
 ̂ Щ  - i  f  д  ;f··̂  ^ í Г·'· ':'■-

L V iN 'S C U ílV S IiS -J

■ -· '■· ■. .’ · ‘.rf ;■· ■ Íí

:̂;;:v:ôî< rn/i

..I?* ;;“;;í

•5 : 3
S 4 7 ·
1937-



SOLUTION OF ELECTROMAGNETIC SCATTERING 
PROBLEMS INVOLVING CURVED SURFACES

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND 

ELECTRONICS ENGINEERING 

AND THE INSTITUTE OF ENGINEERING AND SCIENCES 

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF 

MASTER OF SCIENCE

5<or+£-l.

By

Kubilay Sertel 

June 1997



(ÀC
665

■S3

ía^-9-

^ £ 3 8 2 5 2



I certify that I have read this thesis and that in iny opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Levent Giirel(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. M. îrşadi Aksun

I certify that I have read this thesis and that in my opinion it is fully adequate, 

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ayhan Altıntaş

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Ban
Director of Institute of Engineerin^and Sciences

n



ABSTRACT

SOLUTION OF ELECTROMAGNETIC SCATTERING 
PROBLEMS INVOLVING CURVED SURFACES

Kubilay Sertel

M .S. in Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Levent Gürel 

June 1997

The method of moments (MoM) is an efficient technique for the solution of 

electromagnetic scattering problems. Problems encountered in real-life appli­

cations are often three dimensional and involve electrically large scatterers with 

complicated geometries. When the MoM is employed for the solution of these 

problems, the size of the resulting matrix equation is usually large. It is pos­

sible to reduce the size of the system of equations by improving the geometry 

modeling technique in the MoM algorithm. Another way of improving the effi­

ciency of the MoM is the fast multipole method (FMM). The FMM reduces the 

computational complexity of the convensional MoM. The FMM has also lower 

memory-requirement complexity than the MoM. This facilitates the solution 

of larger problems on a given hardware in a shorter period of time. The com­

bination of the FMM and the higher-order geometry modeling techniques is 

proposed for the efficient solution of large electromagnetic scattering problems 

involving three-dimensional, arbitrarily shaped, conducting suriace scatterers.
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ÖZET

EĞ Rİ Y Ü Z E Y L E R  İÇER EN  E L E K T R O M A N Y E T İK  

SAÇIN IM  PRO BLEM LERİN İN  Ç Ö ZÜ M Ü

Kııbilay Sertel

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Y . Doç. Dr. Levent Gürel 

Haziran 1997

Moment metodu (MoM) elektromanyetik saçınım problemlerinin çözümü 

için etkili bir 3Üntemdir. Günlük ha}^atta karşılaşılan saçınım problemleri 

çoğunlukla üç boyutludurlar ve elektriksel olarak büyük, karmaşık geometrili 

saçıcılar içerirler. Bu problemlerin çözümünde MoM kullanıldığında elde 

edilen matrisin boyutu genellikle büyüktür. Bu denklem sisteminin bo,yu- 

tıınu MoM algoritmasındaki geometri modellemesini iyileştirerek düşürmek 

mümkündür. MoM’un etkinliğini arttırmanın başka bir yolu da hızlı multi- 

pol metodudur (FMM). FMM bildik MoM’un işlemsel karmaşıklığını düşürür. 

FMM için gereken bellek miktarının karmaşıklığı da MoA4 için gerekenden 

düşüktür. Bu, verilen bir donanım üzerinde daha büyük boyutlu problemlerin 

daha, kısa zamanda çözülebilmesini olanaklı kılar. FMM ve yüksek dereceli 

geometri modelleme tekniklerinin birleştirilmesi üç boyutlu, rastgele şekilli, 

iletken yüzey saçıcılarmm bulunduğu büyük elektromanyetik problemlerinin 

etkili çözümü için önerilmiştir.
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Chapter 1

Introduction

Solution techniques based on the surface integral equations (SIEs) are widely 

used in computational electromagnetics. Formulations employing SIEs ex p̂ress 

the unknown function on the defining surface of the i^roblem geometry. Thus, 

both t he surface a.nd tlie unknown function defined on it ha.ve to be accurately 

represented in the solution algorithm.

Real-life electromagnetic scattering problems are often three dimensional 

and involve arbitrary geometries. Formulations of these problems can not be 

based on the arbitrary geometries of the problems, instead, the geometries 

are approximated by various mathematical models that are easier to work 

with . Approximating the problem geometry by polynomial suljsections is 

b('coming widely used in most of the numerical solution teclmi([ues, such as 

the finite element method (FEM) and the method of moments (MoM) [1, 2]. 

d'he MoM, which will be explained in detail in Chapter 2, provides a flexible 

and powerful formulation for the solution of electromagnetic scattering and



radiation problems.

Canonical geometries such as spherical, cylindrical, and conical surfaces can 

be exactly modeled. Arbitrarily curved surfaces can be accuratelj'  ̂modeled us­

ing a mesh of biquadratic, bicubic, or higher-order polynomial surface patches. 

Non-uniform rational B-spline (NURBS) surfaces and Bézier^ patches can also 

be used for the same purpose. NURBS surfaces are powerful modeling tools 

that are widel}  ̂used in computer-aided graphical design (CAGD) applications. 

Hence, the representations of most bodies fabricated by using automated ma­

chining processes are based on NURBS meshes. Therefore, if the geometry of 

the scatterer is represented by NURBS surfaces in the electromagnetic scatter­

ing code, the output data of a CAGD tool can be directly used as the input of 

the code without inducing any geometry-modeling error in the solution.

In this thesis, a general formulation of the MoM for electromagnetic scatter­

ing problems involving arbitrarily sliaped, conducting scatterers will be given. 

The limitations of this method will be mentioned and ways to overcome these 

limitations will be investigated.

The effect of using different techniques to approximate the problem ge­

ometry on the solution will be investigated. Comparisons of solutions different 

geometry-modeling techniques will be given. It will be shown that better geom­

etry models improve the solution accuracy and reduce the size of the resulting 

matrix equation. Comparisons of results obtained using different basis hinc- 

tions in the Mohi expansion will also be given, and it will be sliown that the 

accuracy of the solution heavily depends on the geometry-modeling scheme 

rather than the type of the basis functions.

‘ Namecl after their inventor, Pierre Bezier.



The basis functions used in the expansion of the unknown function in the 

MoM formulations are defined to be conformal with the surface representation 

and are “curved” generalizations of the piecewise linear basis functions defined 

on flat rectangular domains (rooftops) [3, 2] and flat triangular domains (due 

to Rao, Wilton and Glisson) [1, 4]. Issues concerning the numerical computa­

tion of the singular and nonsingular integrals arising in the formulations using 

différent surface representations and different basis functions will be addressed.

A general formulation of the fast multipole method (FMM) [5, 6, 7] for 

electromagnetic scattering problems will also be given. The performance of 

FMM will be investigated. Both the eificency and the accurac}'  ̂ of the FMM 

wilt be demonstrated by comparing the FMM solutions to the MoM and closed- 

form solutions for some sample problems. Thus, the combination of the FMM 

and accurate geometry-modelling techniques will be proposed for the efficient 

solution of real-life electromagnetic scattering ])roblems.



Chapter 2

MoM and FM M

The MoM is a well-known technique for obtaining approximate solutions of 

integral, differential, and integro-differential equations arising in various areas 

of basic and applied sciences [8]. The equation to be solved is converted into a 

matrix equation by applying the standard MoM procedure. 'I'lie procedure is 

outlined in Section 2.2. This matrix ecpiation is then solved either by Gaussian 

elimination (GE) or by an iterative solution scheme such as tlie conjugate 

gradient method (CGM). GE requires 0{N^) operations for the solution of 

an N X N  system. An iterative solver would require 0{N^) operations per 

iteration. As N gets larger, these high complexities limit the performance and 

applicability of the MoM.

Eor electromagnetic scattering and radiation problems, the EMM can be 

utilized to reduce the O(N^) complexity of an iterative solver to (9(yV'"’ ). This 

is accomplished by calculating the matrix-vector product in a last and indirect 

way at iteration of the iterative solver. This chapter outlines the MoM and the



FMM as they are applied to electromagnetic scattering problems.

2.1 The Electric-Field Integral Equation

fiased on Maxwell’s equations, one way of formulating the electromagnetic 

scattering problems involving open or closed conducting surfaces is the so called 

electric-field-integral-equation (EFIE) formulation. Maxwell’s equations in the 

frequency domain can be manipulated to obtain the a equation,

V2E(r) +  A:^E(r) =  -¿o;/iJ(r), (2 .1)

in free space with time convension. The solution to this equation is given

by

E(r) =  -iwfi [  de 'G (r.r ') · J(r').
J V

In the above.

G (r,r ') =

is the dyadic Green’s function and

i _  T v v

( 2 .2)

(2.3)

.9(r,i·') = r — r
(2..I)

is the scalar Green’s function that satishes the scalar wave equation

(V2 + A:2) (̂r,r') = ^ (i'-r0· (2.5)

For a giv'en source distribution J(r), the electric field radiated by tliat source 

distribution can be calculated using Eq. (2.2).
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For conducting objects, the EFIE is given by

I.
where

1 1 e''“·" Atti a

i? =1 r -  r' I .

(2.6)

(2.7)

Equation 2.6 is the statement of the boundary condition on the tangential 

component of the electric held on a conducting surface. The vector denoted 

b}'̂  t is any unit tangent vector on the surface s of the scatterer, and E '(r) is 

an impressed held which excites the system.

2.2 Method of Moments

The EFIE for the unknown electric current density J(r) on the conducting sur­

face induced l)y an incident wave is discretized using the MoM tecluiic|ue. Tlie 

induced surface current is approximated by a sum of N known basis functions 

{jn(i')} as
N

J(··) “ (2 .8)
ii = l

The EFIE thus becomes

N . r  1

/1=1  ̂ ^

,ikR Atti -
— d s ' - — L-E’ { v ) ^Q  (2.9)
R An;

Hence tlie proldem is reduced to hnding a. set of n„’s tliat minimizes the error 

in Eq. (2.9).

By dehning a set of Afaveighting (also called ‘‘testing ) (unctions, the EITE



is converted into a system of equations, whose solution minimizes the boundary- 

condition error in the average sense. The system of equations obtained is,

N

y  ̂Zmn^n — Fm·) — 1; 2, . . . , Â ,
n=l

where

and

dst„,(r) · ds' [j„(r ') +  ^  V ' · j„ (r ')  V
AkR

R

=m
Airi
krj J^dst,n{i') ■ E*(r).

(2 .1 0 )

(2 .1 1 )

(2 .1 2 )

Hence, the actual problem of finding the induced surface current J(r) is 

reduced to finding N coefficients of expansion of Eq. (2.8) as the solution of 

Eq. (2.10).

The expansion functions should be chosen so that their combination in 

Eq. (2.8) is capable of representing the unknown current density J(r) suffi­

ciently well. Quite powerful basis functions (BFs) exist in the literature for 

the expansion of induced surface current in scattering problems, most common 

ones being the RWG^ BFs supported on planar triangular subdomains [1] and 

rooftop (RT) BFs supported on planar rectangular subdomains [3]. For curved 

subdomains, generalizations of flat RWG BFs and flat RT BFs that are confor­

mal with the curved surface they are defined on [2, 4] are used. The definitions 

of these basis functions will be given in Chapter 4. Entire-domain BFs are also 

used in the MoM formulations, but will not be mentioned here. It should be 

noted that the BFs chosen for the approximation of the current J(r) should 

also be capable of providing a consistent approximation of the surface charge

'Named after Rao, Wilton and Glisson.



of providing a consistent approximation of the surface charge p(r), which is 

related to the current through the continuity equation [9]

V  · J(r) — ¿a>p(r) =  0. (2.13)

The choice of testing functions is also arbitrary but some methods are more 

popular in practice. If the testing functions are chosen to l)e the same as the 

basis functions, the method is called Galerkin’s method. It can be pro\ en that 

Galerkin’s method is equivalent to Rayleigh-Ritz variational method [8]. When 

the error is constrained to be satisfied on a set of discrete points on tlie scat- 

terer, which corresj^onds to choosing testing functions to be delta, functions on 

the scatterer surface, the method is named as point matching, and when they 

are chosen to be pulse functions defined over the subdomains of the geometry, 

the method is called collocation by subdomains. Wlien the testing functions 

are chosen to be the complex conjugates of the basis functions, the formulation 

results in the minimization of the square of llie error, 'riiroughout this thesis. 

Cîalerkin’s method is used. In addition to being a variational method, another 

advantage of the Galerkin’s method is that the resultant MoM matrix is sym­

metric. Therefore, one need only compute and store half of the MoM matrix 

Zmn- This is also an important consideration for the choice of the solution 

algorithm.

Direct application of the MoM requires the computation of N'̂  double sur­

face integrals appearing in Eq. (2.11) as the elements of tlie resulting MoM 

matrix. Solution of this system of equations by Gaussian elimination requires 

0(N'-^) operations. Iterative solvers require 0(N'^) operations per iteration. 

The niemoiy requirement ol the MoM is also 0{N^). 1 his large order lor

stoi’cige limits the size of the problem that can be solved on a given hardware.
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and the high operation cost poses a limit to the size of problems that can be 

solved in a practically acceptable period of time. For these reasons, the FMM 

is proposed [5, 6, 7, 10], which requires less memory and CPU time for the 

solution of large problems.

