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ABSTRACT

SOLUTION OF ELECTROMAGNETIC SCATTERING
PROBLEMS INVOLVING CURVED SURFACES

Kubilay Sertel
M.S. in Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Levent Gtiirel
June 1997

The method of moments (MoM) is an efficient technique for the solution of
electromagnetic scattering problems. Problems encountered in real-life appli-
cations are often three dimensional and involve electrically large scatterers with
complicated gecometries. When the MoM is employed for the solution of these
problems, the size of the resulting matrix equation is usually large. It is pos-
sible to reduce the size of the system of equations by improving the geometry
modeling technique in the MoM algorithm. Another way of improving the effi-
ciency of the MoM is the fast multipole method (FMM). The FMM reduces the
computational complexity of the convensional MoM. The 'MM has also lower
memory-requirement complexity than the MoM. This lacilitates the solution
of larger problems on a given hardware in a shorter period of time. The com-
bination of the FMM and the higher-order geometry modeling techniques is
proposed for the efficient solution of large electromagnetic scattering problems

involving three-dimensional, arbitrarily shaped, conducting surface scatterers.
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OZET

EGRI YUZEYLER ICEREN ELEKTROMANYETIK
SACINIM PROBLEMLERININ COZUMU

Kubilay Sertel
Elektrik ve Elektronik Mithendisligi Bolimi Yiiksek Lisans
Tez Yoneticisi: Y. Do¢. Dr. Levent Gturel
Haziran 1997

Moment metodu (MoM) elektromanyetik sagimim problemlerinin ¢ozimi
icin etkili bir yontemdir. Gunlik hayatta karsilagilan sagimim problemleri
cogunlukla ti¢ boyutludurlar ve elektriksel olarak biiyik, karmasik geometrili
sacicilar igerirler.  Bu problemlerin ¢éziiminde MoM kullamldiginda elde
edilen matrisin boyutu genellikle bayiktir. Bu denklem sisteminin boyu-
tunu MoM algoritmasindaki geometri modellemesini iyilegtirerek digirmek
mumkindir. MoM’un etkinligini arttirmamin bagka bir yolu da hizli multi-
pol metodudur (FMM). FMM bildik MoM’un iglemsel karmasikhgii diigtrir.
I'MM i¢in gereken bellek miktarinmn karmagikligs da MoM i¢in gerckenden
digiiktir. Bu, verilen bir donamim tizerinde daha biyik boyutlu problemlerin
daha kisa zamanda c¢ozilebilmesini olanakh kilar. I'"MM ve yiiksek dereceli
geometri modelleme tekniklerinin birlestirilmesi ti¢ boyutlu, rastgele gekilli,
iletken ytizey sacicilarmi bulundugu biiytik elektromanyetik problemlerinin

etkili ¢6ztimi i¢in onerilmigtir.
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Chapter 1

Introduction

Solution techniques based on the surface integral equations (SIEs) are widely
used in computational electromagnetics. Formulations employing SIEs express
the unknown function on the defining surface of the problem geometry. Thus,
both the surface and the unknown {unction defined on it have to he accurately

represented in the solution algorithm.

Real-life electromagnetic scattering problems are often three dimensional
and involve arbitrary geometries. Formulations of these problems can not be
based on the arbitrary geometries of the problems, instead, the geomectries
are approximated by various mathematical models that are easier to work
with . Approximating the problem geometry by polynomial subsections is
becoming widely used in most of the numerical solution techniques, such as
the finite element method (I'lEM) and the method of moments (MoM) [1, 2].
The MoM, which will be explained in detail in Chapter 2, provides a flexible

and powerful formulation for the solution of electromagnetic scattering and



radiation problems.

Canonical geometries such as spherical, cylindrical, and conical surfaces can
be exactly modeled. Arbitrarily curved surfaces can be accurately modeled us-
ing a mesh of biquadratic, bicubic, or higher-order polynomial surface patches.
Non-uniform rational B-spline (NURBS) surfaces and Bézier patches can also
be used for the same purpose. NURBS surfaces are powerful modeling tools
that are widely used in computer-aided graphical design (CAGD) applications.
Hence, the representations of most bodies fabricated by using automated ma-
chining processes are based on NURBS meshes. Therefore, if the geometry of
the scatterer is represented by NURBS surfaces in the electromagnetic scatter-
ing code, the output data of a CAGD tool can be directly used as the input of

the code without inducing any geometry-modeling error in the solution.

In this thesis, a general formulation of the MoM for electromagnetic scatter-
ing problems involving arbitrarily shaped, conducting scatterers will be given.
The limitations of this method will be mentioned and ways to overcome these

limitations will be investigated.

The effect of using different techniques to approximate the problem ge-
ometry on the solution will be investigated. Comparisons of solutions different
geometry-modeling techniques will be given. It will be shown that better geom-
etry models improve the solution accuracy and reduce the size of the resulting
matrix equation. Comparisons of results obtained using dillerent basis func-
tions in the MoM expansion will also be given, and it will be shown that the
accuracy of the solution heavily depends on the geometry-modeling scheme

rather than the type of the basis functions.

INamed after their inventor, Pierre Bézier.



The basis functions used in the expansion of the unknown function in the
MoM formulations are defined to be conformal with the surface representation
and are “curved” generalizations of the piecewise linear basis functions defined
on flat rectangular domains (rooftops) [3, 2] and flat triangular domains (due
to Rao, Wilton and Glisson) [1, 4]. Issues concerning the numerical computa-
tion of the singular and nonsingular integrals arising in the formulations using

different surface representations and different basis functions will be addressed.

A general formulation of the fast multipole method (FMM) [5, 6, 7] for
electromagnetic scattering problems will also be given. The performance of
I'MM will be investigated. Both the efficency and the accuracy of the FMM
will be demonstrated by comparing the FNMM solutions to the MoM and closed-
(orm solutions for some sample problems. Thus, the combination of the 'MM
and accurate geometry-modelling techniques will be proposed for the efficient

solution of real-life electromagnetic scattering problems.



