly translational) expects
video as an MPEG-1 stream, and segments it to determine the “correspondence
of objects” between frames (object tracking). The data belonging to the center
of objects is utilized (one {x,y) pair for each object in each frame), and for the
video segment that object exists, two vectors from x and y positions are formed.
In the database, first eight coefficients of wavelet transform of these vectors are
kept. When the user sends a query (by drawing trajectory of desired object using
a mouse), these coefficients and coefficients from user entry are compared for a
match, and segments closest to user’s entry are returned. If desired, search may
be supported with extra information regarding object’s color or size.

Another approach, [36], which tries to segment the video based on camera cuts
(scene cuts, places where a substantial amount of change occurs in the scene) uses
intensity histograms. Based on the information from histogram, features such as

21

dissolve, fade in/out, wipe etc. can properly be detected and labeled.
The study “VideoBook” [37] is another framework for content based query and

retrieval from video databases. Inspired by the human eye (which has motion
sensors, spatial orientation and color detectors), a set of measures to be used
in characterization of video segments are proposed. The measures are obtained
from motion, texture and colorimetry data, as well as entropy. For each shot,
an 8-pararneter vector is constructed (3 from motion, 2 from texture, and 3 from
color). Similarity is measured by using the mean-square-error between vectors in
the database and vector belonging to the input shot. Since the amount of data
to be processed is small, the system can work in real-time.

Video Segmentation: extracting semantic objects from video
In this case, the use of temporal and spatial information will differ from the

methods mentioned above. Now, a common approach to object definition based
on low-level information is “a region with uniform color properties and coherent
motion” and with this understanding, extracting objects will reduce to “finding
whereabouts of objects using motion information and incorporate spatial informa­
tion while deciding on object boundaries.” The idea behind this approach is that
temporal (motion) information will yield coarse boundaries (due to ill-posedness
of motion estimation problem [5] and - to a degree- the methods used in motion
estimation) but help in locating the object in a frame. Spatial (color) information,
which gives sharp boundaries, will be used to determine object shape.

Object segmentation algorithms, however, do not always treat objects in this
manner. Rather, they may be investigated under three groups, according to the
information they make use of to find the objects (actually the approach “uniform
color properties and coherent motion” is only one of them). This classification is
rough, since in each group, the algorithms may incorporate extra features as an
aid, or they may differ in the ways they utilize the “main” source of information.

• Algorithms that utilize motion information

• Algorithms that utilize color (intensity) information

• Algorithms that use both of these information.

Algorithms that utilize motion information for object detection
Algorithms in this group use motion estimation results in detecting and seg­

menting video objects. If the motion estimation results are correct, such algo­
rithms yield good results. But motion estimates near the boundaries of objects

22

can only be reliable if the segmentation mask is known beforehand. Hence, bound­
aries obtained from such methods are generally incorrect.

The general approach is as follows: Initially, motion between two frames is
estimated, to obtain a dense motion field. Afterwards this field is segmented
using any distance measure and motion model. The model may be translational
[38], [39], affine [40], quadratic [41], or any other motion model. In the extreme
case, [42] presents a method which incorporates all these three for maximum
performance. The distance measure also varies from one method to another.
In [40], the residue between estimated motion field and the motion field calculated
using model parameters are utilized. On the other hand, the residue between
motion compensated first frame and second frame (i.e., displaced frame difference,
DFD) are used in [38]. Another approach, [39], checks the region averages and
merges two regions if they are close enough (distance between them is below some
threshold).

The approach in [41] is a bit different, since it also aims to code the extracted
objects efficiently (using minimum number of bits). Here, the image is divided
into blocks, and for each block, motion parameters are calculated. Merging is
based on a region growing algorithm, where seeds (initial regions) are the well
compensated blocks (blocks for which DFD is less than some threshold). The
ultimate aim is to label each region as either temporally unchanged, model com­
pliance, or model failure. Model compliance regions are the regions which can
be described by their shape information and motion parameters. Similarly, when
this information is insufficient to describe a region, that region is flagged as a
model failure region, and coded by other means.

The method in [42] is also different in that three motion models are used in the
segmentation process. The initial dense motion field is segmented using the trans­
lational motion model, with a distance measure similar to [39]. Region merging
proceeds until the distance between any two neighboring regions is greater than
some threshold. Next stage is the merging of these regions using affine model. At
each step, affine motion parameters are extracted from two neighboring regions
(which are candidates for merging) and the standard deviation of the residue be­
tween estimated field and the field calculated from motion parameters is checked.
The two candidates are merged if this value is below some threshold. Final step
is similar to this one, except a quadratic model (as in [41]) is employed.

23

The algorithms may also bring in additional constraints or assumptions. In
[40], motion estimation is done around each pixel’s neighborhood, implying the
motion is assumed to be small. If the displacement happens to be outside that
neighborhood, the estimated motion will be incorrect. Another assumption is that
the error will be high if the search window during motion estimation is placed
across object boundaries and vice versa. Depending on the window size and posi­
tion, this may turn out to be untrue in case of closely located objects, which again
leads to incorrect estimates. Another example to such (implicit) assumption is
the work in [42], in which a static background is assumed. The motion estimation
and segmentation is only considered on the areas which are labeled as moving by
the change detection mask obtained from two frames, however, there is no global
motion estimator/cornpensator employed. In case of camera motion, the moving
areas will be labeled incorrectly and this will fail the whole method.

As shown in [5], motion estimation based on two frames only is an ill-posed
problem. The occluded areas has to be treated separately in order to get correct
estimates. However, among the algorithms discussed until now, the only one
that employs occlusion detection is [38]. Here, in addition to motion estimation
between current and previous frame, motion between current and next frame is
also estimated, and using both of these estimates, the spatial order of the objects
is determined. Otherwise, in case of occlusion, the motion estimates will be
incorrect.

Another issue is related to the “memory” utilized in these methods. None
of the algorithms discussed above keep track of the status of the objects they
find. After the objects are found using a pair of frames from the sequence, the
algorithms start over with another set of frames (the use of “model compliance”
areas in [41] may be considered as a kind of memory, but not the kind that
is being mentioned here, and it only depends on previous frame). For proper
tracking of an object throughout the sequence, one needs to consider issues such
as whether that object exists in previous frame(s); if so what is its status (i.e.,
stopped, moving, new object) etc. Therefore, none of the algorithms presented
here guarantee the continuity of the objects they have found.

Algorithms that utilize color (intensity) information
These methods use only spatio-temporal intensity information instead of es­

timating the motion. The result is a change detection mask which marks moving

24

and stationary regions; therefore multiple objects can not be identified. In addi­
tion, the methods’ performance will degrade if some pre- and post-processing is
not applied to handle a possible camera motion, illumination change, or noise in
the input sequence.

A common approach to obtain a change detection mask starts with the detec­
tion and removal of (possible) camera motion. Then the difference image is ob­
tained and thresholded: If difference for any pixel is greater than some threshold,
that pixel is marked as changed, otherwise unchanged. How this “raw” detection
mask will be used depends on the specifics of an algorithm or application. In most
cases, this mask is further processed to obtain better results (using constraints
such as smooth contours, or elimination of isolated points).

As in the previous case, many algorithms bring in other assumptions, or utilize
application-specific constraints. Stationary background is one of these constraints
which is employed in [43], [44], and [45]. In [43] and [45], image sequences ob­
tained by a fixed camera are analyzed for objects. Specifically, [43] deals with
road sequences in real-time, while [45] takes its input from a surveillance camera
fixed to some location. In addition, the background is known a priori in these
cases. The initial detection mask can simply be formed by comparing the known
background with the acquired image.

In [44], input is assumed to be a “head & shoulders” sequence. Stationary
background is also inherent here, however, unlike [43] and [45], no a priori knowl­
edge of background is available.

The detection masks obtained in [43] and [44] are not used directly, but further
processed: polygons are fitted to the boundaries of changed areas in [43], while
[44] extracts the edges and fits them to the regions in the detection mask. In
contrast, [45] does not do any more processing, but searches for an ellipse template
(representing head) in the changed region. If such a template is found, a face
template is searched for facial features such as eyes and mouth.

Although camera motion is not a concern in these cases, illumination changes
and occlusions still plague these methods, especially [43] and [45]. Under different
conditions (day/night in case of [43] and different lightning in [45]), illumination
is different, which will lead to an incorrect detection mask, unless the algorithm
is trained somehow beforehand for such situations. In case of an occlusion, there
is no way to differentiate between two objects and these algorithms which try to
build an object model according to object shape will fail.

25

The assumption of small motion which was incorporated into [40] also exists
in [44], albeit in a more restricted way: The motion is assumed to be little but
it should be sufficient for detecting facial features. This is necessary since the
algorithm checks overlap between previously found mask and currently obtained
mask for object correspondence. In the sequences where this assumption does
not hold, incorrect correspondences will be established, which will propagate
throughout the sequence.

The methods in [46] and [22] are general purpose algorithms, with no specific
application in mind^. Both algorithms obtain an initial change detection mask as
described earlier, and impose MRF-based smoothness constraints on the detection
mask. Another point is that both of them have “memory”. In [22], processed
detection mask is improved with previously obtained masks, while in [46], only
last mask is used. Both of these algorithms perform well, as long as no shading
changes or occlusions occur.