2.3 Multipole Expansions and FM M  Formu­

lation

Direct application of the MoM requires the computation of double surface 

integrals appearing as the elements of the resultant MoM matrix and 0{N'^) 

operations per iteration for the iterative solution of the resulting system of 

c(|uations. A clever way to overcome the difficulties arising from these large 

storage and computation complexities is used in the FMM. The FMM is de\xil- 

oped using two elementary identities. The first is tlie expansion of tlie scalar 

Green’s function appearing in Eq. (2.11) as

(2.14)
|r +  d|

wliich is a form of Gegenbauer’s addition theorem [11]. Here ji is the spherical 

Bessel function, is the spherical Hankel function of the first kind, P\ is 

the Legendre polynolmial, and d <  r is the condition tor the validy of the 

ex|)ansion. In the FMM formulations of scattering problems, where the source 

point is denoted by x' and the observation point by x, r will be chosen to lie 

close to X — x ' so that d will be small as depicted in Fig. 2.1. The second 

identity is the expansion of jtPi product appearing in Eq. 2.11 as a. sum ot



X

P’igure 2.1: The basic geometiy illustrating the relationship between x ,x ', 
and d.

propagating plane waves [11]:

4ni‘ji{kd)Pi{d · — j  d^ke'^'^Pi{k · r). (2.15)

The Green’s function in Eq. (2.14) can be rewritten using Eq. (2.15) as

ih r ^
|7Tdi =  s / +  \)hf\kr)p,(k ■ f), (2.16)

where the orders of summation and integration are interchanged. The idea, of 

the EMM is that the function

TiXkr, k ■ f) = Ŷ Cll + l)kl‘\kr}Pi(k ■ .■■) (2.17)
1=0

can be computed for various values of kr which is independent of kd. The series 

is truncated at the Lth term in numerical practice. The number of terms kept, 

L + 1, depends on the maximum allowed value of kd, as well as the desired 

accuracy. The choice of L will be mentioned later. Using Eq. 2.16, Eq. (2.14) 

Irecomes
îfc|r+d| ¡1̂.

|r + d| I tt
J  d^y^-^%Xkr, k ■ r). (2.18)

10



Figure 2.2: The geometry construction used in FMM formulations, illustrating 
the relation between source point, field point and the group centers.

2.3.1 Formulations for the FM M

The direct path from a source point to the field point can be decomposed into 

three parts as in Fig. 2.2, where

ĵi —  ̂jm T ^mm' I'iiu'· (2.19)

The idea to be noted is that the same path will be used for all source point 

in cluster m' to translate their field to all observation points in cluster m. 

Fquation (2.1G) can be rewritten as

(2.20)
4 7r Jrji

and the Green’s function becomes

1I ------ V V '
k:̂

îkTji

rji

«  J  cfk [l -  ^ V V '] k ■ r,n,n')

= J  cPk [I -  kk] k ■ (2.21)

Using the above equations, a matrix element as in Eq. (2.11) is approxi­

mated by

Z,nn = I  f/̂ t„,(r) · 2, [jn(r') + ^ V '  · j„(r')V
.ikR

li

^  [  d^kVf,nj{k) ■ mkijnm'. k ■ i\nm')y:,n'ii.k)  ̂ (2-22)
4/i J
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where

V/rnAh = li -kkj -t j (r^,n) (2.23)

are the Fourier transforms of the basis and testing functions, respectively, and 

the superscript denotes complex conjugation.

The FMM is proposed for the acceleration of the matrix-vector product 

computed at each iteration of an iterative solution scheme, like the conjugate 

gradient method, emplo3̂ ed for the solution of the resultant matrix equation. 

The algorithm is outlined in the next subsection.

2.3.2 Description of the FM M  Algorithm

Normally the matrix-vector product at each iteration of an iterative solver 

would require 0{N^) multiplications for the solution of an N x N system of 

equations. Emploj'ing the algorithm below, it is possible to reduce this order 

to 0{N^"'). The FMM algortihm can be described as follows:

1. The N basis functions are divided into M  localized groups (clusters), 

each containing about N/Al basis functions.

2. For groups tliat are distant to each other, the translation functions of 

Eq. (2.17) for each i)air of distant groups are calculated tor a predeter­

mined .set of k directions. Choice of this set ol k directions and the

12



choice of truncation limit for the series will be mentioned later. This re­

quires 0 { K L M { M  — G)) computations, where G is the average number 

of nearby groups to each group, K  is the number of k directions, and L 

is the number of terms kept in Eq. (2.17).

3. The Fourier transforms of each basis function are computed for the pre­

determined set of k directions. This step requires 0 { KN)  computation.

4. For groups that are near or close to each other (the closeness is defined in 

the sense that either Eq. (2.14) is not valid or the computation requires 

too maii}'̂  terms of the series to be considered for at least one pair of 

source and field points), a sparse matrix denoted by Z' is constructed, 

with direct computation of matrix elements using Eq. (2.11). This step 

requires 0{G{NjM)^M)  computations.

5. The K M  quantities called aggregations

Sm'(^) — (2.24)

which represent the far field of each group ???/ are computed using the 

precomputed Fourier transforms. This step requires 0 {K N)  operations.

6. The K M  quantities called translations

g.,n{k) = E'Tnгr,г4)SnAk) (2.25)

representing the Fourier components of the field in the neigliborhood ol 

group ???., generated by the sources in the groups that are not nearby are 

computed next. This step requires 0{K  M{M  — G')) operations using the 

precomputed values of T,nm'{A·

13



group m

7. Finally, the disaggregations of the fields of all sources in distant groups 

are computed from the group centers to the testing functions and added 

to the sparse matrix-vector product, which represents the testing of the 

field generated by the sources in nearby groups. This computation can 

be expressed as

B..« = E  2 , +  / <PkV,„iCk} . g,„(i·).
m'i

Figure 2.3 depicts the three main steps of the algorithm.

L is proportional to the size D, the maximum of the diameters of all groups, 

and K  =  2T  ̂ is approximately proportional to D .̂ Since is approximately 

proportional to NfM,  the number of unknowns in a cluster (for surlace scat- 

terers), computation of the vector B in Ecp 2.26 reciuires aNM +  h.\^/M 

operations, wliere a and h are machine-dependent constants. Ihis total opera­

tion count is minimized by choosing M — \Jl)Nlâ  and the result is an 

algorithm.

14



Extensions of the EMM that can further reduce this computational com­

plexity exist in the literature. Multilevel EMM [12], which extends the EMM 

strategy with multilevel grouping, can reduce the computational complex­

ity to 0 {N  log N). Raj'^-propagation fast multipole algorithm (RPFMA) [13, 

14] reduces the complexity to The fast far-held approximation

(FAFFA) [15] also results in an algorithm. Among the methods men­

tioned above, on 1}'̂  the FMM is implemented in this work. The implemenations 

of the extensions of the FMM mentioned above are among the future work that 

can be carried on on this subject.

2.3.3 Required Number of Multipoles and Directions

In the numerical implementation of the FMM, the series in Eq. (2.14) is eval­

uated using a finite number of terms. The number of terms that must be 

('\aluated is cliosen so that the exj^ansion converges to the desired accuracy. 

For I < z the Bessel functions jt(z) and h\^\z) are nearly constant in magni­

tude, and for / > z, ji{z) decays rapidly and h\^\z) grows rapidly. Therefore, 

tlie truncation limit cannot be chosen to be much larger than kr^m'·, since the 

numerical evaluation of the integral in Eq. (2.16) will cause inaccuracies due 

to the oscillatory integrand. A semi-empirical fit given in [7] to the number of 

multipoles recjuired for single precision (32-bit reals) is

Ls{kD) =  FD +  51n(A:D +  Tr), (2.27)

where D > l/k is the maximum group diameter. For double precision, the 

estimate is

L,{k.D) =  kD + lOln{kD -b tt). (2.28)
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If the value of L dictated by the above formula used exceeds kr-mm'·, then 

the groujDS must be considered as neighboring, and their interaction must be 

included in the sparse near-field matrix ^^n·

The integral in Eq. (2.16) must be evaluated using a quadrature rule that 

would provide sufficient accurac}'  ̂in the result. A simj^le method for determin­

ing the sampling points is to pick polar angles 9 such that they are zeros of 

Pi[cosO)^ and azimuthal angles (f> to be 2L equally spaced points so that the 

azimuthal variation is sampled at the Nyquist rate. For this choice, K  = 2L .̂

2.3.4 Memory Requirements and Computational Com­

plexity

The memory required for the FMM can be considered in two parts, the sparse- 

matrix storage and tlic fidVllVl elements’ storage. The storage of the sparse 

Z' matrix requires 0{N^ fM ) memory locations. The FMM aggregations need 

0 { K N )  memory locations, and the FMM translations need 0{KLM^)  memory 

locations. Hence the total memory storage needed is 0 { N ‘̂ fM) + 0 { K N )  -k 

0 {KLhP) .  Using the proportionalities K  oc T'·̂ , oc NfM,  and L oc D, this

expression can be simplified to C\{N^jM) -T C2{ N N f i M ), where Ci and 

C-2 irre machine- and implementation-dependent constants. The coefficient ('2 

is so small compared to C\ tor all problem sizes that can be solved with the 

f'M.M that the memory required is dominated by the 0{N^fM)  term.

The computational complexity of the FMM can be determined by count­

ing the number of floating-point operations required at each step ol tlie al­

gorithm. The aggregation step requires MKN/M = R N  operations. Tlie

16



translation step requires KNP oi^erations with the precomputed KM^  val­

ues of the translation function given in Eq. (2.17). The disaggregations 

require MKN/M = K N  operations, and finally the sparse matrix-vector 

product requires N^/M operations. Using the proportionalities K  oc 

(X lY/M, and L X D, the total cost of the matrix-vector product is found 

as 0 {N M)  -j- 0 { N ‘̂ fM). This can be minimized by choosing M  — \/N and 

the result is an algorithm. The memory required for the EMM also

becomes Both the operation cost and the memory requirement of

the EMM is less than those of standart MoM formulation for problem sizes 

larger than 1000, which makes the EMM more suitable for the solution of large 

problems.
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Chapter 3

Geometry-Modeling Techniques

Real-life electromagnetic scattering problems, almost always, involve electri­

cally large scatterers with complicated geometries. In the formulation of scat­

tering problems involving three-dimensional arbitrarily curved scatterers, the 

gt'oinetry of iJie scatterer has to be appro.xdmated. Various geometry a.ppro.xi- 

mation and modeling techniques e.xist for this purpose [16, 17], some of which 

are presented in this chapter.

As the electrical size of a geometry gets larger, the size of the problem 

increases and the CPU time consumed and the memory required to obtain 

the solution grows rapidly. Hence, the maximum size of the problem that can 

l)e soKed on a given hardware is limited by these two (actors. Using l^etter 

geometry models for the scatterers, it is possible to reduce the size oi the 

])roblem. As an introduction to the mathematical Isackground ot tlie subject 

of better modeling, parametric space curves will ]>e mentioned in the next 

section.
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Figure 3.1: A parametric space curve is a vector function of a parameter u.

3.1 Parametric Space Curves

A general 3-D parametric curve in space (Fig. 3.1) is written of the form f(u), 

where f  is a vector containing the Cartesian coordinates of the point on tlie 

s|)a.cc curve having the i^arameter \alue u.

If f(?i) is an 7?.th degree polynomial function of u liaving a. set of \'ectors 

{a o ,a i ,. . .  ,a „ }  as coefficients, i.e.,

2=0

(3.1)

then one can specify the whole curve uniquely with this set of coefficients. 

Alternatively, one can specify another set of n + 1 points through which the 

y/th degree parametric polynomial curve is supposed to pass.

There are other methods of specifying an 7ith degree parametric polynomial 

curve, one of the most popular being the so called Bezier cur\'es [17]. /V Bezier 

curve is specified by an alternative set of points whicli is called the defining 

polygon. The shape of the actual cur\-e closely follows the sliape of the defining
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polygon. Figure 3.2 shows a generic third-order Bezier curve and its defining 

polygon.

These curves have the following nice properties:

• The degree of the polynomial defining the curve segment is one less than 

the number of defining polygon points.

• Idle curve generall}'· follows the shape of the defining polygon.

• The first and the last points on the curve are coincident with the first 

and the last points of the defining polygon.

• The tangent vectors at the ends of the curve have the same direction as 

the first and the last polj'^gon spans, respectively.

• The curve is contained within the conve.x hull of the defining polygon, i.e., 

within the largest convex polygon obtainable with the defining polygon 

vertices.

• The curve exhibits the variation-diminishing property. Basically, this 

means that the curve does not oscillate about a straight line more than 

the defining polygon.

• Idle curve is invariant under an affine transformation. .\n affine trans­

formation is a combination of linear transformations such as translation 

and rotation.

A parametric Bezier curve is mathematically defined by

P{u) = J2^i^n,iM  0 <  u <  I, (3.2)
1=0
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Figure 3.2: A generic Bezier curve and its defining polygon.

where the Bezier or Bernstein basis or blending function is

( n
U ( l - u ) ” - (3.3)

with

n\

\ > /
and a, are the defining polygon vertices.

/!(·« -  /;)!
(3.4)

Another useful group of parametric curves is the B-spline cur\’es [16, 17]. 

These curves are formed by blending Bezier curves. An ??th degree B-spline 

curve is formed by connecting ??.th degree Bezier curves and imposing [n — l)st 

derivcitive continuity at the junction points. The local parameter of each Bezier 

curve runs from 0 to 1 where the global parameter t of the whole curve is defined 

in terms of the local parameters. A knot vector defining wliich of the polygon 

points form the sub-Bezier curve must also be specified. If this knot vector is 

nonunilorm then the resulting curve is called a nommiform B-spline.

B-splines can also be written cis an expansion
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P (“ ) =  0 < W < 1 ,
¿=0

(3.5)
where A n̂,i{u) are B-spline blending functions, which are also functions of the 

knot vector.

B-spline curves has the interesting property of local control, i.e., when one 

of its vertices is moved to a new location only the part of the curve around that 

vertex changes shape. For Bezier curves, this is not the case since tlie basis 

functions for them are global, i.e., non-zero over the interval 0 < u < 1, hence 

a change in the position of one of the vertices is felt on the entire cur '̂e. The 

basis-function terminology used here should not be confused with the basis 

functions used to expand the unknown function in the MoM formulation.