Chapter 2

MoM and FMM

The MoM is a well-known technique for obtaining approximate solutions of
integral, differential, and integro-differential equations arising in various areas
of hasic and applied sciences [§]. The equation to be solved is converted into a
matrix equation by applying the standard Mol procedure. The procedure is
outlined in Section 2.2. This matrix equation is then solved either by Gaussian
climination (GE) or by an iterative solution scheme such as the conjugate
gradient method (CGM). GE requires O(N®) operations for the solution of
an N x N system. An iterative solver would require O(N?) operations per
iteration. As N gets larger, these high complexities limit the performance and

applicability of the MoM.

Ior electromagnetic scattering and radiation problems, the I'MM can be
utilized to reduce the O(N?) complexity of an iterative solver to O(N'?). This
is accomplished by calculating the matrix-vector product in a fast and indirect

way at iteration of the iterative solver. This chapter outlines the MoM and the



FMM as they are applied to electromagnetic scattering problems.

2.1 The Electric-Field Integral Equation

Based on Maxuwell’s equations, one way of formulating the electromagnetic
scattering problems involving open or closed conducting surfaces is the so called
electric-field-integral-equation (EFIE) formulation. Maxwell’s equations in the

frequency domain can be manipulated to obtain the a equation,
VZE(r) + KE(r) = —iwud(r), (2.1)

in [ree space with ¢'“* time convension. The solution to this equation is given

by

B(r) = —iop [ dwG(r.r!) - I(), (2.2)
In the above,
G ! I 1 / v v
G(r,r') = [I - EVVJ g(r,r) (2.3)

is the dyadic Green’s function and

ciklr—r|
g(r,r’) = 2.4
g(r,r') — (2.4)
is the scalar Green’s function that satisfies the scalar wave equation
(V2 + kHg(r.r) = §(r —1'). (2.5)

[or a given source distribution J(r), the electric field radiated by that source

distribution can be calculated using Eq. (2.2).

(W



For conducting objects, the EFIE is given by

A 1 etkR d7t . .
t-/[J N+ =V I ] ' = —1¢ - E' 2.
s (r ) + k) (r )v 1{ d‘b ]177] t D (r)7 ( 6)

where

R=|r—1']. (2.7)

Equation 2.6 is the statement of the boundary condition on the tangential
- component of the electric field on a conducting surface. The vector denoted
by ¢ is any unit tangent vector on the surface s of the scatterer, and E'(r) is

an impressed field which excites the system.

2.2 Method of Moments

'The EFIE for the unknown electric current density J(r) on the conducting sur-
[ace induced by an incident wave is discretized using the Mol technique. The

induced surface current is approximated by a sum of N known basis functions

{jn (1‘)} as N
J(r) & > anja(r). (2.8)
n=1

The EFIE thus becomes

ekt 4wt s

A 7 . ! 1 1o ! ! 7 ¢
Z(a,lt-/s[]n(l‘)—l- ]-ﬁv “Ja(r )V] 7 ds' — k—”t-E (r)~ 0 (2.9)

n=1

Hence the problem is reduced to finding a set of a,,’s that minimizes the error

in L2q. (2.9).

By defining a sct of N weighting (also called “testing”) functions, the EFIE



1s converted into a system of equations, whose solution minimizes the boundary-

condition error in the average sense. The system of equations obtained is,

N
ZZmnan———Fm, m=1,2,...,N, (2.10)
n=1
where
. 1 . eiFR X
D = /sdstm(r) . /s' ds [_]n(r) + EV' -Jn(r’)V] (2.11)
and

_ 47

F, =
kn

/s ds tm(r) - E¥(r). (2.12)

Ilence, the actual problem of finding the induced surface current J(r) is
reduced to finding N coefficients of expansion of Eq. (2.8) as the solution of

[q. (2.10).

The expansion functions should be chosen so that their combination in
Iiq. (2.8) is capable of representing the unknown current density J(r) suffi-
ciently well. Quite powerful basis functions (BI%) exist in the literature for
the expansion of induced surface current in scattering problems, most common
ones being the RWG! BFs supported on planar triangular subdomains [1] and
rooltop (RT) BI's supported on planar rectangular subdomains [3]. For curved
subdomains, generalizations of flat RWG BIF's and flat RT BI's that are confor-
mal with the curved surface they are defined on [2, 4] are used. The definitions
of these basis functions will be given in Chapter 4. Intire-domain BI's are also
used in the MoM formulations, but will not be mentioned here. It should be
noted that the BFs chosen for the approximation of the current J(r) should

also be capable of providing a consistent approximation of the surface charge

'Named after Rao, Wilton and Glisson.



of providing a consistent approximation of the surface charge p(r), which is

related to the current through the continuity equation [9]

V - J(r) — wp(r) = 0. (2.13)

The choice of testing functions is also arbitrary but some methods are more
popular in practice. If the testing functions are chosen to be the same as the
basis functions, the method is called Galerkin’s method. It can be proven that
Galerkin’s method is equivalent to Rayleigh—-Ritz variational method [8]. When
the error is constrained to be satisfied on a set of discrete points on the scat-
terer, which corresponds to choosing testing functions to be delta functions on
the scatterer surface, the method is named as point matching, and when they
are chosen to be pulse functions defined over the subdomains of the geometry,
the method is called collocation by subdomains. When the testing functions
are chosen to be the complex conjugates of the basis functions, the formulation
results in the minimization of the square of the error. Throughout this thesis.
(ialerkin’s method is used. In addition to being a variational method, another
advantage of the Galerkin’s method is that the resultant MoM matrix is sym-
metric. Therefore, one need only compute and store half of the MoM matrix

Zmn. This is also an important consideration for the choice of the solution

algorithm.