Algorithms that utilize both information
The algorithms in this group may further be grouped according to how they

utilize motion and color information. This is not conclusive, but it gives an idea
about the approaches in this class of algorithms:

1. Algorithms which utilize a single metric that both takes into account motion
and color information [47] - [50],

2. Algorithms which utilize motion and color information separately [51] - [53],

3. Algorithms that perform simultaneous estimation and segmentation [54].

The algorithms that go into first group employ a distance measure (in merging
two neighboring regions) as in Equation 4.1:

D = Y ,w J i (4.1)

Here, fi denote the value of a specific feature (like color, motion), and Wj denote
the weight assigned to that particular feature.

Specifically, consider [47], where the similarity measure used for joining pixels
to an existing region R is defined as:

Hn fact, [22] forms the basis for Rule Processor Mode 1 in AM. Therefore, the explanations
here will be a brief summary of the mentioned study. More detailed information is presented
in Chapter 3 and related references.

26

S{x ,y ,R) = aSm{x,y;R) + (1 - a)Si{x,y, R)

The Sm term for any pixel is the displaced frame difference

= h (x ,v) - h - l (x - d i (x ,y) ,y - dy(x,y))

(4.2)

(4.3)

Here, Ik denotes intensity values in frame k, and dy are the horizontal and
vertical components of the motion vectors, respectively. The Si term for any
pixel is simply the intensity difference between current pixel and the region under
consideration.

The method in [49], which is based on the similarity tests in [55], also brings
in a similar metric:

F a b = T a b — k T a b { M — S a b) (4.4)

Fab is the spatio-temporal similarity between regions A and B. Tab is the
temporal similarity. Sab is the spatial similarity. M is the maximum value of the
similarity between region A and its neighbors.

All three methods calculate their features using different algorithms but they
all end up using a similarity measure which incorporates some “unknown” coef­
ficient {k in [49], a in [47], and u>i in [48]). The idea of incorporating temporal
and spatial information into a similarity measure in this manner may severely
affect algorithm performance. The methods do not indicate any clue about how
to select the weight parameters, yet these parameters directly affect segmenta­
tion performance. There is no simple way of setting the weights which will work
“best” on all sequences, therefore this approach may turn out to be inferior.

Methods in second group treat temporal and spatial information separately.
The advantage is that color segmentation yields sharp boundaries, which coincides
with object boundaries better than motion boundaries. In [51], for example, the
regions obtained after color segmentation are merged if they are similar in motion.
Measures such as DFD and maximum likelihood tests are used to evaluate the
similarity.

In [52], initial step is forming motion regions which will form the basis of the
objects. An iterative k-means algorithm is utilized to get the motion regions.
Merging continues, until distance between two candidates is greater than some
predetermined threshold. Remaining pixels are joined to existing regions using
luminance information.

27

Another work, [50], also attempts object segmentation using motion and color
(luminance) segmentation. Initially, any possible camera motion is estimated and
removed. Local motion is estimated by a matching technique [56]. Next step is
the segmentation of current image based on luminance values using a k-means
algorithm [57]. For each region obtained by luminance segmentation, motion
parameters are estimated. The regions which are similar in motion are joined
using a k-medoid clustering algorithm [57] performed on motion parameters of
each region.

Processing the video in pairwise frames makes the algorithm lack the temporal
coherency in terms of object continuity. To cover up this last “deficiency”, the
study in [58] (which is a tracking algorithm added to [50] and an improved merging
algorithm) is proposed. First step is the prediction of locations of objects (of
previous frames) in the current frame. Then, rnean-square-error (MSE) after
this motion compensation is compared to a threshold. If MSE is less than the
indicated threshold, the object is classified as valid. For such valid objects (in a
way similar to Rule Processor Mode 2), it is checked if they correspond to any
previous object. Second step is a kind of rule processor which checks a number of
hypotheses (based on motion similarity and spatial similarity tests) and decides
the “correspondence” of objects in current frame with the ones in previous frames.
With this algorithm, tracking of objects throughout the sequence is established.

Coding of the objects is an additional issue in [53]. The object segmentation
methods are not drastically different from that of the methods described above,
but additional assumptions are utilized. An example to such assumptions is based
on the idea that human eye is less sensitive to chrominance component of a color.
Therefore, one object is coded only using one chrominance value (only one UV
pair), instead of using all its pixels’ UV values, saving significant bandwidth.

Human supervision is another important factor in object segmentation algo­
rithms. Since a human being is the one who can know best what an object is,
a little help can drastically improve the segmentation result, compared to fully
automatic segmentation algorithms.

This is the idea behind the studies in [59] and [60]. In [59], the user outlines
the object’s interior and using morphological dilation, this “interior” outline is
extended to form the “exterior” outline. Using these outlines, interior and exterior
cluster centers are calculated. Interior outline should be close to the boundary
and exterior outline should lie out of the object in order for the algorithm to work

28

properly.
Then the pixels in this intermediate area assigned either to the object or not,

depending on a distance measure which is as follows;

D i = ~ f i \ + \d ~ 9 i\ + 1̂ ~ b i\) + <^coord{\^ ~ ;̂i| + |y — yj|) (4.5)

where lOcoIot and uJcoord are weights for color and coordinate information, r, g, b
are color component values for cluster centers (either interior or exterior), x and
y are cluster center coordinates.

Next step is motion estimation and warping of previously obtained object to
current frame, assuming that the motion is little (therefore the shape does not
change significantly from frame to frame). This tracking continues until the end
of the sequence with a similar dilation operation.

This algorithm also suffers from the unknown coefficient issue like [49], [47],
and [48]. Moreover, the algorithm is limited in its use, since it does not allow new
objects, it does not allow objects to disappear. However, it demonstrates what
can be achieved using supervision. Objects can be tracked very accurately using
this algorithm.

The other example which utilizes human assistance, [60], is similar to [59] in
that user assistance is in the form of “drawing”. However, this time, the only
requirement is that the drawing stay inside the object, not necessarily close to
the boundary. It constructs feature vectors for each pixel, and assumes that
distribution of a particular feature in each region, which will be obtained from
user input, can be approximated by sum of Gaussian PDF’s. Number of PDF’s
(modes) is limited to 5 and an expectation-maximization algorithm is used to
estimate the parameters that fit best to the user input. Then the remaining
pixels are assigned to the previously formed regions, by calculating the a posteriori
probabilities. Used features are color, motion, texture, position, luminance, and
any available a priori background information).

The supervised mesh-based approach introduced in [61] is different from other
algorithms in its class in that object segmentation is performed only in the ini­
tial frame, by human assistance. Then the objects are tracked throughout the
sequence. New objects are detected by the use of uncovered background regions.

In this approach, regions which will form the objects in the scene are obtained
using color and motion segmentation results, as described in [62]. These regions

29

are joined interactively to form semantic objects, with object boundaries approx­
imated by polygons. Then nodes are placed in each region using the algorithm
described in [63], and with constrained Delaunay triangularization, meshes are
formed (constraint = object boundaries). The same segmentation algorithm is
applied to uncovered background areas. If such an area is found to be similar
(in terms of motion, color, texture properties) to any existing region, they are
merged. If not, such uncovered background areas form new regions.

The primary drawback of this algorithm is its new object detection mech­
anism. The uncovered background areas are generally small, therefore motion
segmentation can not be reliably applied upon them. Another problem rising
due to the size of such areas is that reliable texture, color, or motion informa­
tion can not be obtained from these areas. Moreover, similarity in terms of such
features does not mean the two regions belong to same object (such incorrect
merging is corrected interactively). One final point is related to the temporal
coherency of the objects detected: this method does not make use of the pre­
viously found objects (similar to the many methods discussed so far, it works
on two frames at a time) and does not consider the temporal evolution of one
object (object stopped, disappeared etc). This means the object continuity is not
guaranteed throughout time.

It has been noted earlier that for reliable motion estimates, boundaries of
regions in the segmentation mask should be known. However, to obtain correct
boundaries, good motion estimates are needed. To solve this “chicken & egg”
problem, some algorithms propose to simultaneously perform motion estimation
and object segmentation. These algorithms iteratively update the motion field
and the segmentation mask. This approach is a powerful one, but the computa­
tional complexity of the methods utilizing it is too high; this is the main drawback
of such methods.

Such an algorithm is presented in [54] [64]. It is based on the maximum a
posteriori (MAP) criterion, and the interdependence of constraints for motion
estimation and object segmentation are expressed by a Gibbs distribution. Three
energy functions are constructed to express the constraints for motion estimation
and object segmentation. Weighted sum of these functions constitutes the actual
energy function to be minimized. Highest Confidence First [65] and Iterated
Conditional Mode [66] algorithm as explained in [67] are utilized to minimize the
energy function. As mentioned before, the main drawback of the algorithm is

30

the computational power it requires. Another issue is the determination of the
weights associated with each energy expression. They give user the ability to
control the relative emphasis on various terms, but they have to be determined
in an ad-hoc manner, since there is no way of knowing in advance what kind of a
distribution will result in good estimates and segmentation.

31

Chapter 5

Improved COST-211 Analysis
Model: Version 4

As mentioned in introduction, COST-211 Analysis model performs well to a de­
gree but there is a lot of room for improvement. The improvements mentioned in
this chapter are integrated into COST-211 Analysis Model, and with these, the
Analysis Model is improved to Version 4.

Consider Figure 3.1, which is replicated here for convenience.

Figure 5.1. COST-211 Analysis Model. (Reprinted as a courtesy of Alatan et
al. [1])

The improvements that will be discussed in this section come in the form of
addition of new blocks, improving existing blocks, and addition of new function­
alities to existing blocks.