Extensions of Bezier and B-spline curves are rational Bezier and rational 

B-spline curves. They allow one to give weights to each polygon verlex giving 

t lics(' curves one more degree of freedom. 'I’liis is accompfislied by projecting 

the 4-dimensional Bezier and B-spline curves to .3-dimensional real s])ace. .A 

rational Bezier curve can be expressed as

P(·«) = 0 < u < 1, (3.6)

where ce,· is the weight of the ?ith vertex of the defining polygon.

Blending rational Bezier curves with a nonunilbrm knot vector results in 

llie very popular NURBS curve representation. This powerful curve definition 

is used in most of the available CAG’D tools.
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3.2 Exact Parametric Models

All canonical surfaces have exact parametric representations. A sphere, for 

example, can be formulated in terms of 6 and <f> angle parameters. In order the 

problem geometry be exactly representable, it must be formed from a set of 

exactly representable subgeometries, such as spherical, conical, or polynomial 

subsurfaces. This is almost never the case for the scatterers encountered in 

real-life electromagnetics problems. The geometry of the scatterer is, thus, 

approximated by parametric subsurfaces, some of which are more popular than 

others. In the next section some of those popular approximation tools are 

presented.

3.3 Polynomial Interpolation Surfaces

This is the first class of the geometry-modeling techniques. The scatterer 

surface is approximated by polynomial surface patches. In the approximation 

process, these subsurfaces are constrained to pass through a set of points in 

space, which are sampled from the original scatterer surface. In practice, the 

subsurfaces used are limited to second-order pol3momial subsurfaces.

3.3.1 Staircase Approximation

This is the zeroth-order polynomial approximation to the prol)lein geome- 

tiy. The problem geometry is approximated by a collection ot cubic and 

rectangular-prism-like cells as depicted in Fig. 3.3. This modeling scheme is
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Figure 3.3; Aii aircraft approximated by a mesh of rectangular cells. (Repro­
duced from [18].)

very popular in finite-difference methods [18]. In real-life scattering problems, 

for the scatterer geometry be modeled accurately enough, the number of sub- 

domains used must be veiy large, indicating that the problem size can fall out 

of practical solution ranges.

3.3.2 Flat Triangulations

This scheme can be considered as the first-order polynomial surface fit to the 

problem geometry. It is a very popular method and is used not only in the 

area of numerical electromagnetics, but also in a wide variety of disciplines in 

science and technology. The problem geometry is approximated by a collection 

of connected flat triangular subdomains (Fig 3.4). It is very flexible in modeling 

and in formulations. This technique is widely used in the MoM formulations 

with the popular RWG BFs [1, 19, 20]. The form of a flat triangular |)atch is

r(î,i, u) =  ao -f- a i«  -|- a2U (3.7)

and a,’s are related to the vertices of the triangle. The triangulation of the 

sphere is shown in Fig. 3.4.
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Figure 3.4: Sphere approximated by a mesh of flat triangles. The triangulation 
is performed by MSC/ARIES.

3.3.3 Quadratic Triangulations

One higher degree of polynomial surfaces is the quadratic triangulations. These 

are curved triangular subdomains defined by 6 discrete points in space. These 

points must be defined on a topologically triangular curve. The capability 

of representing curved problem geometries of these subdomains makes them 

attractive in the formulation of real-life electromagnetics problems involving 

arbitrary, curved geometries. The form of a curved triangular patch is

r(î/, v) =  ao -f aiti +  a2V -b asuv +  a.¡u  ̂ -b asu'̂ (3.8)

ajid a¿’s are related to the 6 points defining the curved triangular patch. The 

triangulation of the sphere using quadratic triangular patches is shown in 

Fig. 3.5.
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Figure 3.5: Sphere approximated by a mesh of 6-point quadratic triangles. The 
triangulation is performed by MSC/.A,R.IES.

3.3.4 Biquadratic Approximations

These surfaces are formed from the cross-products of second-order polynomials, 

and each surface is defined by 9 discrete points in space. For quadrilateral 

surface patches, these 9 points must be defined on a topologically rectangular 

grid. When one of the parameters are fixed, the curve traced by the other 

parcimeter is a parabola in space. The}· are also used in the MoM formulations 

of electromagnetic scattering problems [2]. The form of a curved rectangular 

patch is
2 2

r(t/, y) = E  E t }iiU v\ (3.9)
i=0j=0

A sphere approximated by biquadratic patches is shown in P'ig. 3.6.

26



Figure 3.6: Sphere approximated by a mesh of 9-point biquadratic rectangular 
patches. Reproduced from

3.4 Pree-Form Surfaces

The polynomial surfaces defined in Section 3.3 are surfaces that are constrained 

to pass through existing data points, i.e., they are surface-fitting techniques. 

In many cases, excellent results are obtained with these methods. They are 

suitable for surface approximations when a set of sampled data about the 

surface is available. This data may be obtained as a result of an experiment 

or a mathematical calculation. Examples are engine manifolds, aircraft wings, 

and similar mechanical and structural parts. However, when the design of the 

shape of the body depends also on the functional and aesthetic requirements, 

winch cannot be formulated entirel}'  ̂in terms of quantilative criteria, one luis to 

resort to a combination of computational and heuristic methods. An alternative 

method suitable for heuristic design of curves and surfaces was developed bĵ  

Pierre Bezier.
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3.4.1 Bezier Patches

Making use of the previousl}^ defined powerful Bezier and B-spline curve con- 

cej^ts, one can also form a basis for surface description [16, 17]. Tensor product 

Bezier surfaces are defined as

1=0j=0

This definition can also be given in matrix form as

y(u,v)  =  [C/l|jV]|.4]lMnKl,

where

[U] =

[1/] =

[̂ 1] =

and [Â j and [M] are given by

u" · · · 1

0̂0 * * · Ôm

/̂lO 7̂17?!

’ .. hin)
^On '̂ ■00

/.("d■ ■ ^Om

[ivi =

^nO 7̂171

1 [ M ]  =

^mO • · Ad”d'^mm

with

i ' l Í 0 Í M( - 1 ) 1 - and
J J ■ / i  /

/!
?’!(/ — z)!

(3.10)

(3.11)

(3.12)

(3.13)

(3.11)

(3.1.5)

(3.16)

For quadrilateral surface patches, the defining polygon net must be topo­

logically rectcuigular, i.e., the net must have the same number of vertices in
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each “row” . Figure 3.7 shows a generic quadra.tic Bezier patch and its defining 

polygon mesh. They share the following similar properties as Bezier curves:

• The degree of the surface in each parametric direction is one less than 

the number of defining ¡jolygon vertices in that direction.

• The continuity of the surface in each parametric direction is two less than 

the number of defining polygon vertices in that direction.

• The surface generally follows the shape of the defining polygon net.

• Only the corner points of the defining polygon net and the surface are 

coincident.

• The surface is contained within the conve.x hull of the defining polj'^gon 

net

• The surface does not exhibit the variation-diminishing proi:)erty. The 

variation-diminishing property for bivariant surlaces is undefined.

• The surface is invariant under an afhne transformation.

Each of the boundary curves of a Bezier surface is a Bezier curve. The 

tangent vectors at the patch corners are controlled both in direction and mag­

nitude l)y the position of adjacent points along the edges of the net. The 

interior polygon net vertices influence the direction and magnitude of the twist 

vectors at the corners of the patch. Consequent!}', the user can control the 

shape of the surface patch without an intimate knowledge of the tangent and 

twist vectors.
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Figure 3.7: Tensor product Bezier surface and its defining poI}^gon net.

The above discussion of Bezier surfaces concentrates on the definition and 

the characteristics of a single surface patch. For more complex surfaces multiple 

Bezier surface patches must be joined together.

3.4.2 B-spline Surfaces

Cartesian-product B-spline surfaces are the natural extensions of Cartesian- 

product Bezier surfaces, defined by

¿=0 j=0
(3.17)

where N¡’ {̂11) and MJ{v) are the B-spline basis functions in the biparametric 

u and V directions. They are actually blended Bezier surfaces, so one can 

transform a B-spline surface to a set of connected Bezier surfaces.

y\s with B-spline curves, the shape and character of a B-spline surtace is 

significantly influenced by the knot vectors in the parametric directions. Open, 

|)eriodic, and nonuniform knot vectors are used. For example, it is possible to
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Figure 3.8: A ycitch hull clehned as a B-spline surface, the defining polygon net 
and the parametric representation. (Reproduced form [16].)

use an open knot vector for one parametric direction and a periodic knot vector 

for the other; the result is a cylindrical surface of varying cross-sectional area. 

As an example to the modeling power of B-splines, a j^atch hull represented by 

B-spline surfaces is shown in Fig. 3.8.

The local control properties of B-spline curves also carry over to B-spline 

surfaces.
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3.4.3 Nonuniform Rational B-Spline (NURBS) Sur­

faces

Bezier and B-spline surfaces can be generalized to their rational counter­

parts. A rational Bezier or B-spline surface is defined as the projection of 

a 4-dimensional tensor product Bezier or B-spline surface. Thus the rational 

Bezier patch takes the form

' ’ ’  Z Z oT .U ^ iiB riu )B ’>(v) ’ '

and a rational B-spline surface is written as

' ’ ' £ £ o  A 'rcow /i» ) ' ' '
It must be noted here that these surfaces are not tensor product surfaces them­

selves. As for nonrational counterparts, open uniform, periodic uniform, and 

nonuniform knot vectors can be used to generate rational Bezier and B-spline 

surfaces.

One of the strong attractions of rational B-spline surfaces is their ability to 

represent quadric surfaces which are given by the general e.xpression

A.r' -b By^ +  (7^2 +  Dxy +  Eyz -b Fxz +  Gx + Hy +  Jz + K  = 0 (3.20)

and to blend them smoothly into higher-order sculptured surfaces. One can 

represent a sphere exactly using a single rational B-Spline surface, which is a 

collection of smoothly blended rational Bezier patches. The sphere and the 

defining polygon net are shown in Fig. 3.9 (c). Figures 3.9 (a) and (b) are the 

construction curves used to generate the sphere.
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(c)

Figure 3.9: Sphere generated as a rational B-spline surface, (a) Offset circle 
and defining polygon; (b) circle of revolution and defining polygon; (c) defining 
polygon net and sphere. (Reproduced from [16].)
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Chapter 4

Basis Functions

Powerful basis functions (BFs) exist in the literature to use with the MoM 

formulation of electromagnetic scattering and radiation problems. The basis- 

function expansion employed for the formulation of the ¡problem has to l)e 

capable of representing the unknown accurately. For electromagnetic scatter­

ing 251’oblems, the unknown is the surface current on the scatterer induced by 

an incident electromagnetic field. For a proper approximation of the surface 

current, the BFs used must be defined on the surface of the scatterer. In this 

chapter the definitions of the well-known Rao-Wilton-Glisson (RWG) BFs and 

rooftoj) (RT) BFs are given. Also their curved counterparts, that are confor­

mal with curved parametric surfaces they are defined on, are presented. The 

formulations of these curved BFs are given in a form that is applicable to any 

parametric surface definition.
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Figure 4.1: Rooftop basis function defined a pair of flat rectangular regions.

4.1 Rooftop (RT) Basis Functions

RT BFs are subdomain basis functions and are very popular and widely used 

in the MoM formulations of problems involving flat, rectangular geometries, 

such as the geometries encountered in the analysis and simulation of printed 

circuits. Their combination can approximate the unknown suriace current 

piecewice linearly in the direction of current flow, and the approximation is 

piecewise constant in the transverse direction. On a pair of flat rectangular 

subdomains, they ca.n be defined as

b(x,y)=  <
— P{ylyi)x  0 < .r < .ri.I’l
(•̂ 2 ^\p[y!y^yS: xi <  .r < X2

(4.1)

. ( .X2-Xl) '

where P{yly\) is a pulse function that is nonzero for y values between 0 and 

?/i. The BF is defined by Eq. 4.1 is depicted in Fig. 4.1.
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Figure 4.2: Rao-Wilton-Glisson basis function on a pair of flat triangular 
regions.

4.2 Rao-Wilton-Glisson (RWG) Basis Func­

tions

These basis functions are defined over pairs of flat triangular subdomains. Due 

to the flexibility of flat triangulations in surface modeling, this basis function 

finds a wide range of applications in electromagnetic scattering and radiation 

|)roblems. The}  ̂ are defined as

/*’71

b„(r) =

___
2/1+"” 

/ "

in T+

in T: (4.2)

0 otherwise

where In is the length of the common edge, and /1+ and /l„  are the areas of 

the triangles T+ and T~, respectively. The BF is shown in Fig. 4.2.

4.3 Curved Rooftop (CRT) Basis Functions

'Che RT BFs arc suitable for the expansion of induced surface currents on flat 

and rectangular surfaces. They should be modified in order to be capable ol
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representing an unknown current density on a curved 3-D surface. CRT BFs 

are defined on curved surfaces in terms of the tangent vectors of the surfaces. 

The tangent vectors that form a basis for the definition of the basis function 

can be found by differentiating the parametric surface mapping with respect 

to each parameter, i.e.,

t -  —
OU

t
“  dv-

(4.3)

In the following formulation, a series of transformations will be defined, 

which should not be mixed up.

• A unit square is the region in the two-dimensional (u,u) parametric co­

ordinate system which is defined b}'̂  0 <  u <  1 and 0 < u < 1.

• A 3-D curved rectangular patch is the mapping of the unit square in the 

(.s,/) parametric domain into the 3-D (.r, ;(/,-) real space.

• A rectangular subdomain in the ( s, 0  domain can be considered as a 

mapping of the unit square on the (u, u) domain into the {s,t) domain.

Therefore, a curved rectangular subdomain, on a surface on which a CRT basis 

function is defined, can be considered as a mapping of a rectangular subdomain 

in the (s, t) parametric space, which, in turn, is the mapping of the unit square 

in the ((/, o) parametric space into the (s,f) parametric space. Fig. 1.3 depicts 

tlie situation.