Divect application of the MoM requires the computation of N* double sur-
face integrals appearing in Eq. (2.11) as the elements of the resulting MoM
matrix. Solution of this system of equations by Gaussian elimination requires
O(N3) operations. Iterative solvers require O(N?) operalions per iteration.
The memory requirement of the MoM is also O(N?). This large order for

storage limits the size of the problem that can be solved on a given hardware,



and the high operation cost poses a limit to the size of problems that can be
solved in a practically acceptable period of time. For these reasons, the FMM
is proposed [5, 6, 7, 10], which requires less memory and CPU time for the

solution of large problems.

2.3 Multipole Expansions and FMM Formu-

lation

Direct application of the MoM requires the computation of N? double surface
integrals appearing as the elements of the resultant MoM matrix and O(N?)
operations per iteration for the iterative solution of the resulting system of
equations. A clever way to overcome the difficulties arising from these large
storage and computation complexities is used in the I'MM. The FMM is devel-
oped using two elementary identities. The first is the expausion ol the scalar
Green’s function appearing in Eq. (2.11) as

ciklr+d] ik o 1o . (1) o5 A o

m =1 g(—l) (20 4+ D)gi(kd)hy (kr) Pi(d - 1), (2.14)
which is a form of Gegenbauer’s addition theorem [11]. Here j; is the spherical
Bessel [unction, h,(l) is the spherical Hankel function of the first kind, /7 is
the Legendre polynolmial, and d < r is the condition [or the validy of the
expansion. In the MM formulations of scattering problems, where the source
point is denoted by x’ and the observation point by x, r will be chosen to be
close to x — x’ so that d will be small as depicted in I'ig. 2.1. The second

identity is the expansion of j; P product appearing in Eq. 2.1.1 as a sum of



[
r

Figure 2.1: The basic geometry illustrating the relationship between x,x/, r,
and d.

propagating plane waves [11]:

dnitjy(kd)P(d - ) = / Ehe*dp(h - 7). (2.15)

The Green’s function in Eq. (2.14) can be rewritten using Eq. (2.15) as

2k [ e a a1 4 DR )
- = — T 204+ L))oy (kr)Pi(k - 7), (2.16)
r+d] 4n = :

where the orders of summation and integration are interchanged. The idea of
the FMM is that the function
~ ]; l A
Tr(hryde - 7y = 320+ DA (k) Po(k - 7) (2.17)
=0

can be computed for various values of & which is independent of kd. The series
is truncated at the Lth term in numerical practice. The nwnber of terms kept,
L + 1, depends on the maximum allowed value of kd, as well as the desired

accuracy. The choice of L will be mentioned later. Using Eq. 2.16, Iq. (2.14)

becomes
czk|1'+(l[

r+d]

¢

I g ), 21
dr
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Figure 2.2: The geometry construction used in 'MM [ormulations, illustrating
the relation between source point, field point and the group centers.

2.3.1 Formulations for the FMM

The direct path from a source point to the field point can be decomposed into
three parts as in Fig. 2.2, where

I'ji = Yjm + Tims — Time (-219)
The idea to be noted is that the same path will be used for all source point

in cluster m’ to translate their field to all observation points in cluster m.

[lquation (2.16) can be rewritten as

6“;1'_,,'

P e
Ev
O
(e

SN—

~ l__ / deGZk o 1'ml)ZFL(/‘”'mm’ ) k- 7‘mm’)
. 4
Jl
and the Green’s function becomes

eikr_,;

— - |
Gieur = [i- v

A= 1 o1 1 4
~ /(12]\7 [I - ﬁvv,] le.(l"m_liml)flvl,(krmm'vL

= /(12@' []_: - /:7];] eik'(rj"'_l"”")TL(/\TTm.m’, if T ) (221)

A

2 Imm.’)

Using the above equations, a matrix element as in Bq. (2.11) is approxi-

mated by

. 1 C,ikl?
rs _ « 2 . A K J o 1o v .
Lpn = /S(I'«tm.(l) [ ds [Jn(l ) + /\:ZV u(x )V]_—R_
~ 'I']‘: dzl::vfmj(;‘}) : TL(krmm’a l:’ : 7A'mm’) ;m'z‘(i\’)s (223)
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where

Vsmli(l::) = s ds,eik.l.iml [T - ::] : ji(rim'))
mej(i::) = : dSeik~l'jvn [i b l:i‘] . tj(rjm) (223)

are the Fourier transforms of the basis and testing functions, respectively, and

the superscript * denotes complex conjugation.

The FMM is proposed for the acceleration of the matrix-vector product
computed at each iteration of an iterative solution scheme, like the conjugate
gradient method, employed for the solution of the resultant matrix equation.

T'he algorithm is outlined in the next subsection.

2.3.2 Description of the FMM Algorithm

Normally the matrix-vector product at each iteration of an iterative solver
would require O(N?) multiplications for the solution of an N x N system of
equations. Employing the algorithm below, it is possible to reduce this order

to O(N'#). The FMM algortihm can be described as follows:

1. The N basis functions are divided into M localized groups (clusters),

cach containing about N/M basis functions.

2. Tor groups that are distant to each other, the translation functions of
3. (2.17) lor each pair of distant groups are calculated for a predeter-

mined set of & directions. Choice of this set ol & directions and the



<t

6.

choice of truncation limit for the series will be mentioned later. This re-
quires O(I{LM(M — G)) computations, where G is the average number
of nearby groups to each group, K is the number of i directions, and L

is the number of terms kept in Eq. (2.17).

The Fourier transforms of each basis function are computed for the pre-

determined set of & directions. This step requires O(K V) computation.

Tor groups that are near or close to each other (the closeness is defined in
the sense that either Eq. (2.14) is not valid or the computation requires
too many terms of the series to be considered for at least one pair of
source and field points), a sparse matrix denoted by Z’ is constructed,
with direct computation of matrix elements using Eq. (2.11). This step

requires O(G(N/M)? M) computations.

The KM quantities called aggregations

~

Sm /\ Z Vsm il am’i, (2_)451)

which represent the far field of each group m' are computed using the

precomputed Fourier transforms. This step requires O(/\' N) operations.