32

The first improvement, which can be considered as a new block, is related to
the part denoted as “Video input” in Figure 5.1.

5.1 Adaptive Frame Skip and Interpolation

The input to the Analysis Model is a sequence (video). At a time, two frames are
fed into the Model. The selection of those frames is done using three parameters:
START_FRAME, MAX.FRAME, and FRAME JSKIpi. If, for example, the values
for these are 0, 299, arid 3, respectively, this indicates that the analysis will start
at frame 0 and will end at 299, skipping two frames (to get the third) at each
step. The situation is depicted in Figure 5.2.

0 1 8

Figure 5.2. Frame selection algorithm currently employed in AM: constant frame
skip

This approach may have a major impact on AM performance (especially
Mode 2 which relies on motion information to detect objects) in that AM will be
less successful in the parts of the sequence with little information (due to lack
of sufficient motion information) and it will miss some important frames in the
fast-motion parts. To overcome this problem, a new adaptive approach, which
will take into account the amount of motion between frames and decide which
ones to feed into the AM, is proposed [68] [69]. See Figure 5.3 for a possible
scenario.

Initially, the motion between frame 0 and 1 is estimated. If it is found to
be below a user-determined threshold, estimation is performed between 0 and 2.
Procedure is repeated until the motion exceeds the threshold. AM is invoked with
the two frames obtained by this method. The second (“current”) frame of this
step becomes the first (“reference”) frame for next step, and frames subsequent to
this new reference frame are checked for motion content. The process continues
until all the source frames are considered.

P̂lease refer to Appendix A for a detailed description of the employed parameters.

33

Selected Frames

Figure 5.3. Proposed frame selection algorithm; Adaptive frame skip

The motion content can be calculated using any appropriate method. Initially,
the motion content was calculated over all image, using an average as indicated
in Equation 5.1. The motion estimation is performed using the HBM algorithm
in the Model.

1
(5.1)

(s,y)6/
where W is the width, H is the height of the image /, and My are the
horizontal (x) and vertical (y) components of the motion vector at location (x, y).
There is no prescribed algorithm to determine the threshold for motion; various
M values ranging from 0.125 to 0.5 pixels have been tried (it is observed that
values outside this range have caused too many skips or too few skips in the
sequences, therefore, experiments have been performed with motion threshold
only in this range).

This method proved to be useful in some cases, but its main drawback is
that it does not detect frames which contain small (compared to image size) but
fast-moving objects, due to the averaging process. To partially handle this situa­
tion, another measure, which is based on the number of vectors with magnitude
greater than some predetermined threshold is proposed. Motion vectors whose
magnitudes are greater than the threshold (which is 2.5 pixels at the moment)
are counted and frames are skipped until number of such vectors in the estimated
motion field exceeds a threshold (currently 600 for QCIF sequences). This mea­
sure has proved to be more reliable, since it ensures that a certain amount of
motion exists between two candidate frames; therefore it indicates that there are
some objects in the scene.

The skipped frames are interpolated using the O '̂ -̂order interpolation. In other
words, if we consider the example in Figure 5.3, the masks for frame 1 is the same
as the mask for frame 0. Similarly, the mask found for frame 3 is valid for frames

34

4, 5, 6, and 7. Although this may seem to be inappropriate, it works in practice,
since frame skips occur only if there is not sufficient motion. Therefore, using such
an interpolation algorithm is not a great deviation from true masks. The only
case that the effects of this algorithm will be noticeable is the sequences where
motion is small in terms of the quantitative measure (not necessarily measured
by the proposed method), but not in terms of the qualitative description. For
example, in the sequence “Hall Monitor”, one man enters a corridor, drops his
bag, and exits from another door. While he drops his bag, he bends down, and
up. The motion during this action is small in quantitative terms, therefore a
lot of frames are skipped here, and misalignments are observed in the resulting
segmentation mask. However, there are no such visible effects in the part of the
sequence where he enters the corridor and exits, since the motion is sufficient to
detect the man properly. It is clear that the problem is not with the interpolation
algorithm, but with the motion metric employed. With a proper motion metric,
such effects will not be observed.

Some examples to the improvements achieved by using AFS are demonstrated
below using standard MPEG sequences.

Results from “Hall M onitor” , “Akiyo” and “Container Ship”
Frames from a total of 300 are selected to display the effects of proposed

algorithm. The first set of frames come from the run without adaptive frame
rate. Here, a constant frame skip rate of 3 is applied, and masks for skipped
frames are again filled with 0*^-order interpolation. Therefore, only 100 of the
masks are generated by the software. Second set of frames come from the run
with adaptive frame skip enabled, with motion vector magnitude threshold 2.5
pixels and count threshold 800. In this selection, only 63 of the frames show
up at the output in Hall Monitor. The frames displayed in Figures 5.4 and 5.5
for Hall Monitor are frames 22, 89, 109, 117, 121, 134, 148, 189, 204, 214, 264,
respectively. Frames for Akiyo in Figures 5.6 and 5.7 are 58, 61, 64, 103, 115,
127, 139, 180, 194, 207, 220, and for Container Ship (in Figures 5.8 and 5.9) 82,
164, 247, 298. The sequences are all QCIF size (width = 176 pixels, height = 144

pixels).
It is clear from the figures that when proper frames are selected for motion

estimation (by AFS algorithm), the objects are detected better than the usual
constant frame rate approach. Consider the Hall Monitor sequence in Figures 5.4
and 5.5. Selecting input frames with sufficient motion content yields more reliable

35

Figure 5.4. Results from AM run without AFS, Hall Monitor

Figure 5.5. Results from AM run with AFS, Hall Monitor

36

Figure 5.6. Results from AM run without AFS, Akiyo

Figure 5.7. Results from AM run with AFS, Akiyo

37

Figure 5.8. Results from AM run w ithout AFS, Container Ship

Figure 5.9. Results from AM run with AFS, Container Ship

motion vectors, which, in turn, yield a better motion segmentation mask. Using
AFS, both men are extracted properly (Figure 5.5). On the other hand, by
using constant frame approach, we end up with segmentation masks in which
the men are extracted only partially. The Akiyo sequence also demonstrates the
necessity of selecting input frames according to motion content. In Figure 5.6
and 5.7, top row shows masks for frames 58, 61, and 64. To generate mask 61 in
Figure 5.6, frames 58 and 61 are utilized in the constant frame skip algorithm (i.e.,
frames from the input sequence are selected uniformly, skipping two frames to get
the third), while in the AFS case (Figure 5.7), frames 48 and 64 are utilized to
generate^ mask 61. Since motion content obtained from 58 and 61 is not sufficient
to describe the face properly, the segmentation mask contains only a little part
of the face. However, frames 48 and 64 contain sufficient information for proper
segmentation, the face is extracted properly. Similar arguments can be made for
the other rows of frames in these figures.

One other issue apparent in Figure 5.5 (frame 117, top right) is the misalign­
ment effect mentioned a while ago. Here, the adaptive skip algorithm selects
frames 109 and 121 as suitable frames, according to their (quantitative) motion
content, and due to 0*̂ ‘-order interpolation, all the segmentation masks from 109
to 120 are the same (in 109, the man has bent down). However, the man bends

R̂emember, due to Ô '̂ -order interpolation, all segmentation masks from 48 to 63 are the
same.

38

up from frame 109 to 120, and the proposed measure fails to notice this change
in scene content. This is, as mentioned before, due to the fact that quantitative
motion content measured by this approach does not reflect the qualitative content
in all cases.

It is not by mistake that Container Ship masks without AFS are empty. Be­
cause, by using the constant frame skip algorithm (frame skip is set to 3), noth­
ing is detected in this sequence, due to the insufficiency of motion content of
these frames. By experimenting, it has been found out that minimum value of
FRAME-SKIP should be 6 for Container Ship sequence in order to detect the
objects properly. However, this practice (setting frame skip to a proper value for
each sequence) is not possible for two reasons: it is not possible to try various
values for every sequence and find which parameter suits a particular sequence,
and moreover, such a trial is not desired, even if it were possible. In a fully auto­
matic segmentation algorithm like AM, algorithm parameters should not depend
on the inputs. However, parameters are allowed to depend on some properties of
the input sequence (size^, for example).

5.2 Sub-Pixel Accurate M otion Vectors

Previous versions of Analysis Model only uses motion vectors with full-pixel ac­
curacy. Version 4 incorporates the use of sub-pixel accurate motion vectors. If
sub-pixel accurate motion vectors are requested, input intensity images will be
upsampled by a factor of two and linearly interpolated before estimation. Then,
resulting motion field will be downsampled by two in order to get the sub-pixel
accurate vectors.

Impulse response of the filter used for interpolation is as follows:

1 =

The effects of using sub-pixel accurate motion vectors are shown in Figure 5.11
(Container Ship) and Figure 5.13 (Hall Monitor). As seen in Figure 5.11 that the
contribution of half-pixel accurate vectors is detecting one more segment of the

0.25 0.50 0.25
0.50 1.00 0.50
0.25 0.50 0.25

is currently allowed in Analysis Model that parameters can be specified differently for
different sequence sizes (QCIF or GIF). See Appendix A for further details.

39

ship. An (unwanted) addition is detection of more of the waves, which were not
detected previously.

Figure 5.10. Results with full-pixel accurate motion vectors, Container Ship

Figure 5.11. Results with sub-pixel accurate motion vectors. Container Ship

A similar improvement is observed in Hall Monitor. The persons’ shape are
more accurate compared to the case of full-pixel accurate motion vectors.