With the transformation

r„ =  u(ri -  I'a) +  u(r2 -  ra) -I- I'a, (4.4)
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Figure 4.3: Composite mapping of the parametric unit square on the real 
curved surface.

where r¿ are the (5,f) coordinates of the four vertices of the rectangular subdo­

main, the unit square of the (íí, v ) space is mapped to a rectangular subdomain 

in the parametric space. With the patch transformation, which is given 

to be the Bezier patch transformation here as an e.xample, the rectangular sub- 

domain in (s,t) space is mapped to the curved rectangular subdomain on the 

Bézier patch.

With the above composite transformation, the subdomain supporting half 

of the CRT BF on the patch is formed from the unit square of the (?/,, u) domain.

The CRT BFs can now be defined on the (n, v) domain very simply in terms 

of u and V ¡jarameters as

b(zi, u) = 1 clr(ii,u) 
u

c)

where g{u, v) is the determinant of the metric tensor, which is given by

(4.6)

(J
</11 </12 

</21 </22
(4.7)
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Figure 4.4; C-RT BF defined on the parametric space.

where

(Jn =
dr dr dv By By By

Bu BiB Bu Bv' Bv Bu'
By By

9ii ~  T~ ■ TT“ · (4-b)Bv Bv  ̂ ’

Equation (4.6) actuall}  ̂ defines half of the CRT BF. By defining the po­

sitions of the \'ertices of transformation (4.4), one can properly pair the two 

licdves to form the basis function (Fig. 4.4).

4 'he surface gradient of a scalar function and tlie surface dix'ergence of a

vec

cind

ctor function of the forms

6 = (j){û  v) 

f i  \ f  I r

resliectively, are given as

and

, ,,B(I)By ,.,B(I)By .,,B(j)BY , .).,B(j)BY
+ +  f /  T - T “ + -'^ "7r7TBu Bu Bu Bv Bv Bu Bv Bv

 ̂ , ,B i By ,oClf By . , i^ f  22
v , - f  = 9 V - T - + . i 7Bu Bu Bu Bv Bv Bu Bv Bv

1

(4.9)

(4.10)

( 1. 1 1 )

f Ojfuy^) difvs/9)' 
s/a V >

(4.12)
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where are the corresponding elements of the inverse of the metric tensor of 

differential geometry.

With the definitions given above, the divergence of the basis function can 

be found as

V , · b(r) =
1

(4.13)

The surface charge in each subdomain is found to be

ads =  —Vs · b Jg[u^v)dudv^LÜ ’ (4.14)

which is constant in the parametric space {ads/dudv). It is proven below that 

the current densit.y across the common edge per unit parameter is independent 

of the geometry. Thus, there is no line-charge accumulation on the common 

edge. The unit vector parallel to the common edge and the unit vector per­

pendicular to the common edge are given as

hi =
1 dr

and

ijL =  ¿II X ñ 1

</22 OV

d r d r
</22 -------- </l 2

(4.15)

(4.1C)
, / g ^  ["“ flu "  dtij 

Using Eqs. (4.6) and (4.16), the normal component of the basis function across 

the edge can be found to be

1
¿X · b = (-1.17)

\/</22(» =  !,<’ )

Since the denominator is the differential length along the common edge, the 

current density across the edge per unit parameter is independent of the rest ol 

t he geometry. Therefore, the normal components of the two halves of the RT
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BFs on the common edge are equal, which means that the two halves can be 

paired properly to form the basis function with continuous normal component 

at the common edge.

CRT BFs defined on rectangular subdomains on Bezier patches were im­

plemented for the solution of scattering problems involving scatterers modeled 

by meshes of connected Bezier patches. The surface tangents needed can be 

easily computed using the chain rule of differentiation and the properties of 

the Bernstein polynomials, such as

d
dŝ

B “ W  =  n (4.18)

Both and are already computed in the calculation of r(i/, u),

therefore, no extra effort is needed for the calculation of the surface tangents, 

which are used in the definition of the BFs.

4.4 Curved RWG (CRWG) Basis Functions

A curved triangular subdomain, on the surface on which the CRWG BF is 

defined, can be considered as a mapping of a triangular subdomain in the (s, t) 

parametric space, which, in turn, is the mapping of the unit triangle in tlie 

parametric space into the {s,t) parametric space.

With the transformation

r„ =  u (r i -  ra) +  u(i'2 -  I'a) -I- I'a

subject to the condition

n +  V <  1,

(4.19)

(1.20)
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Figure 4.5: CRWG BF defined on the uiiit triangle in the parametric space.

tlie unit triangle of the (u, v) parametric space is mapped to a triangular sub- 

domain in the (s,t) parametric space, where r,· are the (s,¿) coordinates of 

the tliree vertices of the triangular subdomain. With the patch transforma­

tion, the triangular subdomain in the (s,i) space is mapped to the curved 

triangular subdomain on the patch in real space.

When (|uadratic triangular surfaces are used to model the scatlerer. the unit 

ti-iangle of the (u,u) domain can be directly mapped to a quadratic triangle in 

the real space defined by 6 points. The parametric representation of the patch 

is

r(u, v) =  Bo +  Biti -f B2V +  aa'tiu a.iU  ̂+  agu^. (4.21)

With this transformation, the subdomain supporting half of a CRWG BF on 

I lie ]Datch is formed from the unit triangle of the (u, v) domain.

The CRWG BFs can now be defined on the ( íí, ü) domain very simply [4] 

b(r) =  , ^  1 (4.22)

as
1 f  dr

c  3« "  3·-/ '
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whose divergence can be formulated to be

V , · b (r) = (4.23)

Ecluation (4.22) actually defines half of the CRWG BF. By defining the posi­

tions of the vertices of transformation (4.19), one can properly pair the two 

halves to form the BF.

The surface charge in each subdomain is found to I)e

ads =  — V 5 · b \Jg{û  v)dtidv, (4.24)

whicli is constant in the parametric space (ads/dudv). The current density 

across the common edge per unit parameter is independent of the geometiy, as 

proven below. Thus there is no line charge accumulation on the common edge. 

The unit vector parallel to the common edge and the unit vector perpendicular 

to the common edge are given as

¿II =
1 d r d r

\/fJn +  d22 ~  2^(12 \ du dv ̂
(4.25)

and

¿ 1 - /.II X ñ -
1 / 4 ¿¿1' , X dr

{(J22 -  i/12) ^  +  {(Jn - (4.26)
+  d'22 — 2<7i2) L

Using liqs. (4 .2 2 ) and (4.26), the normal component of the basis function across 

the edge can be found to be

1
/ I · b = (4.27)

+  fj22 — ‘̂ fJV2

Since the denominator is just the differential length along the common edge, 

the current density across the edge per unit parameter is independent of the
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rest of the geometry. For two triangular subdomains sharing a common edge, 

the normal components of the two halves of the CRWG BF are equal, therefore, 

there is no line charge accumulation at the common edge.

CRVVG BFs defined on quadratic triangular subdomains defined by 6 dis­

crete points in space that are on a topologically trianguhir curve are imple­

mented for the solution of scattering problems involving scatterers triangulated 

by quadratic triangles.

4.5 First-Order RT Basis Functions

RT BFs allow a. piecewise (PVV) continuous representation of the surface cur­

rent in the direction of current flow and a PW constant representation in the 

transverse direction. A natural e.xtension of RT BFs are the first-order (lin­

ear) RT BFs (LiiilTr BFs). They allow a PVV continuous iei)resentation ol the 

surface current in the direction of current flow and a PW linear representation 

in the transverse direction. In the parametric (w, u) spixce, thej' can be simply 

defined as

fi(u,u) =

f2(u,u) =

1 s5r(ii,w)
u (1 —

1

da

u V
dr{ii ,  v)  

du

and

with divergences

f(u,u) = a fi{u ,v )  +  hÍ2{ti-,v)

V-fi(n,u) = ( i - f ) ,

(4.28)

(4.29)

(4.30)

(4.31)
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Figure 4.6: First-order rooftop basis functions defined on the (u,u) parametric 
space.

V - f 2 (ti,u) =
1

(4.32)

c\nd

V · f(ti, u) =
\J(Áu,v)

{a (1  -  u) -b hv) , (4.33)

lesiied ivel_y, on the same parametric domain. Tliey are depicted in Fig 4.6. 

The above definitions are for half of the LinRT BF. By properly pairing two 

subdomains the LinRT BF associated with the common edge can be formed on 

them. Further continuity constraints can be imposed to force a PW continuous 

current approximation in the direction transverse to the direction of current 

flow.

'These BFs are implemented for the scattering problem involving a flat patch 

as outlined in Chapter 5. 'The results obtained and presented in Cha])ter 5 are 

incorrect. A close investigation of these BFs using the topological properties 

of the rectangular mesh of the flat patch reveals that the LinRT BFs are not 

capalrle of properly modeling the induced surface charge, which is implicitly 

modeled by the divergence of the BF. This leads to a very important and
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intuitive idea: The basis functions used must also be capable of representing 

the induced surface charge density modeled by the divergence of the BFs, along 

with the induced surface current density. Due to this observation, these BFs 

are not used in the formulations and implementations for scattering problems 

involving arbitrary geometries.

Other higher-order BFs on triangular and rectangular subdomains are re­

ported in the literature [4, 2 1 , 2 2 , 23, 24]. Some of them are proven not to 

be capable of representing the surface charge density properly [9]. In this the­

sis only CRT BFs and CRWG BFs are emplo}^ed in the MoM formulations of 

scattering problems involving arbitrary scatterers.
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Chapter 5

Scattering from Canonical and 

Complicated Targets

l lie  MoM and the FMM formulations of the electromagnetic scattering prob­

lems using (|uadratic triangular patch modeling and Bezier patcli modeling are 

implemented. Also the A4oM solutions of scattering from a perfect-electric- 

conductor (PEC) sphere are implemented using the e.xact model of the sphere 

with CRWG BP’s and CRT BP's. The results obtained are compared on the ba­

sis of geometry modeling. It is shown that accurate geometiy models increase 

the solution accurac}^, hence the problem size can be reduced using better ge­

ometry models for the scatterers.

In this chapter, the solutions of some sample scattering problems will be 

presented. For sample problems involving curved surfaces, the results of dii- 

ferent geometry-modeling techniques will be compared. Analytical results will
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also be given when possible. Ail sample problems are solved for different dis­

cretizations in order to ensure the convergence of the solutions. Mostly three 

geometry-modeling schemes, namely, flat triangulations, quadratic triangula­

tions, and Bézier-patch formulation will be contrasted for the sphere. Espe­

cially, the problem of scattering from a PEC sphere constitutes a benchmark 

in order to investigate the effect of the geometry model on the solution. It is 

a doublj^'-curved canonical scatterer for which the e.xact parametric geometry 

model exists. The closed-form solution to the problem also exists, therefore, 

the results obtained, including the induced surface currents and the scattered 

far-fields, can be compared with the analytical results. For these reasons, this 

problem is investigated in detail.

The iinplementation of quadratic triangular patch formulation is integrated 

with the commercially available G.AGD program, MSC/ARIES. The triangu­

lation of the scatterer is obtained from this program and the induced surface 

current results obtained by executing the code that were developed are input 

back to the program where the user can visualize the solution.

The MoM and the EMM solutions will also be compared on the basis of 

accuracy, solution time, and memory requirements. Some of the problems are 

solved for large number of unknowns in order to demonstrate the capabilities 

of the EMM.

5.1 Flat Patch

This is the first sample problem studied because of the simplicity of the geom­

etry. The scatterer is an infinitely thin flat square patch lying on the x-t/ plane
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Figure 5.1: Flat PEC patch illuminated by a plane wave.

centered at the origin as depicted in Fig. 5.1. The patch is illuminated by a 

plane wave propagating in the negative 2  direction.

The surface current density induced on the patch and the scattered far-held 

are investigated using the RT BFs, the LinRT BFs, and (he CRWG BFs, which 

become identical to flat RWG BFs for this geometry. Using the LinRT BFs 

seems to be legitimate choice for the current expansion, but we will present 

some interesting results obtained with them later in this section. Also, the 

current results obtained using flat RWG BFs are given. The discretization 

scheme for RT BFs is depicted in Figure 5.2.

Figure 5 .3 (a) shows the component of the induced surface current that is 

in the same direction as the incident electric held, which may be called the 

copolar current. The result is obtained using the RT BFs and normalized 

with the magnitude of the incident magnetic held. Figure 5.3(b) shows the 

crosspolar component of the induced surface current, whose direction ol flow 

is perpendicular to the incident held polarization. The edge singularities in
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Figure 5 .2 : Discretization of the flat patch.

both components are resolved. The decoupling of the two perijendicular com­

ponents by the RT BFs also turned out to be desirable for this problem since 

the magnitudes of the two current components are very different. This feature 

does not exist in the (flat or curved) RWG BFs, i.e., on one triangular subdo- 

inaiii of the BF, the BF is designed to be a vector function with two nonzero 

components. As seen in Fig. 5.3, near the y — 0 and y =  A edges, the copolar 

current takes large values in magnitude, and the crosspolar current is smaller 

compared to the copolar current. In the middle region of the patch, again 

the copolar current has large values and crosspolar current has smaller values. 

The RT BFs, by decoupling these two components, can resolve the copolar and 

crosspolar currents veiy well. Figure 5 .3 (c) and (d) show the variation of the 

total induced surface charge, which is calculated with the aid of the continuity 

ec|uation. It should be noted that the RT BFs used to model the induced sur­

face current density results in a PW constant modeling oi the induced surface 

charge density.