The K M quantities called translations

gln z Z -lmm Sm ) (2'25)

m'
representing the Fourier components of the field in the neighborhood of
group m, generated by the sources in the groups that are not nearby are
computed next. This step requires O( N M (M — (7)) operations using the

precomputed values of Ty, (k).

13
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translation
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Figure 2.3: Illustration of the FMM strategy.

I'inally, the disaggregations of the fields of all sources in distant groups
are computed {rom the group centers to the testing functions and added
to the sparse matrix-vector product, which represents the testing of the
field generated by the sources in nearby groups. This computation can
be expressed as
B, = Z Z,'njm,iam/; + /(12/:7\/’,,,\,‘(/::) . g,,,,(/::). (2.26)
m'q

IFigure 2.3 depicts the three main steps of the algorithm.

L is proportional to the size D, the maximum of the diameters of all groups,

and A = 2L2 is approximately proportional to D?. Since D? is approximately

proportional to N/M, the number of unknowns in a cluster (lor surface scat-

terers), computation of the vector B in Eq. 2.26 requires aN.M + bN2/A

operations, where a and b are machine-dependent constants. This total opera-

tion count is minimized by choosing M = y/bN/a, and the result is an O(N1?)

algorithm.

14



Extensions of the FMM that can further reduce this computational com-
plexity exist in the literature. Multilevel FMM [12], which extends the FMM
strategy with multilevel grouping, can reduce the computational complex-
ity to O(N log N). Ray-propagation fast multipole algorithm (RPFMA) [13,
14] reduces the complexity to O(N*/3). The fast far-field approximation
(FAT'FA) [15] also results in an O(N*/3) algorithm. Among the methods men-
tioned above, only the F'MM is implemented in this work. The implemenations
of the extensions of the FMM mentioned above are among the future work that

can be carried on on this subject.

2.3.3 Required Number of Multipoles and Directions

In the numerical implementation of the FMM, the series in [q. (2.14) is eval-
uated using a finite number of terms. The number of terms that must be
evaluated is chosen so that the expansion converges to the desived accuracy.
For | < = the Bessel functions j;(z) and /1.,(1)(:) ave nearly constant in magni-
tude, and for [ > z, ji(z) decays rapidly and hl(l) (z) grows rapidly. Therefore,
the truncation limit cannot be chosen to be much larger than k7., since the
numerical evaluation ol the integral in Eq. (2.16) will cause inaccuracies due
to the oscillatory integrand. A semi-empirical fit given in [7] to the number of

multipoles required for single precision (32-bit reals) is

1A
1O
-1
~

Ls(kD) = kD +5In(kD + x), (2.

where D > 1/k is the maximum group diameter. lor double precision, the

estimate 1s

o
o
los)
SN

Ly(kD) = kD + 10In(kD + 7). (2.



If the value of L dictated by the above formula used exceeds k7, then
the groups must be considered as neighboring, and their interaction must be

included in the sparse near-field matrix 2, ,.

The integral in Eq. (2.16) must be evaluated using a quadrature rule that
would provide sufficient accuracy in the result. A simple method for determin-
ing the sampling points is to pick polar angles # such that they are zeros of
Pr(cos @), and azimuthal angles ¢ to be 2L equally spaced points so that the

azimuthal variation is sampled at the Nyquist rate. For this choice, A" = 2L2.

2.3.4 Memory Requirements and Computational Com-

plexity

The memory required for the FMM can be considered in two parts, the sparse-
matrix storage and the FMM elements’ storage. The storage of the sparse
7' matrix requires O(N? /M) memory locations. The F'MM aggregations need
O(K N) memory locations, and the FMM translations need O(K LM?) memory
locations. Hence the total memory storage needed is O(N?/M) + O(W'N) +
O(K LM?). Using the proportionalities K o L?, D* o« N/M, and L oc D, this
expression can be simplified to Cy(N?/M) + Co(NM/N/M), where C and
(', are machine- and implementation-dependent constants. The coefficient
is so small compared to €y for all problem sizes that can be solved with the

['MM that the memory required is dominated by the O(N? /M) term.

The computational complexity of the FMM can he determined by count-
ing the number of floating-point operations required at each step ol the al-

gorithm. The aggregation step requires MK N/AM = KN operations. The

16



translation step requires KM? operations with the precomputed K A2 val-
ues of the translation function given in Eq. (2.17). The disaggregations
require MKN/M = KN operations, and finally the sparse matrix-vector
product requires N2/M operations. Using the proportionalities A o L2,
D? o« N/M, and L « D, the total cost of the matrix-vector product is found
as O(NM) + O(N?/M). This can be minimized by choosing M = VN and
the result is an O(N'%) algorithm. The memory required for the FMM also
becomes O(N'®). Both the operation cost and the memory requirement of
the FMM is less than those of standart MoM formulation for problem sizes

larger than 1000, which makes the FMM more suitable for the solution of large

problems.

17



Chapter 3

Geometry-Modeling Techniques

Real-life electromagnetic scattering problems, almost always, involve electri-
cally large scatterers with complicated geometries. In the formulation of scat-
tering problems involving three-dimensional arbitrarily curved scatterers, the
seometry of the scatterer has to be approximated. Various geometry approxi-

mation and modeling techniques exist for this purpose [16, 17], some of which

are presented in this chapter.

As the eclectrical size of a geometry gets larger, the size of the problem
increases and the CPU time consumed and the memory required to obtain
the solution grows rapidly. Hence, the maximum size of the problem that can
be solved on a given hardware is limited by these two factors. Using better
gcometry models for the scatterers, it is possible to reduce the size ol the
problem. As an introduction to the mathematical background of the subject
of better modeling, parametric space curves will he mentioned in the next

section.

18



f(u)

X

Figure 3.1: A parametric space curve is a vector function of a parameter u.

3.1 Parametric Space Curves

A general 3-D parametric curve in space (IFig. 3.1) is written of the form f(u),
where fis a vector containing the Cartesian coordinates of the point on the

space curve having the parameter value .