For Container Ship, frames 121,152, 200, 215, 281, 290, and 298 are displayed.
Hall Monitor frames are 86, 91, 182, 203, 213, and 222. Adaptive frame skip was
also utilized in obtaining the results shown in Figures 5.10, 5.11, 5.12, and 5.13.
We do not consider the cases without the adaptive frame skip, due to the problems
encountered in selecting the frame skip parameter properly. Therefore, all of the
results demonstrated from this point on will be the results obtained through the

40

Figure 5.12. Results with full-pixel accurate motion vectors, Hall Monitor

Figure 5.13. Results with sub-pixel accurate motion vectors, Hall Monitor

use of AFS.

5.3 Local M otion Compensation

AM Version 4 has sub-pixel accurate motion vectors, therefore the motion com­
pensation routine which takes only full-pixel accurate motion vectors as input
(along with the previous segmentation mask) has to be upgraded to accept mo­
tion vectors with sub-pixel accuracy.

Consider an example in which the pixel we try to compensate is at location
(1,3) and the motion vector"* corresponding to it is (1.25,-0.75), i.e., horizontal

'‘Although only half-pixel accurate motion vectors are employed in AM Version 4, the module

41

displacement is 1.25 pixels, and vertical displacement is 0.75 pixels. If this dis­
placement were integer valued, such as (1, -1), there would be no need for a
new rule for motion compensation, since the value of the compensated mask at
(1,3) would simply be the value of the pixel at location (2,2) in the resulting
segmentation mask. With non-integer valued motion vectors, a new rule should
be devised.

The proposed method is a non-linear interpolation technique and it involves
taking into account the neighboring pixel values while deciding on a particular
pixel’s value in the compensated mask. The neighbor selection algorithm works
as follows: The pixels are considered to consist of 9 “regions” , as in Figure 5.14.
According to the region the motion vector is pointing to, three neighbors, which
effects the value of the compensated pixel are chosen (in addition to the “main”
pixel the motion vector points).

+0.5

-0.5

Í
1

0

1
7

L· 9 ^

3 5
4

+0.5

-0.5

Figure 5.14. A “zoomed” view of a pixel and its “regions”

The three neighbors are the ones which are “closest” to the “region” under
consideration: if, for example, motion vector points to region 7 (which is the case
in our example), then neighbors on the right, top right, and the top neighbor
are utilized in the decision process, (or, if the vector pointed to region 2, the
neighbors on bottom left, left, and top left would be utilized).

After the neighbors are selected, following rules are applied, to get the “votes”
from the neighbors and the main pixel:

• Each neighbor vote counts as one, main pixel vote counts as two.

• If the motion vector points to region 9, then the neighbors are considered
to be the main pixel.

is developed such that it will handle motion vectors with more accuracy, keeping in mind such
motion vectors might be implemented in a future version of AM.

42

• The value that has the largest count (i.e., the one that gets the maximum
number of votes) becomes the value of the compensated pixel.

A corollary of rule 2 is that if the motion vectors are integer-valued, the
algorithm reduces to the original motion compensation algorithm.

Now consider Figure 5.15 which contains an example to the ideas developed
so far. With the pixel under discussion being (1,3) and its corresponding motion
vector (1.25, -0.75), the pixels (3,2), (3,3), and (2,3) are selected as neighbors,
and (2,2) becomes the main pixel. Assume further that pixels (2,2) and (3,2)
have a value of 2 (denoting this pixel belongs to object 2), pixels (2,3) has a value
of 1, and (3,3) has a value of 4. This indicates that the value 1 gets 1 vote, value
2 gets 3 votes, and value 4 gets 1 vote. Therefore it is decided that the value
of the pixel (1,3) in the compensated mask is 2. This procedure may be called
“weighted mode filtering.”

Motion Vector

(2,2) is the "main" pixel
(counts as two, others
count as one) since motion
vector originates from
this pixel.

(a)

If the motion vector is
integer-valued, algorithm
uses the shaded pixel
only in order to remain
compatible with the old
module.

(b)

Figure 5.15. (a) How neighbors are selected, (b) If integer valued vectors are
used, algorithm executes in a manner compatible with the old module.

5.4 Local M otion Analysis

A new motion estimation algorithm is introduced as an alternative to the block­
matching algorithm already used in AM. Block-matching algorithms generally
give acceptable results with quite low computational demand. The new algorithm
yields much better results, but is computationally more demanding.

The underlying theory for this method is similar to that of [54]: MRF’s (Gibbs

43

energies) are utilized for modeling the constraints for motion field and segmen­
tation labels [70] [71] [72]. One difference is that to reduce the computational
complexity, a segmentation estimate is input to the algorithm, and is not changed
throughout the iterations. This approach is not optimal, however, it greatly re­
duces the execution time. This initial estimate comes from the color segmenta­
tion, with number of regions decreased. Another difference is that, temporally
unpredictable (TU) regions are also incorporated into the Gibbs energy formula­
tion [70] [73]. TU areas are regions which can not be predicted through motion
compensation.

The constructed Gibbs energy function is formulated as follows [70]:

U(D, S\It, It-l) = Un + XmUm + XMs (5.2)

where

Un = E № W - A - i { x - £ ’(x)))"(i-5(x)) + s(x)r, (5.3)

(5.4)

(5.5)

S | | (D (x) - D (x J p 5 (i J (x) - B (x J)
X XcGt̂x

U. = E E [1 -
X X c GJJx

X denotes a group of pixels (or a single pixel, according to the resolution). Xc is a
neighbor of X, which lies in the neighborhood t/x. I ? (x) is the motion field defined
at each x on frame and show the displacement from its corresponding point
on frame It-i- The Un term forces motion vectors to be selected as to minimize
intensity differences between corresponding x ’s in It and It-i· Tg term does not
allow pixels in TU areas to be considered for a match. The Um term penalizes the
dissimilarity of motion vectors in the same region (i.e., in the same object). This
region map is denoted by R and is initialized with a color segmentation result
containing less number of regions (currently 25). It does not change throughout
the iterations. S is the binary field which shows the TU regions. Ug term forces S
field to consist of regions instead of individual points. Single points and unwanted
shapes (cross, for example) are eliminated through this term.

Minimization of this energy function U is the maximization of the correspond­
ing a posteriori probability. To minimize this non-convex energy function. Iterated
Conditional Modes [66] have been used. In each iteration, the algorithm tries to
find the values for motion field components and TU area labels which decrease the
total energy U. Therefore there exists the probability of getting stuck at a local

44

minimum. Some good initial estimates are required to initialize the algorithm.
The good initial estimates come inherently from the implementation of the

method: the method has been designed to work in a multi-resolution manner.
The iterations start with the coarsest analysis and progress on a finer scale at
each level, passing the results of coarser level as initial estimates to the finer level.
Currently, the coarsest level employed in AM is 3, while finest level® is 0. The
resolution, which is determined according to the level, is calculated using the
following equation:

Resolution — 2_ rsLevel (5.6)

So at level 3, the resolution is 8 x 8, while at level 0, it becomes 1 x 1 (i.e., pixel
level resolution). Actual minimization is done by the iterations at the finest level,
the rest are “the initializations” to prevent getting stuck at a local minimum.

Search range for the iterations at each level is determined according to fol­
lowing equation:

Search Space = Level * VecConsi + VecCons2 (5.7)

The value for VecConsi and VecCons-2 are both set to 3. So at level 3, Search
Space =12, therefore, in each step of iteration, for each x, 25 different values (from
—Search Space to Search Space) are searched for the value that minimizes the
respective energy function. At level 0, Search Space =3, so at pixel level, 7
different values are checked for minimum.

The coefficients (relative weights) of individual energy terms are set to fol­
lowing values: \m = 100, A« = 100, Tg — 20. These coefficients have been
determined in an ad-hoc manner, as in the case of [54]. It has been observed,
however, that with these coefficients, satisfactory results are obtained for a wide
range of sequences.

The number of iterations is adaptively determined: the iterations continue
until either the limit is reached or the difference between two consecutive energy
values fall below a user-determined threshold (currently it is 0.25%).

Achieved improvements are displayed in sequences Hall Monitor and Con­
tainer Ship. Frames 96, 102, 128, and 138 of Hall Monitor are displayed. For
Container Ship, the frames are 25, 50, 82, 103, 136, 154, 174, 228, and 257.

®When sub-pixel accurate vectors are required, the upsampled frames are analyzed at the
coarsest level of 4; accordingly finest level becomes 1.

45

In Hall Monitor, the second man entering the corridor is properly detected.
In Container Ship, the ship is found correctly most of the time.

Figure 5.16. Results obtained by using HBM, Hall Monitor

Figure 5.17. Results obtained by using Gibbs-based algorithm. Hall Monitor

Figure 5.18. Results obtained by using HBM, Container Ship

46

Figure 5.19. Results obtained by using Gibbs-based algorithm, Container Ship

Another measure of performance is the PSNR value, based on mean square
error. The PSNR is calculated as

P S N R = 10 logio E ,. , \R e n x ,y)?
E ..,\D F D {x,y)P (5.8)

The image indicated by R e f is the reference image. It indicates the maximum
possible value of the DFD, therefore the worst case scenario.

Hall Monitor and Container Ship PSNR plots are in Figure 5.20 and 5.21,
respectively. Gibbs plots are, on the average, 3 dB above compared to HBM
plots; this indicates an improvement by a factor of two in the displaced frame
difference.