In Figs. 5 .4 (a) and (b) the induced surface current computed using flat
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Figure 5.3: The induced current and charge densities on the flat patch. The 
patch is discretized into 10 x 10 divisions and the RT BFs on the internal edges 
are used for the expansion, (a) Magnitude of the copolar induced current, 
(b) Magnitude of the crosspolar current, (c) Real part of the divergence of the 
induced current, (d) Imaginary part of the divergence of the induced current. 
The current results are normalized with the magnitude of the incident magnetic 
field, and the divergence of the current is presented as the charge distribution.
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RWG BFs is shown. Figure 5.4(c) and (d) depict the induced surface charge 

density. The resemblance to the RT BF solutions is very well, except for the 

crosspolar-current result. The irregularities in the solution obtained using the 

RWG BFs can be expalined using the above argument. Each RWG BF is 

defined over two triangular subdomains. On the subdomains they are defined, 

they have two nonzero components. If one component of the induced current 

tends to large values and the other to small values in one subdomain, the 

MoM solution, inevitably results in such irregular current solutions, Ijecause 

the solution is an optimization procedure which minimizes the average error 

on the patch and the basis function does its job as good as it can. The MoM 

solution makes a trade-off between the two components of the BF, one of which 

tends to get larger and the other tends to get smaller, both of which cannot 

be satisfied at the same time. Although the crosspolar current seems very 

noisy, the RWG BFs are shown to perform as good as the RT BF when the 

boundary-condition error on the patch is considered [25].

RWG BFs also approximate the induced surface charge density by a PW 

constant distribution as depicted in Figs. 5.4(c) and (d). The results agree 

with the RT BF solutions.

Figure 5.5 shows the current and charge solutions for the fiat-patch problem 

obtained with a finer discretization of the geometry using the RT BFs. The 

convergence of the solutions can be observed. Another point to notice is the 

better resolution of the edge singularities.

The RT BFs model the unknown surface current density in a. PW continuous 

fashion in the direction o f the current flow and in a PW constant iashion in 

the transverse direction. Can better BFs be used for the current expansion
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Figure 5.4: The induced current and charge densities on the flat patch. The 
patch is triangulated into 200 subdomains and the RWG BFs on the internal 
edges are used for the expansion, (a) Magnitude of the copohu· induced current, 
(b) Magnitude of the crosspolar current, (c) Real part of the divergence of the 
induced current, (d) Imaginary part of the divergence of the induced current. 
The current results are normalized with the magnitude of the incident magnetic 
field, and the divergence of the current is presented as the charge distribution.
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Figure 5.5: The induced current and charge densities on the flat patch. The 
patch is discretized into 20 x 20 divisions and the RT BFs on the internal edges 
are used for the expansion, (a) Magnitude of tlie copolar induced current, 
(b) Magnitude of the crosspolar current, (c) Real part of the divergence of the 
induced current, (d) Imaginary part of the divergence of the induced current. 
The current results are normalized with the magnitude of the incident magnetic 
held, and the divergence of the current is presented as the charge distribution.
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so that more continuity constraints be imposed to get better results? Some 

higher-order BFs are reported in the literature [4, 2 1 , 2 2 , 23, 24]. The LinRT 

BFs defined in Chapter 4 are implemented. These LinRT BFs model the 

current PW  bilinearly and they model the charge PW linearly. If continuity 

of the tangential component of the BF on the internal vertices of the patch 

is imposed, a new group of BFs is obtained which we called linear continuous 

rooftop (LinContRT) BFs. The}'  ̂are identically the same basis functions as the 

pyramidal basis functions defined on quadruples of rectangular subdomains.

Figure 5.6 depicts the induced surface current density computed using the 

LinContRT BFs and the induced surface charge density calculated thereafter. 

The copolar current seems to be acceptable, but the crosspolar component is 

une.xpectedly incorrect. The situation obtained with a finer discretization is 

no better (Fig. 5.7). Figures 5.8 and 5.9 show the results obtained b}̂  using 

LinRT BFs. The results are even worse. A close investigation of the 

|:>roblem resulted in a very important and intuitive idea; The basis function 

chosen for the e.xpansion of the surface current density must also be capable 

of representing the surface charge distribution. Considering the degrees of 

ireedom (DoFs) supplied by the current expansion and the DoFs needed by 

the charge approximation, it is proven [9] that the LinRT BFs and LinContRT 

BFs are not suitable basis functions for this proljlem.

In Figure 5.10, the copolar and crosspolar components of the boundary- 

condition error (BCE), on the patch for two different solutions belonging to 

two different discretizations are plotted. The BCE is seen to be satisfied over 

the surface of the patch e.xcept at the x — 0 and x =  A edges lor the copolar 

BCE and at the other two edges for the crosspolar BCdi. This is because the
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Figure 5.6: The induced current and charge densities on the flat patch. The 
patch is discretized into 10 x 10 divisions and two LinRT BFs on the internal 
edges are used for the expansion. Transverse continuity is imposed at each 
internal vertex, (a) Magnitude of the copolar induced current, (b) Magnitude 
of the crosspolar current, (c) Real part of the divergence of the induced current, 
(d) Imaginary part of the divergence of the induced current. The current 
results are normalized with the magnitude of the incident magnetic field, and 
the divergence of the current is presented as the charge distribution.
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Figure 5.7; The induced current and charge densities on the flat patch. The 
patch is discretized into 20 x 20 divisions and two LinRT BFs on the internal 
edges are used for the expansion. Transverse continuity is imposed at each 
internal vertex, (a) Magnitude of the copolar induced current, (b) hdcignitude 
of the crosspolar current, (c) Real part of the divergence of the induced current, 
(d) Imaginary part of the divergence of the induced current. The current 
results are normalized with the magnitude of the incident magnetic field, and 
the divergence of the current is presented as the clmrge distribution.
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Figure 5.8: The induced current and charge densities on the flat patch. The 
patch is discretized into 10 x 10 divisions and two LinRT BFs on the internal 
edges are used for the expansion, (a) Magnitude of the coiDolar induced current, 
(b) Magnitude of the crosspolar current, (c) Real part of the divergence of the 
induced current, (d) Imaginary part of the divergence of the induced current. 
The current results are normalized with the magnitude of the incident magnetic 
field, and the divergence of the current is presented as the charge distribution.
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Figure 5.9: The induced current and charge densities on the flat patch. The 
patch is discretized into 20 x 20 divisions and two LinRT BP̂ s on the internal 
edges are used for the expansion, (a) Magnitude of the copolar induced current, 
(b) Magnitude of the crosspolar current, (c) Real part of the divergence of the 
induced current, (d) Imaginary part of the divergence of the induced current. 
Tlie current results are normalized with the magnitude of tlie incident magnetic 
field, and the divergence of the current is presented as tlie charge distribution.

59



Figure 5.10: Bounclary-condition error on the flat patch. The solution is ob­
tained using the RT BFs. (a) Copolar BCE for 10 x 10 discretization, (b) Copo- 
lar BCE for 20 x 20 discretization, (c) Crosspolar BCE for 10x10 discretization, 
(d) Crosspolar BCE for 20 x 20 discretization.

copolar and crosspolar unit vectors are not tangential to x =  0 , A and у =  0 , A 

edges, respectively. Discretizing the original problem can be thought of as 

enlarging those edges in space, on which the boundary condition need not be 

satisfied.

Given for comparison and for the demonstration of the incapabilities of the 

LiiiRT BFs and LinContRT BFs, Figs. 5.11 and 5.12 depict the BCE for two 

different discretizations and for copolar and crosspolar components.
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(b)

(с) (d)

Figure 5.11: Bounclaiy-condition error on the flat patch. The solution is ob­
tained using the transversely continuous LinRT BFs. (a) Copolar BCE for 
10 X 10 discretization, (b) Copolar BCE for 20 x 20 discretization, (c) Crosspo- 
lar BCE for 10x10 discretization, (d) Crosspolar BCEl for 20x20 discretization.

61



(с) (d)

Figure 5 .1 2 : Boundary-condition error on the flat patch. The .solution is ob­
tained using the LinRT BFs. (a) Copolar BCE for 10 x 10 discretization, 
(b) Copolar BCE for 20 x 20 discretization, (c) Crosspolar BCE for 10 x 10 
discretization, (d) Crosspolar BCE for 20 x 20  discretization.
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A triangulation with the quadratic triangular subdomains obtained from 

the MSC/ARIES is used with the CRWG BFs  ̂and the solution for the induced 

surface current density is visualized in the MSC/ARIES. This program can 

make color plots of the magnitude of the induced surface current when the 

values at the vertices of the triangulation are given. Figure 5.13 shows the 

magnitudes of the copolar and crosspolar components of the induced surface 

current as plotted by the MSC/ARIES.

Also, as a comparison between RT BFs and RWG BFs on the patch, the 

bistatic RCS of a 2A X 2A patch for the same incident field and on the ^ =  0 

cut is shown in Fig. 5.14. The two results are indistinguishable meaning that 

both the RT BFs and the RWG BFs perform equally well on the flat patch for 

RCS calculations although there exists differences between the current solutions 

using the two BFs.

I'figure 5.15(a) shows the matrix solution times of the .MoM and the FMM. 

the MoM matrix is solved using direct LU decomposition and using conjugate 

gradient squared method (CGS). For the FMM solutions the CGS is utilized. 

For unknown sizes around a few hundreds the FMM outperforms both the 

MoM solved with LU decomposition and the MoM solved with the CGS. Fig­

ure 5.15(b) shows the total problem solution times including the matri.x filling 

times. When total solution time is considered, the FMM is ol^served to be faster 

tium the standart MoM solution for problem sizes above 200, wliich is a fairly 

low number for scattering problems. Figure 5.16 shows the time consumed 

|)er iteration for the .MoM and the FMM algorithms. The MoM complexity 

domijiates for problem sizes larger than 1 0 0 0 .

fit .sliould be noted tliat neiilier tlie triangular .subdomains nor the BFs are curved lor 
this geometry.
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Figure 5.17 depicts the memory required to solve the problem using the 

MoM and the FMM. The 0{N^'^) memory requirement order of the FMM and 

0{N'^) memory requirement order of the MoM is clearly observed. For problem 

sizes above 1000, the MoM memory requirement dominates.

To demonstrate the accuracy and the efficiency of the FMM, Fig. 5.18 

depicts two solutions obtained by solving the same problem both with the 

MoM and with the FMM using the quadratic-triangular-patch models and the 

Bezier-patch models of the scatterers. The MoM result using the CRWG BFs, 

shown in Fig. 5.18(a) is obtained in 364 seconds, whereas the FMM solution is 

obtained in 163 seconds using an iterative solver. The solution of the Bezier- 

patcli model of the flat patch shown in Fig. 5.18(b) is obtained in 433 seconds 

using the MoM and in 251 seconds using the FMM.

Figure 5.19 shows the bistatic RCS of a lOA x lOA flat patch illuminated by 

a fAdirectcd plane wave incident from the direction 0 =  135°, (p — 180°. About

6.5 unknowns per wavelength are used. This result is obtained using the FMM 

with tlie RT BFs and curved RWG BFs, and is presented here to demonstrate 

tlie efficiency of the Fh4A4. Note that the direct application of the MoM would 

result in cui 8000 x 8000 system of equations, which would require more than 

I GBytes of memory for its storage and solution. The difference between the 

RT and the R.WG solutions is expected to drop for finer discretizations.
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Figure 5.13: (a) Magnitude of the copolar induced current on a A x A flat patch, 
(b) Magnitude of the crosspolar induced current on a A x A flat patch. The 
color plots are generated using the MSC/ARIES.

l'5gure 5 .1-1: Histatic RCS of a 2 A x 2 A flat patch. — 15 x 15 division with 
KV BFs, —  MSC/ARIES triangulation with 560 RWG BFs.
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Figure 5.15: Timing comparisons of the MoM and the FMM. (a) The matrix 
solution times using the MoM with LU decomposition, the MoM witli CGS, 
cind the FMM with CGS , (b) The problem solution times using the MoM with 
LU decomposition, the MoM with CGS, and the FMM with CGS .

Figure 5.16: CPU time consumed per one iteration of MoM ani FMM algo­
rithms. The iterative solution method is CGS.

66



Figure 5.17: Approximate memory requirements of the MoM and the FMM 
algorithms.

Figure 5.18: Validations of the FMM solutions, (a) Bistatic RCS of a 2 A x 2 A
flat patch using 7-36 CRWG BFs, — the MoM solution,-----the FMM solution.
(b) Bistatic RCS of a 2A x 2 A flat patch using 760 CRT BFs, — the MoM 
solution. —  the FMM solution.
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Figure 5.19: Bistatic RCS of a lOA x lOA Hat patch. — 05 x 65 division with 
8320 RT BFs, —  MSC/ARIES trianguliition with 8008 RWG BFs.
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5.2 Sphere

This is the most important one of the sample problems investigated. The 

geometry is canonical and doubly curved. It is an excellent sample to compare 

various geometry-approximation techniques, since the closed-form solution to 

the problem also exists. The solution of this problem is obtained using the 

exact model, flat triangulation, and quadratic triangulation of the sphere. It 

should be noted that rational Bézier patches can model the sphere exactly. On 

these models, CRT BFs and flat and CRWG BFs are used. Solutions of the 

induced current density and the scattered electric field are compared.

in Fig. 5.20, the problem conflguration is depicted. The sphere is centered 

at the origin and the ;r-polarized incident plane wave is propagating in the 

l)ositi\'e ~ direction. Mie-series technique [26] is used to obtain a. closed-form 

leference solution for the induced surface current density and the scattered 

electric field in the far zone. The scattered far-field results are normalized with 

respect to si^herical spread and phase factors. In most of the plots, the refer­

ence solution is plotted with a solid line. This solution satisfies the boundary 

condition on the sphere with iin accuracy of one part in thousand. The results 

are observed and presented on the three principle cuts of the sphere, namely, 

the 0 =  90° , (/> =  0°, and ç!» =  90° cuts. Some components of the induced cur­

rent and the far fields are not given on some cuts because they are identically 

equal to zero on those cuts.