[f f(u) is an nth degree polynomial function of u having a set of vectors

{ap,aq,...,a,} as coeflicients, i.e.,
n
fu) =) a,u’, (3.1)
1=0

then one can specify the whole curve uniquely with this set of coefficients.
Alternatively, one can specily another set of n + 1 points through which the

nth degree parametric polynomial curve is supposed to pass.

There are other methods of specifying an nth degree parametric polynomial
curve, one of the most popular being the so called Bézier curves [17]. A Bézier
curve is specified by an alternative set of points which is called the defining

polygon. The shape of the actual curve closely follows the shape of the defining

19



polygon. Figure 3.2 shows a generic third-order Bézier curve and its defining

polygon.

These curves have the following nice properties:

e The degree of the polynomial defining the curve segment is one less than

the number of defining polygon points.
e The curve generally follows the shape of the defining polygon.

e The first and the last points on the curve are coincident with the first

and the last points of the defining polygon.

e T'he tangent vectors at the ends of the curve have the same direction as

the first and the last polygon spans, respectively.

e The curve is contained within the convex hull of the defining polyvgon, i.e.,
within the largest convex polygon obtainable with the defining polygon
vertices.

e The curve exhibits the variation-diminishing property. Basically, this
means that the curve does not oscillate about a straight line more than

the defining polygon.

e T'he curve is invariant under an affine transformation. An affine trans-
formation is a combination of linear transformations such as translation
and rotation.

A parametric Bézier curve is mathematically defined by

P(u) =) aBni(u) 0<uc<l, (3.2)
g



Figure 3.2: A generic Bézier curve and its defining polygon.

where the Bézier or Bernstein basis or blending function is

n . .
Bn,i(“) = ul(l - u)”—-l (3.3)

-~

with

- i!(71.:—i)! (34)

and a; are the defining polygon vertices.

Another useful group of parametric curves is the B-spline curves [16, 17].
These curves are formed by blending Bézier curves. An nth degree B-spline
curve is formed by connecting nth degree Bézier curves and imposing (n — 1)st
derivative continuity at the junction points. The local parameter of each Bézier
curve runs from 0 to 1 where the global parameter ¢ of the whole curve is defined
in terms of the local parameters. A knot vector defining which of the polygon
points form the sub-Bézier curve must also be specified. If this knot vector is

nonuniform then the resulting curve is called a nonuniform B-spline.

B-splines can also be written as an expansion



P(u) =Y aiNi(u) 0<u<l, (3.5)

1=0

where IV, ;(u) are B-spline blending functions, which are also functions of the

knot vector.

B-spline curves has the interesting property of local control, i.e., when one
ol its vertices 1s moved to a new location only the part of the curve around that
vertex changes shape. For Bézier curves, this is not the case since the basis
[unctions for them are global, i.e., non-zero over the interval 0 < « < 1, hence
a change in the position of one of the vertices is felt on the entire curve. The
basis-function terminology used here should not be confused with the basis

functions used to expand the unknown function in the MoM formulation.

Ioxtensions of Bézier and B-spline curves are rational Bézier and rational
B-spline curves. They allow one to give weights to cach polygon vertex giving
these curves one more degree ol freedom. This is accomplished by projecting
the 4-dimensional Bézier and B-spline curves to 3-dimensional real space. A

rational Bézier curve can be expressed as

P(LL) — Z:%IO aiwiB”'i(U)

<u<l 3.6
T owiBni(u) 0zuszl, (30)

where w; is the weight of the ith vertex of the defining polygon.

Blending rational Bézier curves with a nonuniform knot vector results in
the very popular NURBS curve representation. This powerful curve definition

is used in most of the available CAGD tools.
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3.2 Exact Parametric Models

All canonical surfaces have exact parametric representations. A sphere, for
example, can be formulated in terms of # and ¢ angle parameters. In order the
problem geometry be exactly representable, it must be formed from a set of
exactly representable subgeometries, such as spherical, conical, or polynomial
subsurfaces. This is almost never the case for the scatterers encountered in
real-life electromagnetics problems. The geometry of the scatterer is, thus,
approximated by parametric subsurfaces, some of which are more popular than
others. In the next section some of those popular approximation tools are

presented.

3.3 Polynomial Interpolation Surfaces

This is the first class ol the geometry-modeling techuiques. The scatterer
surface is approximated by polynomial surface patches. In the approximation
process, these subsurfaces are constrained to pass through a set of points in
space, which are sampled from the original scatterer surface. In practice, the

subsurfaces used are limited to second-order polynomial subsurfaces.

3.3.1 Staircase Approximation

This is the zeroth-order polynomial approximation to the problem geome-
try. The problem geometry is approximated by a collection of cubic and

rectangular-prism-like cells as depicted in Fig. 3.3. This modeling scheme is



Figure 3.3: An aircraft approximated by a mesh of rectangular cells. (Repro-
duced from [18].)

very popular in finite-difference methods [18]. In real-life scattering problems,
for the scatterer geometry be modeled accurately enough, the number of sub-
domains used must be very large, indicating that the problem size can fall out

of practical solution ranges.

3.3.2 Flat Triangulations

This scheme can be considered as the first-order polynomial surface fit to the
problem geometry. It is a very popular method and is used not only in the
area of numerical electromagnetics, but also in a wide variety of disciplines in
science and technology. The problem geometry is approximated by a collection
of connected flat triangular subdomains (Fig 3.4). It is very flexible in modeling
and in formulations. This technique is widely used in the MoM formulations

with the popular RWG BEs [1, 19, 20]. The form of a {lat triangular patcl is
r(u,v) = ag + aju + agw (3.7)

and a;’s are related to the vertices of the triangle. The triangulation of the

sphere is shown in Iig. 3.4.



Figure 3.4. Sphere approximated by a mesh of flat triangles. The triangulation
is performed by MSC/ARIES.