47

PSNR plol lor HBM and Gibbs-based algorithm - Hall Monitor

PSNR plot tor HBM and Gibbs-based algorithm - Container Ship

Figure 5.21. PSNR plot of Container Ship

5.5 Local M otion Segm entation

A segmentation algorithm based on the affine motion model is added to the
existing “Local Motion Segmentation” block in Figure 5.1. Currently, the motion
model employed in the Analysis Model is the “translational” motion model.

Model based motion segmentation can be viewed as a surface-fitting process:
the surfaces are generated by the horizontal and vertical component of the es­
timated dense motion field. Each component is a grey-scale image and can be
considered as a piece-wise smooth 3-D surface. Segmentation of the motion field
is then extraction of these smooth regions.

The objects in the real world generally make rigid 3-D motion and projection

48

of this motion onto 2-D plane yields the observed motion which can be described
by various parametric models. Therefore segmentation of motion field actually
corresponds to finding regions for which we can find a set of parameters to explain
the observed motion using a particular model.

In translational model, motion vector components for each pixel in each region
can be described as follows:

V x — Ux

Vy = 02

(5.9)

(5.10)

where oi and 02 are constants within a region. This model is sufficient if the only
motion in the scene is translation. If the motion in a region is translation, the
motion vectors in that region will be similar to each other, and using this model,
such regions can be extracted. However, when the scene contains other types of
motion (such as rotation), this model becomes insufficient.

The newly introduced affine (6-parameter) motion model describes a 2-D mo­
tion field due to the rigid 3-D motion of a planar surface. This model reduces
to the translational model when four of the parameters are zero, so translational
model can be considered as a special case of the proposed model. Through our
surface-fitting viewpoint, we can say that translational model fits “constants” to
the estimated motion vector field, while affine model fits “planes”.

Using affine motion model, motion vector components (vx,Vy) at each pixel
(x, y) in a region are given by

Vx = t t iX + Oay + 03

Vy = 04X + a^y + 06 (5.11)

Here, Oi’s denote the motion parameters of pixel at location (x,y). Since it is
impossible to find a unique set of parameters for each individual pixel (6 unknowns
vs 2 equations), the algorithm initially “segments” the motion field into 2x2
regions, and for each region it calculates the mentioned 6 parameters. Since this
is an overdetermined system of equations (6 unknowns and 8 equations), the
calculations are done in a least-squares sense. The parameters which minimize
the “distortion” D for a given region R are assigned as that region’s parameters:

49

D = Y , l|v(a;,y) - VK(a:,y)f (5.12)
{x,y)€R

Here, V is the estimated motion field, while vji is the motion field generated using
the affine motion model parameters of region i2, using Equation 5.11.

This segmented image is accepted as the starting point for the actual seg­
mentation. The method used to segment is again RSST, however, the distance
measure has been modified [17]. Now, RSST tries to select the two neighboring
regions which result in smallest increase in distortion. That is, for all neighboring
region pairs {Ri and Rj), the non-negative quantity AD is calculated [17]:

{x,y)eRij
(5.13)

{x,y)eRi
(5.14)

A = h { x , y)
{x,y)eRj

(5.15)

A D = Dij - D i - Dj (5.16)

The two regions which result in smallest A D are merged. In other words, in each
step, the algorithm tries to make the increase in as small as possible, so it joins
the two regions which yield the smallest AD. Here, Rij = U Rj-

For this new block, results will not be demonstrated on standard MPEG
sequences, but on a specific sequence which has planar rotations and various
non-translational motion in it. “Ertem” sequence consists of 100 frames and
is of QCIF size. The displayed results will not be regular video frames, but
segmentation masks which show the detected objects. In these masks, different
colors indicate different objects. The aim is to demonstrate that translational
motion model can explain some motion by a few regions, but with affine motion
model, this motion can be described by a single region, which means that object
is correctly detected.

The frames 33, 60, 62, 68, 70, 77, 90, and 94 are displayed. Notice the
oversegmentation in frames in the Figure 5.22. However, in Figure 5.23, those
regions make up one single region, which is the actual object.

50

Figure 5.22. Results with translational motion model, Ertem sequence

Figure 5.23. Results with affine motion model, Ertem sequence

The results in Figures 5.22 and 5.23 may be regarded as “test results” because
they do not utilize any of the mentioned improvements (AFS, sub-pixel accurate
vectors, or the new motion estimation method). They only demonstrate what the
affine motion model can achieve, even if other improvements are not utilized. The
comparative results in Figures 5.24 and 5.25 include the AFS, sub-pixel accurate
motion vectors, and the new motion estimation algorithm; therefore better results
are obtained. In Figure 5.24, we see the improvements from AFS, sub-pixel
accurate vectors, and the new motion estimation method, without the affine
model. The affine model shows itself in Figure 5.25, where object boundaries are
detected more accurately.

51

Figure 5.24. Results with translational motion model, Ertem sequence (using
AFS, sub-pixel accurate vectors, and the Gibbs-based motion estimation method)

Figure 5.25. Results with affine motion model, Ertem sequence (using AFS, sub­
pixel accurate vectors, and the Gibbs-based motion estimation method)

52

Chapter 6

Conclusions

In this thesis, a number of improved tools for a novel video object segmentation
algorithm are proposed. The algorithm is modular, so it has been possible to re­
place a module by another one with similar functionality but better performance.

The proposed improvements include 1) a new frame rate approach (variable
frame rate) which enables the algorithm to select its input frames adaptively ac­
cording to motion content for better segmentation results, 2) the introduction of
a powerful motion estimation algorithm for more reliable motion vectors, 3) in­
corporation of a new motion model which can explain more complex motion types
than the translational model can do, and 4) the addition of sub-pixel accurate
motion vectors for more precise motion field.

The variable frame rate approach is the most important improvement among
the proposed improvements. If the motion content implied by the selected input
frames is not sufficient, the objects in the scene will not be detected properly.
When the motion content is insufficient, the use of the sub-pixel accurate motion
vectors, or the other improvements will not help a lot in detecting the objects
accurately. The best example for this case is the Container Ship Sequence, in
which no object is detected if variable frame rate is not employed. When the
frames are selected properly, each improvement contributes to the segmentation
process. See Figure 6.1.

The contributions from other improvements depend on the scene. Not every
sequence will benefit from every improvement. For example, sub-pixel accuracy
will contribute in the parts of the scene where the motion content can not be fully
described by integer-valued motion vectors. The Analysis Model will benefit from
new motion estimation algorithm in the cases where the motion in the scene can

53

not be described correctly by blocks. The affine motion model will only be useful
in the sequence “Ertem” or alike that contain non-translational planar motion.
Consider the examples in Figures 6.1 and 6.2. See Figure 6.3 for an example to
affine motion model discussion.

Figure 6.1. Results from Container Ship Sequence runs. Left to Right: original,
with AFS, with AFS + sub-pixel, with AFS -t- sub-pixel -f Gibbs

Figure 6.2. Results from Akiyo runs. Left to Right: original, with AFS, with AFS
-I- sub-pixel, with AFS -I- sub-pixel -I- Gibbs

Figure 6.3. Results from Akiyo and Container Ship. Left: results obtained by
using AFS, sub-pixel, and Gibbs. Right: results obtained by using AFS, sub­
pixel, Gibbs, and affine model.

54

In Figure 6.1, we see that the use of sub-pixel accurate vectors leads to the
detection of areas where the motion is less than full pixel. Also observed in this
figure is the existence of areas for which the block-matching algorithm failed to
find any motion^ The new motion estimation algorithm, which gives a dense
vector field, correctly finds the motion vectors in such areas, and the ship is
detected properly.

In Figure 6.2, we see an example in which the improvements do not contribute
significantly. It may be concluded for this sequence that sub-pixel accuracy did
not contribute much because the motion content in the scene is already described
well by the full pixel accurate motion vectors, and the new estimation algorithm
did not contribute a lot because the block motion vectors were mostly sufficient
to describe the motion content in the scene.

The results in Figure 6.3 show that when the sequence does not contain non-
translational planar motion, the contribution from affine model is not significant.
The results on the left column and on the right can be considered the same as
far as semantic objects are concerned.

A further future improvement could be determining the motion content for
each object separately. This idea is similar to the Video Object Planes (VOP’s) in
MPEG-4: each object in the scene is a VOP and is coded separately. Final image
is generated by laying the VOP’s onto each other (and onto the background). In
AM, calculating the motion content separately for each individual object ensures
proper detection and tracking. One important prerequisite for this approach to
work as intended is the detection of objects correctly in the previous frame.

Another observation related to the rule processing is that the lack of occlusion
area analysis leads to false object detection. Consider the example in Figure 6.4.

In the first frame of Figure 6.4, the man has been detected as an object. In
subsequent frames, the man walks to the right but the uncovered area behind the
man is still considered as an object. The reason for such “false objects” is the
errors in the motion estimation stage [5]: although there is no true match for the
uncovered areas of current frame in the previous frame, those uncovered areas
are matched to some other parts of previous frame incorrectly and this results in
non-zero motion vectors for these areas; therefore they are treated as if they were
real objects. In the next step of the analysis, motion estimation results with zero

În those areas, representing the motion in a 4 x 4 block with (0,0) vector yields less error
compared to the cases with a non-zero vector. Therefore, that block’s motion vector is decided
to be (0,0) and as a consequence, no object is detected in those areas.