In the following subsections, the results obtained lor the sphere by applying 

different geometry-approximation techniques are presented.
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Figure 5.20: A PEC sphere illuminated by a plane wave.

5.2.1 Flat Triangulation with RWG BFs

'Flic 0 .2 A-radius s|)here is approximated using flat triangles as sliown in Fig 5 .2 1  

and the flat RWC BFs are used on pairs of triangles for the expansion of the 

surface current density. Figure 5 .2 2  shows the solution of the induced surface 

current for different numbers of BP's used. The convergence of the solutions as 

the number of unknowns is increased can be observed from the figures. The 

spikes in the current solution in Fig. 5.22(a) are due to the coupling of the two 

components of the RWG BF on each triangular subdomain, as mentioned in 

Section 5.f.

P'igure 5.23 shows the scattered field residts in tlie far zone for tlie same 

discretizations used to obtain the current results shown in Fig. 5.22. It should 

be noted that the rapid variations in the current solution is swept out by the 

far-field transformation and the far-field results are, although not \'ery close to
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Figure 5.21; Flat triangulation of the sphere.

tlie e.xact solution, quite smooth. The error in the scattered far-field results 

is due in part to the fact that the flat cell model was inscribed within the 

desired sphere. As observed from the results, to obtain the solution accurately 

using flat triangulations, one must use a fairly fine triangulation to model the 

geometry properly. Since the BFs used are defined on these subdomains, this 

results in the increase of the size of the problem, which is undesirable.

5.2.2 Exact Model with CRWG BFs

By projecting each triangular subdomain of the flat triangulation on the sphere 

surface, a triangulation formed of curved triangular subdomains on tlie e.xact 

model of the si)here can be obtained [27]. This projection can be accomplished 

by normalizing the position vector r,, on the flat triangle with its aiu|)litude. 

.Multiplication of this unit vector by the radius of the sphere gives the position 

vector r which is now on the surface of the sphere, thus the flat triangular
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

(b)

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.22: Magnitude of the surface current induced on the 0.2A-radius 
sphere. Flat triangulation of the sphere is used with the flat RWG basis func­
tions. The results are normalized with the magnitude of incident magnetic field 
and are given on the three principle cuts of the sphere for different discretiza­
tions and different numbers of unknowns. — Mie series, •••7x8 divisions and
144 unknowns,-------9 x 10 divisions and 240 unknowns,------11 x 16 divisions
and ISO unknowns.

72



Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.23: Mivgnitucle of the electric field scattered by the 0.2A-radius sphere. 
Flat triangulation of the sphere is used with the fiat R.VVC basis functions. 
'Phe results are given on the three principle cuts of the sphere for different 
discretizations and different numbers of unknowns. — Mie series, · · · 7 x 8 
divisions and 144 unknowns, — · — 9 x 10 divisions and 240 unknowns, —  
11 X 16 divisions and 480 unknowns.
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subdomain is projected on the sphere to form the curved triangular subdomain. 

The CRWG BFs are used on pairs of curved triangular subdomains. The 

induced surface current results are shown in Fig. 5.24. The current results 

seem noisier than the flat triangulation results. This is due to the curved 

nature of the CRWG BFs, which is a result of the liarametric mapping in 

their definition. The convergence towards the exact solution is observed as the 

number of BFs used is increased.

Although the current results seem worse, the scattered field results shown 

in Fig. 5.25 obtained using the exact model are superior to the results ob­

tained using flat triangulation shown in Fig. 5.23. To obtain this degree of 

accuracy one has to use a large number of BFs with the flat tricuigulation. 

I'hus the dependence of the scattered field results on the geometry model is 

clearly demonstrated by these results.

5.2.3 Exact Model with CRT BFs

Figure 5.26 shows the discretization of the sphere using the CRd' BFs. This 

discretization is obtained by dividing the 0-<j) parametric domain into a uniform 

rectangular grid. The CRT BFs are defined on each pair of subdomciins. This 

regular gridding results in a better current solution as seen in Fig. 5.27. Due 

to tins nice gridding of the sphere, accurate far-field results have been obtained 

for number of unknowns as low as 54 as shown in Fig. 5.28. Tlie accuracy of 

t he scattered-field results are in the same order as those obtained usijig CRWG 

BFs ]:)resented in the ])revious subsection.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

(b)

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.24: Magnitude of the surface current induced on the 0.2/\-radius 
spliere. Curved triangulation of the sphere is used with the CRWG basis func­
tions. The results are normalized with the magnitude of incident magnetic field 
and are given on the three principle cuts of the sphere for different discretiza­
tions and different numbers of unknowns. — Mie series, •••7x8 divisions and 
144 unknowns, — · — 9 x 10 divisions and 240 unknowns, —  11 x 16 divisions 
and 480 unknowns.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.25: Magnitude of the electric field scattered by the 0.2A-ra.dius sphere. 
Curved triangulation of the sphere is used with the CRWG basis lunctions. 
ddie results are given on the three principle cuts of the sphere for different 
discretizations and different numbers of unknowns. - - Mie series, · · · 7 x 8
divisions and I f f  unknowns. -  · -  9 x 10 divisions and 210 unknowns,----
11 X 16 divisions and 480 unknowns.
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5.2.4 Quadratic Triangulation with CRWG BFs

In real-life electromagnetic scattering problems, the exact geometry model of 

the scatterer is almost never available and the scatterer must be approximated 

somehow. Finite-difference solution methods mostly approximate the geome­

try by a collection of cubic or rectangular domains. This may be called the 

zeroth-order approximation of the geometr}·. A better approximation is the 

Oat triangulation of the scatterer surface, as presented before, which we may 

call the first-order approximation of the geometry. The degree of the poly­

nomial approximation can be further increased. In this section, tlie solution 

()f the same sca.ttering problem outlined before using a higher-order geomet ry 

model, namely, the (luadratic triangulation of the sphere, is presented. For 

the expansion of the induced surface current, the CRWC! BFs defined on [)airs 

of (|uadratic triangular subdomains are used. The triangulation ol the sjihere 

is directly obtained from a commercial CAGD program: MSC/.AKIES. The
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.27: A''Ia.gnitucle of the surface current induced on the 0.2A-radius 
spliere. Curved rectangular meshing of the sphere is used with the CRT basis 
functions. The results are normalized with the magnitude of incident mag­
netic field and are given on the three principle cuts of the sphere for different 
discretizations and different numbers of unknowns. — .Mie series, • • • 5 x 6
divisions and 54 unknowns,------ 7 x 8  divisions and 104 unknowns, —  9 x IS
divisions and 306 unknowns.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figiire 5.28; Magnitude of the electric field scattered by the 0.2A radius sphere. 
Curved rectangular meshing of the sphere is used with the CRT basis functions. 
'I'lie results are given on the three principle cuts of the sphere for different 
discretizations and different numbers of unknowns. — Mie series, • • ■ 5 x 6
divisions and 54 unknowns,------ 7 x 8  divisions and 104 unknowns, —  9 x 18
divisions and 306 unknowns.
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Figure 5.29: Magnitude of the induced surface current on a 0.2A-radius spliere. 
The spliere is discretized using quadratic triangles and the EFiE is solved using 
the CRVVG BEs defined on these triangular subdomains. The color plot was 
generated using the MSC/ARIES.

i('sults on the vertices of the triangulation are input back to tlie program for 

the visualization of the solution.

The magnitude of the induced surface current on the 0.2A-radius sphere is 

seen in Fig. 5.29 from 8 dilTerent views. The scattered-field results arc given 

in Fig. 5.30 for a 0.2A-radius sphere and in Fhg. 5.31 for a 0.5A-radiiis sphere, 

'riie results are very close to the exact, solution, meaning that the quadratic 

l.riangular patch approximation [lerforms significantly better than the flat patch 

model.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.30: Magnitude of the electric held scattered by the 0.2A-radius sphere, 
(.'urved triangulation of the sphere, obtained from the MSC/ARIES, is used 
with the CRWG BFs. The results are given on the three principle cuts of the 
sphere. — Mie series, · · · 156 curved RWG BFs, — · — 318 curved R.WG BFs.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.31: Magnitude of the electric field scattered by the 0.5A-radius spliere. 
Curved triangulation of the sphere, obtained from the MSC/ARIES, is used 
with the CRWG basis functions. The results are given on tlie three princi])le 
cuts of the sphere. — Mie series, · · · 480 curved RVVG BFs, — · — 831 curved 
RWG BFs, —  1020 curved RWG BFs.
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5.2.5 Bezier-Patch Model with CRT BFs

If available CAGD programs are examined, it will be observed that nearl}  ̂ all 

of them are based on NURBS meshes. The NURBS surfaces are defined and 

explained in Chapter 3. Their advantage is that they allow complex shapes, 

including conic sections, to be defined precisely by means of a small number of 

NURBS surfaces, which are defined by a small number of control points. For 

instance, a sphere can be described by only one NURBS. Any NURBS can also 

be written in terms of piecewice rational Bezier patches. It is quite fast and 

easy to obtain the Bezier mesh form of a NURBS representation by appl3dng 

the Cox-de Boor transformation algorithm [17].

A code that uses the Bezier patch model of the scatterer geometry with CRT 

BFs defined on them is implemented for the solution of scattering problems 

involving arbitrary curved scatterers. 8-patch Bezier model of the sphere is 

used along witli tlie CRT BFs to check the performance of the code and the 

modeling technique. The discretization is performed in the parametric space 

of each patch by dividing the definition domain of the patch uniformly into 

rectangular subdomains. Figure 5.32 depicts the far-fields scattered from a 

0.2A-radius sphere. The agreement with the analytical result is good for all 

discretizations. The results of the 0.5A-radius sphere are also in good agreement 

with the closed-form solutions as depicted in Fig. 5.33.

The advantage of using Bezier patches is that the geometiy designed in a 

CAGD program using NURBS meshes is directly used in the solution algo­

rithm. Therefore, no geometry modeling error is induced on the solution.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.32: Magnitude of the electric field scattered by the 0.2A-radius sphere. 
8-patch Bezier model of the sphere is used with the CRT BFs. The results are 
given on the three principle cuts of the sphere. — Mie series, · · · 132 curved 
RT B F s,-------  240 curved RT BFs.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

(d )

Figure 5.33: Aiagnitude of the electric field by scattered the 0.5A-radius sphere. 
8-pa.tch Bezier model of the sphere is used with the CRT BFs. Tlie results are 
given on the three principle cuts of the sphere. — Mie series, · · · 552 curved 
RT B F s ,-------  756 curved RT B F s ,-------  992 curved RT BFs.
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5.2.6 Comparison of Different Modeling Schemes

The problem of scattering from a 0.5A-radius sphere is solved by using the fiat 

triangulation, exact curved triangulation, and exact rectangular mesh of the 

sphere with the RWG BFs, the CRWG BFs, and the CRT BFs, respectively. 

The current results and the scattered-field results are superimiDosed with the 

exact solution for comparison. It is interesting to note in Fig. 5.34 that the 

current solutions obtained with flat and curved triangulations are very close to 

each other, both being also close to the exact solution. The reason of the sharp 

spikes on the current solution in Fig. 5.34(a) was explained in Section 5.1. The 

solution obtained with the CRT BFs does not exhibit such irregularities.

Although the current solutions for the flat RVVG BFs and the CRWG BFs 

are close to each other. Fig. 5.35 shows that the scattered-field results are not 

as close as may be expected. The reason for this is that the geometries, on 

which llie flat RWG BFs and the CRWG BFs arc defined, are different. This 

difference in the positions of the cuiTents in space, defined by the RWG BFs 

and the CRWG BFs, shows itself as a difference in the scattered-field results, 

because of the phase term in the far-field transformation. All results are seen 

to agree with the exact solution, some showing better agreement.

The scattered-field solutions of the 0.2A-radius sphere problem using the 

c|uadratic triangular patch model and the Bezier patch model for approximately 

the same number of unknowns is shown in Fig. 5.36 lor comparison. The results 

of the 0.5A-radius sphere problem are compared in Fig. 5.37. 4'he agreement 

of both solutions with the exact solution is good. For the 0.5A-radius sphere 

j)roblem, quadratic triangular patch solution perlorms marginally better than
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.34: Magnitude of the surface current induced on the 0.5A-radius 
sphere. Flat-triangulation, curved-triangulation, and curved-rectangular mesh­
ing of the sphere are used with the RWG, the CRVVG, and the CRT BFs, re­
spectively. The results are normalized with the magnitude of incident magnetic 
field and are given on the three principle cuts of the sphere. — Mie series, ■ · ·
11 X 16 divisions and 660 flat RWG B F s .------ 11 x 16 divisions and 660 curved
RWG BP's,---- 11 X 22 divisions and 462 curved RT BFs.

87



Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.35: Magnitude of the electric field scattered by the 0.5A-radius sphere. 
Flat-triangulation, curved-triangulation, and curved-rectangular meshing of 
the sphere are used with the RWG, the CRWG, and CRT f3Fs respective!}'. 
'The results are given on the three principle cuts of the sphere. — Mie series, 
• ·· 11 X 16 divisions and 660 flat RWG BFs. — · — 11 x 16 divisions and 660 
curved RWG BFs, —  11 x 22 divisions and -162 curved RT BFs.
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the Bezier patch solution. This ¡ierformance difference can be attributed to the 

degenerations of the surface at the poles of the sphere for the S-patch Bezier 

model.

As a quantitative comparison between various geometry modeling tech­

niques, Fig. 5.38 shows the maximum difference between the far-fields scat­

tered by a 0.5A radius sphere computed using different geometry models for 

the sphere. The far-held is sampled ivt 117 directions chosen uniformly on the 

unit sphere, and Mie series solution is used as the reference. The performance 

of different geometry modeling techniques can be observed as a function of 

unknowns. Figure 5.39 depicts the norm of the error obtained as the square- 

root of the sum of the squares of the error values at the 117 directions. The 

effect of the geometry model on the solution is well observed on this plot as a 

function of number of unknowns. It should be noted that both Bezier-patch 

models of the sphere are exact but the 8-patch model has surface degeneracies 

at t he poles. 'Idiis degeneracy shows itself in the definition of the basis func­

tions around the two poles. Due to this degeneration the performance of the 

8-patch Bezier model is worse than the 6-patch Bezier model which does not 

I lave any surface degeneracies.