3.3.3 Quadratic Triangulations

One higher degree of polynomial surfaces is the quadratic triangulations. These
are curved triangular subdomains defined by 6 discrete points in space. These
points must be defined on a topologically triangular curve. The capability
of representing curved problem geometries of these subdomains makes them
attractive in the formulation of real-life electromagnetics problems involving

arbitrary, curved geometries. The form of a curved triangular patch is
r(i/, v) = ao -f aiti + a2V -b asuv + a.ju” -b asu” (3.8)

ajid a;'s are related to the 6 points defining the curved triangular patch. The

triangulation of the sphere using quadratic triangular patches is shown in

Fig. 3.5.
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Figure 3.5: Sphere approximated by a mesh of 6-point quadratic triangles. The
triangulation is performed by MSC/.AR.IES.

3.3.4 Biquadratic Approximations

These surfaces are formed from the cross-products of second-order polynomials,
and each surface is defined by 9 discrete points in space. For quadrilateral
surface patches, these 9 points must be defined on a topologically rectangular
grid. When one of the parameters are fixed, the curve traced by the other
parcimeter is a parabola in space. The}- are also used in the MoM formulations

of electromagnetic scattering problems [2]. The form of a curved rectangular

patch is
2 2

rt,y) = E E it (3.9)
1I=0j=0
A sphere approximated by biquadratic patches is shown in P'ig. 3.6.
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Figure 3.6: Sphere approximated by a mesh of 9-point biquadratic rectangular
patches. Reproduced from

3.4 Free-Form Surfaces

The polynomial surfaces defined in Section 3.3 are surfaces that are constrained
to pass through ceisting data points, i.c., they are surface-fitting techniques.
In many cases, excellent results are obtained with these methods. They are
suttable for surface approximations when a set of sampled data about the
surlace is available. This data may be obtained as a result of an experiment
or a mathematical calculation. Examples are engine manifolds, aircraft wings,
and similar mechanical and structural parts. However, when the design of the
shape of the body depends also on the functional and aesthetic requirements,
which cannot be formulated entirely in terms of quantitative criteria, one has to
resort to a combination of computational and heuristic methods. An alternative
method suitable for heuristic design of curves and surfaces was developed by

Pierre Bézier.
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3.4.1 Bézier Patches

Making use of the previously defined powerful Bézier and B-spline curve con-
cepts, one can also form a basis for surface description [16, 17]. Tensor product
Bézier surfaces are defined as
m n
r(u,v) = ;JZ_; by; B (u) B} (v). (3.10)

This definition can also be given in matrix form as

r(u,v) = [U][N][A][M]*[V], (3.11)
where
[U] = [t 1] , (3.12)
) T
[‘/] — o™ vm—l e 1] , (313)
( a0 - QAom
[A] = : (3.14)
i a0 A
and [N] and [M] are given by
T k) e kg
[N] = : : , [M]= : : , (3.15)
kG e kG koo e k)
with
! ' [ /!
'l"z{_,' = (——l)]—z J and = ——-—'(1 — ,)'. (316)
]' ? J (A ).

For quadrilateral surface patches, the defining polygon net must be topo-

logically rectangular, i.e., the net must have the same number of vertices in
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each

“row”. Figure 3.7 shows a generic quadratic Bézier patch and its defining

polygon mesh. They share the following similar properties as Bézier curves:

The degree of the surface in each parametric direction is one less than

the number of defining polygon vertices in that direction.

The continuity of the surface in each parametric direction is two less than

the number of defining polygon vertices in that direction.
The surface generally follows the shape of the defining polygon net.

Only the corner points of the defining polygon net and the surface are

coincident.

The surface is contained within the convex hull of the defining polygon

net

The surface does not exhibit the variation-diminishing property. The

variation-diminishing property for bivariant surfaces is undefined.

The surface is invariant under an afline transformation.

Each of the boundary curves of a Bézier surface is a Bézier curve. The

tangent vectors at the patch corners are controlled both in direction and mag-

nitude by the position of adjacent points along the cdges of the net. The

interior polygon net vertices influence the direction and magnitude of the twist

vectors at the corners of the patch. Consequently, the user can control the

shape of the surface patch without an intimate knowledge of the tangent and

twist vectors.



Iligure 3.7: Tensor product Bézier surface and its defining polygon net.

The above discussion of Bézier surfaces concentrates on the definition and
the characteristics of a single surface patch. For more complex surfaces multiple

Beézier surface patches must be joined together.

3.4.2 B-spline Surfaces

Cartesian-product B-spline surfaces are the natural extensions of Cartesian-
product Bézier surfaces, defined by
m n
- — N n a
r(u,v) = >y by N™u)M}(v), (3.17)
1=0 5=0
where N™(w) and M['(v) are the B-spline basis functions in the biparametric
w and v directions. They are actually blended Bézier surfaces, so one can

transform a B-spline surface to a set of connected Bézier surfaces.

As with B-spline curves, the shape and character of a B-spline surface is
significantly influenced by the knot vectors in the parametric directions. Open,

periodic, and nonuniform knot vectors are used. Ior example, it is possible to
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Figure 3.8: A yatch hull defined as a B-spline surface, the defining polygon net
and the parametric representation. (Reproduced form [16].)

use an open knot vector for one parametric direction and a periodic knot vector
for the other; the result is a cylindrical surface of varying cross-sectional area.
As an example to the modeling power of B-splines, a yatch hull represented by

B-spline surfaces is shown in Iig. 3.8.

The local control properties of B-spline curves also carry over to B-spline

surfaces.
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3.4.3 Nonuniform Rational B-Spline (NURBS) Sur-

faces

Bézier and B-spline surfaces can be generalized to their rational counter-
parts. A rational Bézier or B-spline surface is defined as the projection of
a 4-dimensional tensor product Bézier or B-spline surface. Thus the rational

Bézier patch takes the form

iv0 2o wijbii B (u) B (v)

r(u, v) - m n m n ) 318
im0 Lj=o wii BI" (u) B} (v) (3.18)
and a rational B-spline surface is written as
moSr Cwi b N (w) M
r(u,v) = == ]—nOwJ J: 7 (u) M} (v) 19)
I S NP (WA (0)

[t must be noted here that these surfaces are not tensor product surfaces them-
selves. As for nonrational counterparts, open uniform, periodic uniform, and

nonuniform knot vectors can be used to generate rational Bézier and B-spline

surfaces.