55

Figure 6.4. An example of occlusion regions, Hall Monitor

vector for these areas, and these areas are now marked as stationary. By Rule
1, it is assumed that a moving object has changed its status to stationary. And
these stationary objects will be treated as objects for three frames^ before being
merged to background (being treated as a disappeared object).

A by-product of the newly introduced motion estimation module is the detec­
tion of the occluded areas. However, the information provided by that module
can not be used directly. See Figure 6.5.

Figure 6.5. Frames 1 and 22 of Hall Monitor, and the segmentation mask

In this figure, two frames input to AM and the resulting segmentation mask is
shown. The detected object (the man) is the occlusion region in this case, since
there is no match for him in the previous frame. When he continues walking,
the occlusion regions will be the areas which are covered and uncovered by him,
but not himself. With the occlusion information from this module only, it is not
possible to decide whether the occlusion area belongs to an object (the man in the
first case) or background (in the subsequent frames). Therefore further analyses
are required to distinguish where the detected occlusion areas belong to.

Ŝee Appendix A for detailed explanation of AM parameters.

56

The “sprite” approach utilized in MPEG-4 is an elegant solution to the oc­
clusion problem. A sprite is a large still image, describing panoramic background
for all the frames in a video. For each frame in a sequence, the camera motion
is calculated and only the parameters of this motion are utilized in subsequent
frames to calculate the background. Then the objects which are coded separately
are laid on the generated background to form the frame. MPEG-4 assumes, how­
ever that this sprite is extracted from the sequence. In AM, such a sprite is not
available o priori but it is possible to construct it “on the fly”, during the analy­
sis of the video. As more frames are processed, different parts of the background
become available, and the sprite estimate improves gradually.

Gurrently the Analysis Model is an unsupervised approach to video object seg­
mentation. Many recent approaches, however, are based on “human supervision”
in the video segmentation process. The idea behind this approach is “combining
the best of two sides”: Only a human can know what constitutes a semantic
object in a scene, and given this information, computer can extract the objects
much faster than a human can do.

The supervision can be either in the form of supplying an initial object mask,
or telling the computer what kind of features a particular object possess in the
current scene, as in [59] and [60]. When available (for example, through manual
extraction), initial object masks provide a lot of valuable information to the algo­
rithm, since they exactly describe the objects in the scene. Further information
such as texture properties and shape will aid in getting a better color segmen­
tation in subsequent frames. Another benefit of the Analysis Model can be in
the motion analysis part: since we know the objects, we can calculate the motion
content for each separately, therefore the motion estimation results (therefore seg­
mentation results) will be much more reliable. This yields better object detection
and tracking throughout the sequence.

If a manual segmentation is not available and such a segmentation is costly
(both in time and effort), the “hint” type of supervision is more appropriate: the
user “hints” the computer where to find the object in the scene (for example by
drawing a few sketches with the mouse in the current frame). Then the computer
attempts to extract the properties in those areas (color, texture etc) and seek the
objects with similar features in the image. The approach in [60] is an example
to this type of supervision. The study in [59] also employs sketching, but for the
algorithm to work properly, the object’s interior (the parts close to the actual

57

border) should be outlined completely. This operation is not very desirable, since
it takes time and effort to draw a border with certain accuracy.

Although human supervision is important, a good underlying unsupervised
“segmentation engine” is necessary to make use of the extra information from
the supervision. The improved model produces good results and its underlying
modular unsupervised segmentation structure is open to the improvements in this
form of “weak” supervision. Exploiting color and motion information separately
enables the supervised segmentation results to improve compared to many other
supervised approaches in the literature. The new motion estimation algorithm
helps in getting better segmentation results when color segmentation works bet­
ter, since it takes a color segmentation result (with reduced number of regions) as
an estimate of object shapes. With improved color segmentation, these estimates
improve, and more reliable motion vectors are obtained. This, in turn, leads to
a contribution from AFS module: when color and motion segmentation modules
perform better, it becomes possible to implement the separate motion content
analysis for each object; therefore more accurate object shapes are obtained.

58

Appendix A

Issues about the Analysis Model
Software, Version 4.0

The Analysis Model software is a combination of various modules, driven by a
main program. It is written in “C” language, and works under Unix-like operating
systems (SunOS, Solaris, Linux).

The directory structure of the software is as follows;

COPYRIGHT Document to explain various copyright issues
Makefile Together with Slave-Makefile, this is used in building

the executable
README Various information on Analysis Model
README_AM4 Information specific to Version 4
Slave_Makefile Used with Makefile
amjTiain Program code which drives other modules reside

in this directory
am-motion Code which handles motion estimation/compensation
am .post Postprocessing code
amjTSst Code in this directory handles segmentation based

on RSST

am-rules RuleProcessor Mode 2 code
bin Executable code appears here after compilation
cproto Utility to extract function prototypes
lib Object code libraries for each directory

machines Operating system dependent options

59

mom_baselib Basic image processing tools
mom_extlib Extended image processing tools
testb Example parameter files
tools Tools to extract comments from source code

for documentation purposes
uh_cdet Tools related to Change Detection Mask
uh.evaluate Evaluation tools
uh_gmec Tools for Global Motion Estimation/Compensation
uh-rules Rule Processor Mode 1 code
uli-scd Scene-cut Detection Module

GNU make utility is required for compilation. After compiling the code, the
executable shows up in “bin” directory. Then, the software is executed as

am_linux.exe perrams.dat

provided the binary name is “ainJinux.exe” and the parameter file name is
“pararns.dat”

A parameter file contains all input to software for proper execution. The
parameters of Analysis Model, Version 4 are explained below:

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

RULE-PROG 0 or 1 0: Bilkent Rule Proc
1: UH Rule Proc

COLOR-REGIONS 256 pos integer number of regions in the color
seg. mask

MV-REGIONS 4 pos integer number of regions in the motion
seg. mask

MOTIONTHRESHOLD 0.5 pos floating Threshold to label a motion
region as MOVING

MOT-RES 4 pos integer Spatial Resolution of Motion
Vector Field (i.e. one vector
for each MOT-RES x MOT-RES
block)

MOT-LEVELS 3 pos integer Number of hierarchy levels in HBM
algorithm

60

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

BLOCKSIDE 32 16 4 pos integer Size of measurement windows for
each hierarchy level (one number
should be given for each level)

RANGE 8 4 2 pos integer Range of search window for each
hierarchy level (one number should
be given for each level)

STEP 2 2 1 pos integer Step size of search window for each
hierarchylevel (one number should
be given for each level)

MERGESIZE 20 pos integer Regions with size less than this
number will be merged with a
neighboring region

MEM 3 pos integer Objects that are labeled as
STATIONARY will be treated MEM
more frames as objects. After that,
they will be merged to background.

ZERO-FORCE 16.0 pos floating Constant used in zero-forcing of
motion vectors. The larger this
number, more vectors will be forced
to (0,0) vector.

START.FRAME 0 non-neg int Number of frame in a source
analysis shall
start with.

MAX-FRAME 299 pos integer AM will process frames until
(including) this frame

FRAMESKIP 3 pos integer To get next frame in the sequence,
this many frames will be skipped.
Has no effect if AFS (see below)

is enabled.

WIDTH 176 or 352 Width of input frames in pixels.
Rule Processor Mode 2 runs with
arbitrary sizes but Mode 1 works
only with QCIF or GIF images.

61

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

HEIGHT 144 or 288 Height of input frames in pixels.
Rule Processor Mode 2 runs with
arbitrary sizes but Mode 1 works
only with QCIF or GIF images.

INPUT_Y any string Path to file containing Y
information of source sequence
frames (luminance information)

INPUT.U any string Path to file containing U
information of source sequence
frames (chrominance information)

INPUT.V any string Path to file containing V
information of source sequence
frames (chrominance information)

INPUT JV any string Path to file containing Alpha
channel information of source
sequence frames. If EVALUATION
is enabled, this indicates the file
that original masks should be
loaded from.

MOTIONJC any string File that information about
horizontal components of motion
vectors will be written to.

MOTION.Y any string File that information about
vertical components of motion
vectors will be written to.

COLORMASK any string File that results of color
segmentation will be written to.

MVMASK any string File that results of motion
segmentation will be written to.

MCMASK any string File that results of motion
compensation will be written to.

PRERESULT any string File that preresult mask will be
written to.

62

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

RESULT any string File that result segmentation mask
will be written to.

ORIG_RESULT any string File that result segmentation mask
-which contains different objects-
will be written to.

INTERP_MASK any string File that interpolated result segm.
mask will be written to.

CDM any string File that Change Detection Mask
will be written to.

RESULT_FGY any string File that result with blended
foreground will be written to
(y-channel)

RESULT_FGU any string File that result with blended
foreground will be written to
(u-channel)

RESULT_FGV

,

any string File that result with blended
foreground will be written to
(v-channel)

RESULT_BGY any string File that result with blended
background will be written to
(y-channel)

RESULT_BGU any string File that result with blended
background will be written to
(u-channel)

RESULT.BGV any string File that result with blended
background will be written to
(v-channel)

TEXT_COVER 80 pos integer Threshold for Rule Processor of UH

GMECJTER 70 pos integer Number of iterations for
global motion estimation

PEL.COUNT 10000 pos integer Number of observation points for
global motion estimation

63

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

GRADJC_MIN 0.0 pos floating Minimum gradient in x-direction of
observation points in global motion
estimation

GRADJCJMAX 260.0 pos floating Maximum gradient in x-direction of
observation points in global motion
estimation

GRAD_Y_MIN 0.0 pos floating Minimum gradient in y-direction of
observation points in global motion
estimation

GRAD.Y_MAX 260.0 pos floating Maximum gradient in y-direction of
observation points in global motion
estimation

CDM.QGIF 220.4 pos floating Threshold for change detection
(QCIF, static camera)

CDM_QCIF_MB 220.4 pos floating Threshold for change detection
(QCIF, moving camera)

CDM-CIF 165.3 pos floating Threshold for change detection
(GIF, static camera)

GDM_GIF_MB 41.325 pos floating Threshold for change detection
(GIF, moving camera)

SCD_THRESH 250.0 pos floating Threshold for scene-cut detection
(MSE)

EVAL 0 0 or 1 If 1, évalutations will be
performed and written to disk.