Figure 5.40 depicts two solutions obtained by solving the same problem with 

botli with the MoA4 and the FMM using quadratic triangular patch models and 

Bezier patch models of tlie scatterers. The MoM result using tlie ( 4IWC BFs, 

shown in Fig. 5.40(a) is obtained in 155 seconds, whereas the FMlM solution is 

olitained in 122 seconds using an iterative solver. The solution obtained using 

the Bezier-patch model of the flat patch shown in Fig. 5.40(b) is obtained in 

291 seconds with the .MoM and in 180 seconds with the FMM.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.36: Comparison of the different geometiy models used in the compu­
tation of the magnitude of the electric field scattered by the 0.2A-radius sphere. 
Cur\'ed triangulation of the sphere, obtained from the MSC/AR.IE.S, is used 
with the CRWG BFs and the 8-patch Bezier model of tlie s])here is used with 
the CRT BFs. The results are given on the three principle cuts of the sphere.
-  Mie series, · · · 156 curved RWG B F s,---- 132 curved RT BFs.
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Theta = 90 Degrees Cut Theta = 90 Degrees Cut

Phi = 90 Degrees Cut Phi = 0 Degrees Cut

Figure 5.37: Compari.soii of the different geometry models used in the com­
putation of the magnitude of the electric field scattered by the 0.5A-radius 
sphere. Curved triangulation of the sphere, obtained from the MSC/ARIES is 
used with the CRWG BFs and 8-patch Bezier model of the sphere is used with 
the CRT BFs. The results are given on the three principle cuts of the sphere. 
— Mie series, · · · 480 curved RVVG BFs, —  552 curved RT BFs.
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Figure 5.38: Maximum difference in the far-fielcl solutions using different ge­
ometry models of the sphere.
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Figure 5.39: Norm of tlie difference in the far-held solutions using different 
geometry models of tlie sphere.
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(a) (b)

Figure 5.40: V'alidations of the FMM solutions, (a) Bistatic RCS of a 
0.5A-radius sphere using 480 CRWG BFs, — the MoM solution, —  the FMM 
solution, (b) Bistatic RCS of a 0.5A radius sphere using 380 CRT BFs, — the 
MoM solution, —  the FMM solution.

5.3 Missile

■As an c.xaniplc of a real-life scatterer, a generic missile is considered. The mis­

sile is designed using the second-order rational Bezier patches on a commercial 

CAGD progrcim: RHINOCEROS. It should be noted that this missile is not 

a model of any existing missile. The problem configuration is as follows: The 

missile is lying in the direction with the main wings on the y-z plane. For 

bistatic RCS calculations, the incident field is x directed and propagating in 

the negative r direction (head-on incidence). The scattered far field is oliserved 

on the y-z plane. Figure 5.41 shows a typical quadratic triangulation of tlie 

missile.

Figure 5.42 shows (lie magnitude of the induced surface current on tlie 

missile that is illuminated with a head-on incident .r-polarized plane wave.
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b îgurc 5.41: Quadratic triangular mesh of the missile generated using the
MSC/ARIES.

The frequency of the wave is 10 MHz. At this frequency, the length of the 

missile is about twice the wavi'length. Ihe variation of the induced surface 

current on the missile vaiifies this observation. The solution is obtained using 

the curved triangulation of the missile with CRWG BFs. The color plot of the 

induced surface current is obtained from MSC/ARIES.

In Figs. 5.43, 5.44, and 5.45, the bistatic RCS results of the missile is 

shown. The problem is solved at three different frequencies using the curved 

triangulation and the Bezier-patch model of the missile, again for a head-on 

incident ,r-polarized plane wave. Also shown in the plots are the rc'sults of the 

flat triangulation model of the missile from I. Kiir§at. Çendur. l lie  scal.lered 

fic'ld is observed on the y-z plane. The agreement among the rcsull.s is fairly 

good. It should be noted tliat fairly good results are observed using as low as 

5 unknowns per wavelength.
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I'^gure 5.42: Magnitude of the induced surface current on a. 6-iueter long missile 
at 100 MHz. The missile is discretized using quadratic triangles and the EFIE 
is solved using the CRWG BEs defined on these triangular subdomains. The 
color plot is generated using the MSC/ARIES.
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Figure 5.43; Comparison of the bistatic RCS of the 6-meter long missile at 
100 MHz. Curved cuid flat triangulations of the missile, obtained from the 
MSC/ARIES, is used with the CRWG BFs and flat-RWG BFs respectively, 
and 34-patch Bezier model of the missile is used with the CRT BFs. The 
results are given on x-z plane, where the main wings of the missile are located. 
— 1053 flat-RWG BFs, —  1053 CRWG BFs, · · · 1088 CRT BFs.
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Figure 5.44; Comparison of the bistatic RCS of the 6-rneter long missile at 
200 MHz. Curved and flat triangulation of the missile, obtained from the 
MSC/ARIES, is used with the CRWG BFs and flat-RWG BP's respectively, 
and .34-patch Bezier model of the missile is used with the CRT BFs. The 
results are given on x-z plane, where the main wings of the missile are located. 
-  2058 flat-RWG BFs, —  2058 CRWG BFs, · · · 2448 CRT BFs.
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Theta (Degrees)

Figure 5.45: Comparison of the bistatic RCS of the 6-meter long missile at 
300 MHz. Curved and flat triangulation of the missile, obtained from the 
MSC/ARIES, is used witli the CRWG BFs and flat-RWG BFs respectively, 
and 34-patch Bezier model of the missile is used with the CRT BFs. The 
results are given on x-z plane, where the main wings of the missile are located. 
- -  7713 flat-RWG BFs, — ■ 6213 CRWG BFs, · · · 4352 CRT BFs,

99



Chapter 6

Conclusions

In this thesis, a general MoM formulation of electromagnetic scattering prob­

lems involving arbitrcirilj' shaped surface scatterers is presented. The BFs used 

in the MoM formulations are defined, and issues concerning the evaluation of 

the .MoM matri.x elements are addressed. Different BFs are investigated and 

some seemingly legitimate BFs are demonstrated to be insufficient to model 

the unknown functions in the formulations.

Différent geometry-modeling techniques, which are used to represent the 

scatterer geometry in the solution algorithm, are investigated. The BFs used 

in the AdoM formulations are modified for geometry models that contain surface 

curvature. Curved generalizations of some frequently used BFs to be defined on 

curved parametric surfaces are given. The effect of different geometry-modeling 

scliemes on the solution of the problem is investigated. It is shown that the 

technicfue used to approximate the scatterer in the solution algorithm influences 

the solution more than the type of the BFs used lor tlie appro.ximation ol the
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unknown.

Two different algorithms using different geometry-modeling techniques and 

different BFs are developed. The first one uses quadratic triangular patches to 

approximate the scatterer and the CRWG BFs, defined on these patches, to 

appro.ximate the induced surface current densit3C The second uses the Bezier- 

patch model of the scatterer with the CRT BFs. When applied to the same 

problems, both are observed to perform equally well. But, due to the simplicity 

of its parametric mapping, the quadratic triangular patch algorithm is faster. 

Although the parametric mapping of an ?7th-order rational Bezier patch is 

more complicated and time consuming, the representation potential of rational 

Bezier patches are superior to quadratic triangular patches. NURBS surfaces, 

which are collections of smoothly blended rational Bezier patches, are very 

powerful modeling tools that are widely used in CAGD applications. They are 

also among the most commonly used geometry-data transfer formats due to 

the representation capability of complicated geometries using a small number 

of points in space. Therefore, the geometry of the scatterer designed in a 

CAGD tool that uses the NURBS surfaces as the geometry format can be 

directly used in the electromagnetic scattering algoritlim, which is capable of 

representing geometries in the NURBS format. Hence, no geometry-modeling 

error is induced in the solution of the problem. Various results for contrasting 

the effect of using different geometry models in the solutions are given.

Using higher-order geometry approximations for the scatterers, the error in­

duced by the geometry model is minimized. Therefore, it is possible to reduce 

I lie size of the problem lor a demanded accuracy using better geometry models. 

This reduction in the size of the problem is of ultimate importance since most
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real-life electromagnetic scattering problems involve electrically large scatter- 

ers. When these large problems are discretized using the MoM, the resulting 

systems of equations are also large.

The FMM is applied to the scattering problems involving electricall}^ large 

scatterers modeled by curved subsurfaces. This combination of the FMM with 

curved surface modeling is proposed for the efficient solution of large electro­

magnetic scattering problems. The FMM reduces the computational cost of the 

matrix-vector product at each iteration of the solver to 0{N^'^). The ordinary 

matrix-vector product would take 0(N'^) operations and the direct solution of 

the system by the Gaussian elimination would require 0{N^) operations. The 

storage complexity of the FMM is also in contrast to the 0{N'^) stor­

age complexity of the conventional MoM. Therefore, by employing the FA'IM, 

it is possible to solve larger problems on a given hardware. A sample problem, 

scattering from a missile, is solved in order to demonstrate the applicability of 

I he proposed idgorithms to real-life electromagnetic scattering problems.

It is shown that the combination of the FMM with curved-surface modeling 

results in an efficient algorithm which requires less memory and CPU time for 

the solution of large problems involving 3-D arbitrarily shaped surl'ace scatter­

ers. Extensions of the FMM, such as the multilevel FMM, which would further 

reduce tlie computational cost of the solutions are among tlie future work that 

can be carried on on tins subject.
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Appendix A

Evaluation of the MoM Matrix 

Elements

Tlie MoM matrix elements appearing in the formulations as double surface 

integrals on testing and basis subdomains are evaliuited numerically in two 

different ways depending on the distance between the testing and the basis 

functions. All surface integrals appearing in the formulation are evaluated in 

the parametric space on the unit square. Fixed-order Gaussian quadrature [11] 

is used for the evaluation of these integrals, which is observed to perform better 

than other quadrature rules [28, 29, 11].
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A .l Singular Integrals Appearing in the For­

mulation

A matrix element in the MoM formulation is rewritten below,

Znxn = ^ dstm{r) · ds' j„(r') + · ju(r')V
JkR

R  ’

where

/2=1 r - r '

(A .l)

(A.2)

and t„, and are the testing and basis functions respectivel,y. Using the vector 

identity

V  · (^t) =  Vp · t +  pV · t (A.3)

and Gauss’ law

1̂  dsV ■ (Pt) =  1̂  ds\̂ (/) · t +  d.s-pV · t

pt · diic =  J  dsV<j) ■  ̂d" y ds(pS/ · t

(A.4)

(A.5)

wliere diic is differential normal vector of the curve c, and the fact that, for 

basis functions used in the formulations, t || diic, it is possible to reduce the 

expression for the matrix element. Defining Vp as

1
v p  =  V

îkR

R

and using

t II diif J  ds'Vcp '  ̂~ ~ J  ■ ·̂
Z,„„ is s im p lif ie d  to

Z„„, =  ¡ / - “ I  *  [tm (l· )  ■ j . . ( ‘ · ')  -  ■ t,„(r)V' ■ j„(r')

(A.6)

(A.7)

jkR

R
(A.S)
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When the matrix element is transformed to the parametric space using 

the general definition of the basis functions for curved triangular and curved 

rectangular subdomains as,

(A.9)f(u ,u ) =  

and the divergences as

 ̂ Ícrwg{u, v) \ 1 ■/u\ dr I
f o ) dr

V ĈRt{u, v) j Vd A   ̂ J du ^ V J d v

(A.IO)

it can be further simplified to read

'Zimn = / JgdiLclv / \ o'du'dv'
Js Js' ^

tm{u,v) ■ jn(u',v)

1 îk-n

~ Y '
(A .Il)

A normalized basis function can be defined to further simplify tliis expression,

0 \ dr
f(»,u) = it ^

u J U .  I til·
(A .12)

with divergence.

V  · f(u , v) =
■- /

(A.13)

SO til at

Z,nn =  J  dudv J  du'dv' t,„, · j„  -  — V · t,„ V ' · j„

r . /
Zmn = l̂ dudv J  du'dv'

T ĵkfí

R

f m ■ Jn 12
,ikR

R

(A.14) 

(A .15)

The matrix elements in E(|. (A .15) can now be computed by evaluating the 

integrals directly in the parametric space {u. v). For R.T BFs the integration
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domain is the square domain bounded by u =  0,1 and u =  0,1 lines. For RWG 

BFs the integration domain is the triangular domain bounded by =  0, u =  0 

and u V =  1 lines. With an auxiliary transformation, this subdomain can 

be mapped to the same square domain in an auxiliary (í;,C) parametric space. 

Hence, the same integration routines designed for square integration domains 

can be used.

All integrals are hence transformed to integrals of tire form

=  / /  (A.16)
J J D,A K[ic, v,u'  ̂v')

dudvdu'di''h{ti, u , i / ) .  (^-17)=  / /J J D,A

The outer integrals over the testing subdomain are numerically easĵ  to evalu­

ate and are evaluated with a low-order Gaussian quadrature. For each sample 

of the outer integral, the inner surface integral must be evaluated. This must 

Ire done carefully since when the domains of tire brisis and the testing functions 

overlap, the kernel of the integral becomes singular at (he observation point. 

Although this is an integrable singularity, a blindfolded usage of the numerical 

integration will result in iimccurate values. W hen the testing and basis subdo­

mains are far form each other, i.e. the singularity of the Green’s function does 

not fall in or near the integration domain, the inner integrals become very easy 

to integrate, hence a suitable low order quadrature may be employed.

l‘or a fixed sam|)le of the outer integral, the inner surface integral to be 

evaluated is of the form.