One of the strong attractions of rational B-spline surfaces is their ability to

represent quadric surfaces which are given by the general expression
Ax? + By* 4+ Cz*+ Day + Eyz + Faz+ G+ Hy +J=+ K =0 (3.20)

and to blend them smoothly into higher-order sculptured surfaces. One can
represent a sphere exactly using a single rational B-Spline surface, which is a
collection of smoothly blended rational Bézier patches. The sphere and the
defining polygon net are shown in Ifig. 3.9 (c). Figures 3.9 (a) and (b) are the

construction curves used to generate the sphere.
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Iligure 3.9: Sphere generated as a rational B-spline surlace. (a) Offset circle

and defining polygon; (b) circle of revolution and defining polygon; (¢) defining
polygon net and sphere. (Reproduced from [16].)
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Chapter 4

Basis Functions

Powerful basis functions (BFs) exist in the literature to use with the MoM
formulation of electromagnetic scattering and radiation problems. The basis-
function expansion employed for the formulation of the problem has to be
capable ol representing the unknown accurately. Lor electromagnetic scatter-
ing problems, the unknown is the surface current on the scatterer induced by
an incident electromagnetic field. For a proper approximation of the surface
current, the BI's used must be defined on the surface of the scatterer. In this
chapter the definitions of the well-known Rao-Wilton-Glisson (RWG) BI's and
rooftop (RT) BFs are given. Also their curved counterparts, that are confor-
mal with curved parametric surfaces they are defined on, are presented. The
formulations of these curved BI's are given in a form that is applicable to any

parametric surface definition.
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Figure 4.1: Rooftop basis function defined a pair of flat rectangular regions.

4.1 Rooftop (RT) Basis Functions

RT BFs are subdomain basis functions and are very popular and widely used
in the MoM formulations of problems involving flat, rectangular geometries,
such as the geometries encountered in the analysis and simulation of printed
circuits. Their combination can approximate the unknown surface current
piecewice linearly in the direction of current flow, and the approximation is
piecewise constant in the transverse direction. On a pair of flat rectangular
subdomains, they can be defined as

€T

I—.—P(y/yl).’i' 0<a<ua

(z2 — )
(22— 21)

b((l,', y) =
P(:‘//yl)ii' T <<y

where P(y/y:) is a pulse function that is nonzero for y values between 0 and

y1. The BI is defined by Eq. 4.1 is depicted in Iig. 4.1.
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FFigure 4.2: Rao-Wilton-Glisson basis function on a pair of flat triangular
regions.

4.2 Rao-Wilton-Glisson (RWG) Basis Func-

tions

These basis functions are defined over pairs of flat triangular subdomains. Due
to the flexibility of flat triangulations in surface modeling, this basis function
finds a wide range of applications in electromagnetic scattering and radiation

problems. They are defined as

by
+ in T
—T, in T,
24" i
l” _ . »
ba(r) = 5A="n i L (1.2)
=Lin
0 otherwise

where [, is the length of the common edge, and A} and A; are the areas of

the triangles TF and T, respectively. The BF is shown in Iig. 4.2.

4.3 Curved Rooftop (CRT) Basis Functions

The RT BIs are suitable for the expansion of induced surface currents on flat

and rectangular surfaces. They should be modified in order to be capable of
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representing an unknown current density on a curved 3-D surface. CRT BFs
are defined on curved surfaces in terms of the tangent vectors of the surfaces.
The tangent vectors that form a basis for the definition of the basis function
can be found by differentiating the parametric surface mapping with respect

to each parameter, i.e.,

_Or or

tu‘———a v = [ - 4.
Ju t v (13)

In the following formulation, a series of transformations will be defined,

which should not be mixed up.
e A unit square is the region in the two-dimensional (w,v) parametric co-
ordinate system which is defined by 0 <u <1 and 0 < v < 1.

o A 3-D curved rectangular patch is the mapping of the unit square in the

(s,1) parametric domain into the 3-D (a,y, =) real space.

o A rectangular subdomain in the (s,¢) domain can be considered as a

mapping of the unit square on the (u,v) domain into the (s, ) domain.

Therefore, a curved rectangular subdomain, on a surface on which a CRT basis
[unction is defined, can be considered as a mapping of a rectangular subdomain
in the (s, 1) parametric space, which, in turn, is the mapping of the unit square
in the (u,v) parametric space into the (s,t) parametric space. Iig. 1.3 depicts

the situation.
With the transformation

r, = ’U,(l'l — 1'3) + ’l)(I‘Q — 1'3) + 13, (’14)
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Figure 4.3: Composite ma.ppihg of the parametric unit square on the real
curved surface.

where r; are the (s,t) coordinates of the four vertices of the rectangular subdo-
main, the unit square of the (u,v) space is mapped to a rectangular subdomain
in the (s,t) parametric space. With the patch transformation, which is given
to be the Bézier patch transformation here as an example, the rectangular sub-
domain in (s,t) space is mapped to the curved rectangular subdomain on the

Bézier patch,
1=0

(s, ) = o iz wisbi B B (1)
’ 2o Lj=owis B'(s) B} (t)

(4.5)

With the above composite transformation, the subdomain supporting half

of the CRT BT on the patch is formed from the unit square of the (u,v) domain.

The CRT BFs can now be defined on the (u, v) domain very simply in terms

of v and v parameters as

1 Or(w,v)

b(u,v) = U — (1.6)
g(u,v) du
where g(u,v) is the determinant of the metric tensor, which is given by
gu 92 -
9= ) ("1 { )
g 922
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Figure 4.4: C-RT BF defined on the parametric space.

where

B N S S S
M= o T 0 T e T 00 o (4.8)

Ilquation (4.6) actually defines half of the CRT BI'. By defining the po-
sitions of the vertices of transformation (4.4), one can properly pair the two

halves to form the basis function (Fig. 4.4).