EVAL_OUT_GENERAL any string File that table of all evaluation
results will be written to.

EVAL.OUTJVBS any string File that evaluation results
of absolute distortion criterion
will be written to.

EVAL.OUT.REL any string File that evaluation results
of relative distortion criterion
will be written to.

64

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

EVAL.OUT_TMP_ORI any string File that evaluation results
of temporal coherency criterion
will be written to (original mask)

EVAL_OUT_TMP_EST any string File that evaluation results
of temporal coherency criterion
will be written to (estimated mask)

INTERACTIVE 0 0 or 1 If 1, an initial segmentation
mask will be read from disk.

INPUT JSEG_MASK any string Name of file containing initial
segmentation mask.

MOT_SEGJ^LG 0 0 or 1 0: Original Mot. Seg. algorithm
1: Mot. Seg. Alg. based on affine
motion modelling

AES 1 0 or 1 0; No AFS
1: Adaptive Frame Skip (here,
FRAME-SKIP has no meaning)

AFS-THRESHOLD 600 pos integer If AFS = 1, this sets the threshold
to determine if there’s ’’enough”
motion or not.

HALF_PIX 1 0 or 1 If 1, motion vectors are calculated
with sub-pixel accuracy.

m o t _e s t jv l g 0 0 or 1 0; HBM
1: Gibbs-based algorithm

GIBBS-Color 25 pos integer If gibbs is used, this sets the
number of regions in the color
seg. mask input to Gibbs.

GIBBSXevMin 0 non-neg int If gibbs is used, this sets the lowest
level (finest level) for analysis
0 = pixel level

GIBBS_LevMax 3 pos integer If gibbs is used, this sets the highest
level (coarsest level) for analysis
0 = pixel level

65

PARAMETER NAME Default
Value

VALID RANGE
and TYPE

EXPLANATION

GIBBSJterMax 5 pos integer If gibbs is used, this sets the
maximum number of
iterations for each level

GIBBS_Searchl
GIBBS_Search2

3
3

pos integer
pos integer

If gibbs is used, these two
act as coefficients to deter­
mine the search space during
iterations. See the doc for a
detailed explanation.

GIBBSXM 200.0 pos floating In gibbs, this sets A^·
GIBBS-LS 100.0 pos floating In gibbs, this sets A«.
GIBBS-TSl 20.0 pos floating In gibbs, this sets T ,,.
GIBBS_TS2 30.0 pos floating In gibbs, this sets .
USE_CDM_FORXABELLING 0 0 or 1 If 1, motion region labels are

determined using CDM. If
not, motion vector averages
are used in labelling.

66

References

[1] A. A. Alatan, L. Onural, M. Wollborn, R. Mech, E. Tuncel, and T. Sikora,
“Image sequence analysis for emerging interactive multimedia services - the
European COST 211 framework,” IEEE Transactions on Circuits, Systems,
and Video Technology, November 1998.

[2] COST211*®'· simulation subgroup, Description of COST211 Analysis Model,
SIM (98)I f , July 1998.

[3] A. A. Alatan, E. Tuncel, and L . Onural, “Object segmentation via rule-based
data fusion,” in Proceedings of Workshop on Image Analysis for Multimedia
Interactive Services, (Louvain-la-Neuve, Belgium), pp. 51-56, June 1997.

[4] A. A. Alatan, E. Tuncel, and L. Onural, “A rule-based method for object
segmentation in video sequences,” in IEEE International Conference on Im­
age Processing, vol. 2, (Santa Barbara, California), pp. 522-525, October
1997.

[5] A. M. Tekalp, Digital Video Processing. Prentice Hall, 1995.

[6] International Telecommunication Union (ITU), Recommendation H.261
(03/93) - Video codec for audiovisual services at p x 6f kbit/s, 1993.

[7] Project COST-211^** Final Report, Redundancy Reduction Techniques for
Coding of Broadband Video Signals, 1990.

[8] International Organization for Standardisation (ISO), Official MPEG Home
Page: http://drogo.cselt.stet.it/mpeg/standards/rnpeg-l/rnpeg-l.htm, June

1996.

[9] International Organization for Standardisation (ISO), ISO/IEC 11172-
2:1993 Information technology - Coding of moving pictures and associated

67

http://drogo.cselt.stet.it/mpeg/standards/rnpeg-l/rnpeg-l.htm

audio for digital storage media at up to about 1,5 Mbit/s - Part 2: Video,
1993.

[10] International Organization for Standardisation (ISO), Official MPEG Home
Page: http:// drogo. cselt. stet. it/rnpeg/standards/mpeg-2/mpeg-2.htm, June
1996.

[11] International Organization for Standardisation (ISO), ISO /IEC 13818-
2:1996 Information technology - Generic coding of moving pictures and as­
sociated audio information: Video, 1996.

[12] International Telecommunication Union (ITU), ITU -T Recommendation
H.263 - Video coding for low bit rate communication.

[13] ISO/IEC JTC1/SC29/WG11 N2323, Overview of the MPEG-f Standard,
July 1998.

[14] ISO/IEC JTC1/SC29/WG11 N2326, MPEG-7 Gontext and Objectives, July
1998.

[15] O. J. Morris, M. J. Lee, and A. G. Constantinides, “Graph theory for image
analysis: An approach based on the shortest spanning tree,” lEE Proceed­
ings, vol. 133, pp. 146-152, April 1986.

[16] M. J. Biggar, O. J. Morris, and A. G. Constantinides, “Segmented-image
coding: Performance comparison with the discrete cosine transform,” lEE
Proceedings, vol. 135, pp. 121-132, April 1988.

[17] E. Tuncel, “Utilization of improved RSST method for video object segmen­
tation,” Master’s thesis, Bilkent University, August 1997.

[18] M. Bierling, “Displacement estimation by hierarchical blockmatching,” Pro­
ceedings of SPIE Visual Gommunications and Image Processing, pp. 942-
951, 1988.

[19] R. Mech and M. Wollborn, “A noise robust method for 2D shape estimation
of moving objects in video sequences considering a moving camera,” in Pro­
ceedings of Workshop on Image Analysis for Multimedia Interactive Services,
(Louvain-la-Neuve, Belgium), pp. 57-62, June 1997.

68

http://drogo

[20] R. Mech and P. Gerken, Automatic Segmentation of Moving Objects
(Partial Results of Core Experiment N2). ISO/IEC JTC1/SC29/WG11
MPEG97/1949, Bristol, England, April 1997.

[21] M. Wollborn, R. Mech, S. Colonnese, U. Mascia, G. Russo, P. Talone, J. G.
Choi, M. Kim, M. H. Lee, and C. Ahn, Description of Automatic Segmen­
tation Techniques Developed and Tested for MPEG-f Version 1. ISO/IEC
JTC1/SC29/WG11 MPEG97/2704, Fribourg, Switzerland, October 1997.

[22] R. Mech and M. Wollborn, “A noise robust method for segmentation of
moving objects in video sequences,” in IEEE International Conference on
Acoustics, Speech & Signal Processing, (Munich, Germany), pp. 2657-2660,
April 1997.

[23] T. Aach, A. Каир, and R. Mester, “Statistical model-based change detection
in moving video,” IEEE Transactions on Signal Processing, vol. 31, pp. 165-
180, March 1993.

[24] T. Aach, A. Каир, and R. Mester, “Change detection in image sequences
using gibbs random fields: a bayesian approach,” in Proceedings of Interna­
tional Workshop on Intelligent Signal Processing and Communication Sys­
tems, (Sendai, Japan), pp. 56-61, October 1993.

[25] M. Hotter and R. Thoma, “Image segmentation based on object oriented
mapping parameter estimation,” IEEE Transactions on Signal Processing,
vol. 15, pp. 315-334, 1988.

[26] V. Kumar and E. S. Manolakos, “Unsupervised model-based object recog­
nition by parameter estimation of hierarchical mixtures,” in IEEE Interna­
tional Conference on Image Processing, vol. 3, pp. 967-970, 1996.

[27] V. Kumar and E. S. Manolakos, “Unsupervised statistical neural networks for
model-based object recognition,” IEEE Transactions on Signal Processing,

vol. 45, pp. 2709-2718, 1997.

[28] 0 . Yanez-Suarez and M. R. Azimi-Sadjadi, “Automated analysis of complex
scenes of airborne fiberglass preparations for scanning electron microscopy
imagery,” in IEEE International Conference on Image Processing, vol. 2,
pp. 438-441, 1997.

69

[29] X. Wan and C.-C. J. Kuo, “A multiresolution color clustering approach to
image indexing and retrieval,” in IEEE International Conference on Acous­
tics, Speech & Signal Processing, vol. 6, pp. 3705-3708, 1998.