I{uo,vo)=  /
J J a„

du'dvf, , i ( “ '·!··') (A.IS)
I.A R{u',v')

where /?(u/, v') may become zero at a. point (»o  ̂<’o) ·>' the integration domain il 

tlie testing and basis subdomains overlap. The integral is not singular when the
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two subdomains do not overlap and when a quadrature that does not sample 

the inner integral at the edges of its domain is used, but for subdomains that 

are close to each other the inner integral becomes quasi-singular meaning that 

it has a sharp variation in the integration region. The techniques presented in 

the next subsection will be employed for the annihilation of these singularities 

and quasi-singularities.

A .2 Techniques to Annihilate the Singularity

The most common technique used for the numerical evaluation of the singular 

integrals is to add ¿md subtriict a term from the integrand which can be inte­

grated analytically and also renders the integrals well bchax ed so that standard 

numerical integration methods can be applied [30, 30]. This technique works 

for |)roblenis involving flat discretizations of the geoinelry with the addition 

and subtraction of the well known I/R term from the integrand in,

(j{;u,v)
I {uq, vo) =  /  /J J □, dtidv-

A R{u,v)
(A.19)

For curved surfaces it is not possible to find such a function which will render 

the integrand well behaved and which is analytically integrable. One technique 

is to add and subtract a l/R-o term that approximates the actual 1/7? singular­

ity [2]. This 7?o term is found by using the Taylor series approximation of the 

curved subdomain around the observation point (i/o,ro). This technique was 

investigated and it was observed tha.t the l/7?o eliminates the singularity at 

((/(). t’o), but the resulting integrand is not well behaved. It is not singular but 

it has sharp variations around the observation point. So the conclusion is that 

this technique is not suitable to use with a numerical integration procedure lor
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problems involving curved surfaces.

Using suitable parametric transformations on u and v parameters in 

Eq.( A .19), it is possible to annihilate the singularity [31]. Let the trans­

formations be,

u =  ti(?/,C)

V =  u(/;,C).

The integral on the (u,v) domain is thus transformed to,

(A.20)

(A.21)

J  J  dudvf{u,v) =  J  J  di]d(f{7],()J{7),() (A .22)

vvher•e

is tlie .Jacobian of tlie transformation.

du du
(9?; dC

dt¡ dc

(A.23)

If one can find a transformation which has a. zero at the singularity point 

of /(? i,u ) of the same or higher order as the zero of R{7i,v), the integrand of 

the transformed integral, namely ./(?/, C)'^(9f 0 » becomes non-singular in the 

integration domain with the condition thta the applied transformation does not 

increase the order of singularity of R{u,v). Below are some transformations 

that can be used for this purpose.

A .2.1 For Triangular Subdomains

.A curved triangular patch in real space is the transforination of a (unit) triangle 

in the parametric space, seen in Fig A .l. The observation point I'o on the
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Figure A .l: Parametric mapping of the unit triangle to the curved triangle in 
real space.

surface and in the patch can be considered as the map of (wq, uq) point of the 

parametric domain triangle: ro =  r(uo,i’o)·

Method I

'I'lirec sub-triangles are formed by connecting the observation point (i/ovi’u) to 

tlie three vertices of the triangle depicted in Fig A.2. For each sub-triangle the 

following parameter transformations cvre used:

'll
= V

Ui3 + c «23 + ?<3
'0 . "̂13 _ V23 . '̂’3 .

(A.24)

where =  ?/,,· — uj and i , j  denote the vertex numbers of the sub-triangles 

(See hhgs A.2- A.5). The transformation is different for each sub-triangle since 

the t riangle vertices denoted by (¿¿’s are different but it is essential that vertex 

number 2 be chosen as the point for each sub-triangle. The .Jacobian

of the above transformation nicipping the unit triangle in (//,(,') domain to the
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u

Figure A .2: Subdivision of the parametric unit triangle for singularity annihi­
lation.

Figure A.3: Mapping of sub-triangle 1.

Figure A.4: Mapping of sub-triangle 2.
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Figure A.5: Mapping of sub-triangle 3. 

sub-triangle in {u,v) domain is,

J(u,u)
^̂13 <̂23

•̂’ 13 ^23
U 1 3 V 23 —  U23V13- (A.25)

The singularit_y point (iio,t>o) is now at the third vertex of each sub-triangle, 

in other words, the origin of each of the three (?/,C) ])arametric domains is 

mapped into tlie singular point (i<o, uo) in the (w, c) parametric space. The 

singular integral can be rewritten as,

/  dudvf(ti.v)— /  dudvf{u,v)+ dudvf{u,i’)+  dudvf{u,v) (y\.26) 

where,

dudvf{u, n) =  di]d(fi{)), C)· (A.27)

So,

wliere.

/  dudvf{u,v)= di]d(g{i],0 
JA JA

? = 1

(A.2S)

(A .29)

Here.(/(/;, 0  is still singular in the (?/, ()  parametric space but the singularity 

is at the origin regardless of the position of {uo, vq) in the (n, e) parametric
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Figure A.6: Mapping defined to annihilate the singularity at the origin.

space. The transformation below annihilates the singularity at the origin, 

Fig. A.6 sketches the situation:

7/ =  st

C = -5(1-0

wluTsc' Jacobian is

J { s J )  =
I. s 

(1-0
= - s t - s { l  - t )  =

(A.30)

(A.31)

(A.32)

Since the origin of (?/, 0  parametric domain is the map of s =  0 line of (a, t) 

domain, the .Jacobian has a zero at the origin of (?/,C) domain which cancels 

the singularity there. Hence the integral on (s,t) domain.

/  (ludv f{u  ̂v) = f dsdl()[if, i)J{s,t) Ja  ■ ./□
(A.33)

which is now non-singular can be safely evaluated em])loying standart numer­

ical integration techniques.
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Method II

Figure A.7: Mapping of Method II.

Using the last transformation of Method I at the beginning leads to the fol­

lowing situation:

whose .Jacobian is

a =  riC

0 =  y /( l -C )

(̂•'/.0 == - c

and the singular integral becomes

(A.34)

(A.35)

(A.36)

f  dlldvf{u.v) = [  di}d(fit},()J{ti,C) (A .37)
Ja  ' Ja

= I (¡’¡(Kdiv^O· (A.38)JD

But .(/(;/,4) is still singular at point (?/o,Co) oi ( / / ,0  domain, for tlie 

annihilation of this singularity as seen in Fig. A .7, one ol the methods described 

for square subdomains below can be utilized.
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Figure A.S: Míippiiig of the parametric unit square to a cur '̂ecl rectangular 
patch.

A .2.2 For Square Subdomains

A curved rectangular parametric patch in real space is the transformation of a 

(unit) square region in the parametric space as shown in Fig. A.S;

The observation point I'o on the surfcice and in the patch can be considered 

as t he map of (»oi i’u) point of the parametric s(|uare region: I'o = r(i/o, Cq).

Method I

Method I for triangular domains can also be utilized for square subdomains. 

Four sub-triangies are formed b}̂  connecting the observation point (t/o. Vo) to 

tlie four vertices of the square as shown in Fig. A.9.

For each sub-triangle the same parameter transformations are used as in 

Method I for triangular subdomains.

(A.;19)
u.

=  Ч
«13

+ c
«23

+
Í/3

V . ’̂13 _ «23 _ ’̂3 _
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Figure A .9: Subdivision of the unit square into sub-triangles, 

with .Jacobian

J ( u , v )  =  U\zV‘2Z — ^ 23^ 13· (A.40)

The singular integral is thus transformed into,

/  dudvf{u,v)=  /  d})d((j(7j,() (A.41)
Ja ' 7a

where

div^O  =  (A.42)
i=l

Method I for triangular subdomains is then applied to annihilate the singularity 

at the origin of the (í/T )  parametric space.

Method II

In tills method the parameters u and v are transformed separately, i.e. u =  «(?/) 

and V - v((). The Jacobian of this transformation is,

, dudv
(A.43)
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This Jacobian should have a zero at (iio(-5o)) ’̂o(^o)) to cancel the singularity 

tliere. This can be achieved by separixtel}'̂  setting,

du

S =  .50

dv
=  0 and —

dt
=  0 (Л.44)

l-lo

Another constraint that may be imposed on the transformation is: The unit 

square in {s^t) domain should be mapped to the unit square in (n, i>) domain.

A function xi{s) satisfying the given constraints has the form in hJg A .10.

The lowest possible order polynomial satisfying the above criteria may be 

lound to be of the form,

{s -  Sof +  .Si]

with
du 3(s —so)  ̂
ds (1 — .So)'̂  +  .So

(А.4Г))

(A.46)
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from which 5q can be found to be

Vo =
(1 — 5o)  ̂+  ¿0 5o — (A.47)

1 +  ( / -  -  1
V Wo

A similar transformation is applied to the other parameter:

&V _  3(t -  tp)'̂
dt (1 — ¿o)  ̂"b ¿0

Wo *0
(1 — toY +  Íq ¿0 =

V Wo

(A.4S)

(A .49) 

(A.50)

So the Jacobian of the transformation becomes,

9(s — — toY
J{s,t) = J,{s)Jt{t) =

[ ( l -^ o )^  + ^^-^][(l-/.o)^ +  /.e]

and the singular integral is transformed into a non-singular integral:

(A.51)

/  dudv f(u ,v) = f dsdtf{.s^t)J{s,t). 
Ja ' J a '

(A.52)

It is worth noting that due to the Jacobian factor, the integrand f{s , l.)J{s, t) 

is zero on I: — ig ond 5 =  So lines in (s ,i) domain, i.e. the Jacobian has a zero 

which is of higher order than the singularity of the original integrand.

Method III

This method can be considered as the mi.xtureof Method 1 and Method 11. The 

integration domain (unit square) in (u, v) parameter space is first divided into 

four rectangular subdomains with the aid of u = Uo and v =  vq lines as de])icted 

in Fig. A .11. Then, each subdomain is considered to be the mapping of the
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Figure A .11; The subdivision of the unit square for Method III.

Figure A .12: The transformation for the first subdomain.
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unit square in a (t/,C) parametric space. Figure A .12 depicts the situation for 

the first rectangular subdomain. The transformation and the Jacobian of the 

transformation for the first sub-rectangle are

u -  tio(l -  ?/),

V =  u o ( l -C ) ,

and for the other subdomain the transformations are

(A.53)

u = (1 -uo)r],

V  =  u o ( l  -  C ) >

^2(?;,C) =  (i-w o)'i'o ,

(1 -  iio)?;,

(1 -  i’o)C,

JÁ^hO = (1 -  »o)(l -  í’ü),
í¿o(l -  

(1 -  í’o)C, 
JA{lhO = » o ( l - t ’o)·

XL =

V  =

u

V  =

(A.54)

(A.55)

(A.56)

After these transformations the singular integral appears as another singular 

integral in ( //.()  domain, but the singularitj  ̂ always appears at the origin.

.At this step one can use the transformations described in Metliod II 

(Eqs.(A.45) and (A.48)) which simplify to,

i]{s) =  /

m  =
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J { s )  =

J { t )  =

or the degree of this transformation can be lowered,

(A.57)

C(<)

J ( s )

j ( t )

=

=  e

=  2.S

=  2t. (A.58)

This leads to a non-singular integrand. However, for numerical integration 

purposes the cubic transformation was observed to perform better than the 

quadratic transformation. One can also increase the order of these transfor­

mations but numerical instabilities should be e.xpected for large orders.

M eth od  IV

This method is another variation of Method HI. The first transformation is 

exactl}^ the same as in Method III. i.e. the four subdomains are map])ed to a 

single square in (?;, ()  space. This square domain is divided into two triangular 

subdomains by the r] = (  line as shown in Fig. A .13. Each triangular sub­

domain can be considered as the map of a unit triangle on (a,/^) parametric 

domain defined by the transformations of Method I for triangular subdomains:

(A .59)V = a //13 + /̂ //23 + //3
. C . t,23 . .

with .lacobian

— ?/l3(,23 — ?/23(,13·
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Figure A .13: The subdivision of the unit square for Method IV.

So the singular integral whose singularity is at the origin of the (?/, ()  parameter 

space becomes,

/  =  /  d m / / : ; / ( A . 61)./□ 7a ^

Then using the same procedure of Method I for triangular subdomains, this 

singular integrand in the (a,/?) parameter space is transformed into a non- 

singular integrand in (s, t) parameter space. The translbrmation is.

a = st

¡3 =  5 ( 1 - 0 ,

(A.62)

(A.63)

with the .Jacobian = —s.

Other variations of the techniques to annihilate the singularity of the 

Green’s function for integral evaluations on curved subdomains are also possi- 

l)lc. Our experience with all of the above tecliniques resulted in our conclusion 

t hat for triangular subdomains Method I performs best and for sc[uare (can be
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generalized for rectangular subdomains) subdomains, Method I performs best 

on the basis of numerical integration.

A.3 Numerical Integration

For the evaluation of both the testing and the basis integrals on the associated 

subdomains 2-dimensional Gaussian quadrature (GQ) was used. An adaptive 

A/’-point Cartesian product GQ was implemented. Techniques to annihilate the 

singularity in the inner integral presented in the j^revious subsection produce 

non-singular integrands but these integrands are still not suitable for integra­

tion with an adaptive quadrature routine. They may have sharp variations 

for positions of the observation point near the edges of the bcisis subdomain 

when Method I of both triangular and square subdomains are used. The other 

nietliods also produce sharply varying integrands. .Another disach-antage of 

adaptive quadrature is that the evaluated values of the integrand that does 

not satisfy the given error criteria are discarded, which results in loss of time. 

The adaptive quadrature implemented was observed to take irnpractically long 

time due to the sharp changes in the integrand. For those reasons, fi.xed point 

GQ was used for the evaluation of the matri.x elements. The number of points 

to be used is input to the routine by an external file which provides user control 

on 1 he process.
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