[30] M. A. Wani and B. G. Batchelor, “Edge-region-based segmentation of range
images,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, pp. 314-319, March 1994.

[31] R. Stoica, J. Zerubia, and J. M. Francos, “The two-dimansional wold de­
composition for segmentation and indexing in image libraries,” in IEEE
International Conference on Acoustics, Speech & Signal Processing, vol. 5,
pp. 2977-2980, 1998.

[32] S. A. Barker and R J. W. Rayner, “Unsupervised image segmentation,” in
IEEE International Conference on Acoustics, Speech & Signal Processing,
vol. 5, pp. 2757-2760, 1998.

[33] A. M. Ferman, B. Günsel, and A. M. Tekalp, “Motion and shape signa­
tures for object-based indexing of MPEG-4 compressed video,” in IEEE
International Conference on Acoustics, Speech & Signal Processing, vol. 4,
pp. 2601-2604, 1997.

[34] K. J. Han and A. H. Tewfik, “Eigen-image based video segmentation and
indexing,” IEEE International Conference on Image Processing, vol. 2,
pp. 538-541, 1997.

[35] E. Sahouria and A. Zakhor, “Motion indexing of video,” IEEE International
Conference on Image Processing, vol. 2, pp. 526-529, 1997.

[36] H. Yu, G. Bozdagi, and S. Harrington, “Feature-based hierarchical video
segmentation,” IEEE International Conference on Image Processing, vol. 2,
pp. 498-501, 1997.

[37] G. Iyengar and A. B. Lipprnan, “Videobook: An experiment in characteriza­
tion of video,” IEEE International Conference on Image Processing, vol. 3,
pp. 855-858, 1996.

[38] P. Csillag and L. Böröczky, “Iterative motion-based segmentation for object-
based video coding,” in IEEE International Conference on Image Processing,
vol. 1, pp. 73-76, 1997.

70

[39] P. De Smet and D. De Vleeschauwer, “Motion-based segmentation using a
thresholded merging strategy on watershed segments,” in IEEE International
Conference on Image Processing, vol. 2, pp. 490-493, 1997.

[40] F. Bartolini, V. Capellini, and L. Tucci, “Simultaneous optic flow estimation
and segmentation by means of least squares techniques,” in IEEE Interna­
tional Conference on Image Processing, vol. 1, pp. 97-100, 1997.

[41] Y. Yemez, B. Sankur, and E. Anarım, “An object-oriented video codec based
on growing motion segmentation,” in IEEE International Conference on Im­
age Processing, vol. 3, pp. 444-447, 1997.

[42] J. G. Choi, S. W. Lee, and S. D. Kim, “Segmentation and motion estimation
of moving objects for object-oriented analysis-synthesis coding,” in IEEE
International Conference on Acoustics, Speech & Signal Processing, vol. 4,
pp. 2431-2434, 1995.

[43] M. Ebbecke, M. B. H. Ali, and A. Dengel, “Real time object detection, track­
ing and classiflcation in monocular image sequences of road traflSc scenes,”
in IEEE International Conference on Image Processing, vol. 2, pp. 402-405,
1997.

[44] B. K. Low and M. K. Ibrahim, “A fast and accurate algorithm for facial fea­
ture segmentation,” in IEEE International Conference on Image Processing,
vol. 2, pp. 518-521, 1997.

[45] H. Nugroho, S. Takahashi, Y. Ooi, and S. Ozawa, “Detecting human face
from monocular image sequences by genetic algorithms,” in IEEE Interna­
tional Conference on Acoustics, Speech & Signal Processing, vol. 4, pp. 2533-

2536, 1997.

[46] N. Paragios, P. Perez, G. Tziritas, C. Labit, and P. Bouthemy, “Adaptive
detection of moving objects using multiscale techniques,” in IEEE Interna­
tional Conference on Image Processing, vol. 1, pp. 525-528, 1996.

[47] J. G. Choi, S. W. Lee, and S. D. Kim, “Video segmentation based on spatial
and temporal information,” in IEEE International Conference on Acoustics,
Speech & Signal Processing, vol. 4, pp. 2661-2664, 1997.

71

[48] J. R. Ohm and P. Ma, “Feature-based cluster segmentation of image se­
quences,” in IEEE International Conference on Image Processing, vol. 3,
pp. 178-181, 1997.

[49] F. Moscheni and S. Bhattacharjee, “Robust region merging for spatio-
temporal segmentation,” in IEEE International Conference on Image Pro­
cessing, vol. 1, pp. 501-504, 1996.

[50] F. Dufaux, F. Moscheni, and A. Lipprnan, “Spatio-temporal segmentation
based on motion and static segmentation,” IEEE International Conference
on Image Processing, vol. 1, pp. 306-309, 1995.

[51] F. Morier, J. B. Pineau, D. Barba, and H. Sanson, “Robust segmentation
of moving image sequences,” in IEEE International Conference on Image
Processing, vol. 1, pp. 719-722, 1997.

[52] L. Torres, D. Garcia, and A. Mates, “A robust motion estimation and seg­
mentation approach to represent moving images with layers,” in IEEE In­
ternational Conference on Acoustics, Speech & Signal Processing, vol. 4,
pp. 2981-2984, 1997.

[53] S. Siggelkow, R. R. Grigat, and A. Ibenthal, “Segmentation of image se­
quences for object oriented coding,” in IEEE International Conference on
Image Processing, vol. 2, pp. 477-480, 1996.

[54] M. M. Chang, M. I. Sezan, and A. M. Tekalp, “An algorithm for simulta­
neous motion estimation and scene segmentation,” in IEEE International
Conference on Acoustics, Speech & Signal Processing, vol. 5, pp. 221-224,
1994.

[55] F. Moscheni and F. Dufaux, “Region merging based on robust statistical
testing,” in Visual Communications and Image Processing, vol. 3, (Orlando,
Florida), pp. 1118-1129, March 1996.

[56] F. Moscheni, F. Dufaux, and M. Kunt, “A new two-stage global/local mo­
tion estimation based on a background/foreground segmentation,” in IEEE
International Conference on Acoustics, Speech & Signal Processing, vol. 4,

pp. 2261-2264, 1995.

72

[57] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction
to Cluster Analysis. Wiley, 1990.

[58] F. Moscheni, F. Dufaux, and M. Kunt, “Object tracking based on temporal
and spatial information,” in IEEE International Conference on Acoustics,
Speech & Signal Processing, vol. 4, pp. 1915-1918, 1996.

[59] C. Gu and M. C. Lee, “Semantic video object segmentation and tracking
using mathematical morphology and perpective motion model,” in IEEE
International Conference on Image Processing, vol. 2, pp. 514-517, 1997.

[60] E. Chalom and V. M. Bove, “Segmentation of an image sequence using multi­
dimensional image attributes,” in IEEE International Conference on Image
Processing, vol. 2, pp. 525-528, 1996.

[61] Y. Altunbasak, R. Oten, and R. J. P. de Figueiredo, “Simultaneous object
segmentation, multiple object tracking and alpha map generation,” IEEE
International Conference on Image Processing, vol. 1, pp. 69-72, 1997.

[62] P. E. Eren, Y. Altunbasak, and A. M. Tekalp, “Region-based affine motion
segmentation using color information,” in IEEE International Conference on
Acoustics, Speech & Signal Processing, vol. 4, pp. 3005-3008, 1997.

[63] Y. Altunbasak and A. M. Tekalp, “Object-scalable content-based 2-D mesh
design and tracking for object-based video coding,” IEEE Transactions on
Image Processing, September 1997.

[64] M. M. Chang, M. I. Sezan, and A. M. Tekalp, “Simultaneous motion esti­
mation and segmentation,” IEEE Transactions on Image Processing, vol. 6,
no. 9, pp. 1326-1333, 1997.

[65] P. B. Chou and C. M. Brown, “The theory and practice of bayesian image
labeling,” International Journal of Computer Vision, vol. 4, pp. 185-210,
1990.

[66] J. Besag, “On the statistical analysis of dirty pictures,” J. R. Statist. Soc.,
vol. 48, pp. 259-302, 1986.

[67] M. Chang, A. M. Tekalp, and M. I. Sezan, “Motion-field segmentation using
an adaptive MAP criterion,” in IEEE International Conference on Acoustics,
Speech & Signal Processing, vol. 5, pp. 33-36, 1993.

73

[68] S. Kiranyaz, “Regularized motion estimation techniques and their applica­
tions to video coding,” Master’s thesis, Bilkent University, September 1996.

[69] S. Kiranyaz and L. Onural, “Motion compensated frame interpolation tech­
niques for VLBR coding,” in IEEE International Conference on Image Pro­
cessing^ vol. 1, 1997.

[70] A. A. Alatan, Object-based 3-D Motion and Structure Analysis For Video
Coding Applications. PhD thesis, Bilkent University, February 1997.

[71] A. A. Alatan and L. Onural, “Estimation and efficient encoding of depth
field for video compression using 3-D structure and motion of objects,” IEEE
Transactions on Image Processing, June 1998.

[72] A. A. Alatan and L. Onural, “3-D motion estimation of rigid objects for
video coding applications using an improved iterative version of the e-matrix
method,” IEEE Signal Processing Letters, February 1998.

[73] A. A. Alatan and L. Onural, “Utilization of 3-D motion models in video cod­
ing: Occlusion detection and motion compensated temporal interpolation,”
in Advances In Digital Image Communication, Proceedings of 2nd Erlangen
Symposium, pp. 85-92, April 1997.

74