The surface gradient of a scalar [unction and the surface divergence ol a

vector function of the forms

¢ = ¢(u,v) (4.9)
and
fu,v) = f“g’:? + f% (4.10)
respectively, are given as
gl 80 | n09Or | L 080r | 0608

Ju du y Jdu Jv g dv du g dv Jo
and
of or of oOr ., 0f Or 0o Of  Or
not or 1201 Or n ot or 2200
g Jdu Jdu tg du Jv g dv du ty dv Jv
(A0 , 203 )

ﬁ du dv

V,-f =
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where g% are the corresponding elements of the inverse of the metric tensor of

differential geometry.

With the definitions given above, the divergence of the basis function can

be found as

V, - b(r) = ——m . (4.13)

(> 0)
The surface charge in each subdomain is found to bhe
7
ods = u—)\73 -b1/g(u,v)dudv, (4.14)

which is constant in the parametric space (ods/dudv). It is proven below that
the current density across the common edge per unit parameter is independent
of the geometry. Thus, there is no line-charge accumulation on the common
edge. The unit vector parallel to the common edge and the unit vector per-

pendicular to the common edge are given as

V922 Ov
and
. . | or or
- - o . 4.16
by l” XN \/M [gzzau glzav] ( )

Using Eqs. (4.6) and (4.16), the normal component of the basis function across
the edge can be {ound to be
1

fL-b= : (41.17)
g22(w = 1,v)

Since the denominator is the differential length along the common cdge, the
current density across the edge per unit parameter is independent of the vest of

the geometry. Therefore, the normal components of the two halves of the RT
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BFs on the common edge are equal, which means that the two halves can be

paired properly to form the basis function with continuous normal component

at the common edge.

CRT BF's defined on rectangular subdomains on Bézier patches were im-
plemented for the solution of scattering problems involving scatterers modeled
by meshes of connected Bézier patches. The surface tangents needed can be
casily computed using the chain rule of differentiation and the properties of

the Bernstein polynomials, such as

O%B;(s) =n [Br5!(s) = BI(s)]. (4.18)

Both B7!(s) and B!7!(s) are already computed in the calculation of r(u,v),
therefore, no extra effort is needed for the calculation of the surface tangents,

which are used in the definition of the BI's.

4.4 Curved RWG (CRWG) Basis Functions

A curved triangular subdomain, on the surface on which the CRWG BI is
defined, can be considered as a mapping of a triangular subdomain in the (s,t)
parametric space, which, in turn, is the mapping of the unit triangle in the

(u, v) parametric space into the (s,¢) parametric space.
With the transformation
r, = u(ry — r3) 4+ v(r; — rg) +r (4.19)

subject to the condition

ut+v<l1, (-1.20)
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[igure 4.5: CRWG BF defined on the unit triangle in the parametric space.

the unit triangle of the (u,v) parametric space is mapped to a triangular sub-
domain in the (s,t) parametric space, where r; are the (s,¢) coordinates of
the three vertices of the triangular subdomain. With the patch transforma-
tion, the triangular subdomain in the (s,t) space is mapped to the curved

triangular subdomain on the patch in real space.

When quadratic triangular surfaces are used to model the scatterer. the unit
triangle of the (u,v) domain can be directly mapped to a quadratic triangle in
the real space defined by 6 points. The parametric representation of the patch
18

r(u,v) = ag + aju + av + aguv + au? + asv’. (4.21)
With this transformation, the subdomain supporting half of a CRWG BI on

the patch is formed from the unit triangle of the (u,v) domain.

The CRWG BF's can now be defined on the (w,v) domain very simply []

as

b(r) = —1—— (u QE + v ﬁ) , (-£.22)
g(u,v) \ Ju dv



whose divergence can be formulated to be
2
V9(u,v)

Equation (4.22) actually defines half of the CRWG BF. By defining the posi-

V,-b(r) = (4.23)

tions of the vertices of transformation (4.19), one can properly pair the two

halves to form the BF.
The surface charge in each subdomain is found to be
ods = ivs - by/g(u,v)dudv, (4.24)
w

which is constant in the parametric space (ods/dudv). The current density
across the common edge per unit parameter is independent of the geometry, as
proven below. Thus there is no line charge accumulation on the common edge.
The unit vector parallel to the common edge and the unit vector perpendicular

to the common edge are given as

i 1 <dr ()r) (4.25)

- Vi1 + 922 — 2912 Ou v
and
T 1 or O
by =1t xn= [(.(/22 - 912)0_ + (911 — 012)7] (4.26)
\/9(911 + ¢22 — 2912) u Jv

Using Igs. (4.22) and (4.26), the normal component of the basis [unction across

the edge can be found to be

" 1 .
i, b= . (11.27)
* Vo + 922 — 2912

Since the denominator is just the differential length along the common edge,

the current density across the edge per unit parameter is independent of the
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rest of the geometry. For two triangular subdomains sharing a common edge,
the normal components of the two halves of the CRWG BF are equal, therefore,

there is no line charge accumulation at the common edge.

CRWG BFs defined on quadratic triangular subdomains defined by 6 dis-
crete points in space that are on a topologically triangular curve are imple-
mented for the solution of scattering problems involving scatterers triangulated

by quadratic triangles.

4.5 First-Order RT Basis Functions

RT BI's allow a piecewise (PW) continuous representation of the surface cur-
rent in the direction of current flow and a PW constant representation in the
transverse direction. A natural extension of RT BI's are the first-order (lin-
car) R BI's (LinRT BEs). They allow a PW continuous representation ol the
surface current in the direction of current flow and a PW linear representation
in the transverse direction. In the parametric (u,v) space, they can be simply

defined as

fi(u,v) = L u(l—v) M, (4.28)
g(u,v) du
fa(u,v) = ! uv()r(u,v) (4.29)
Glo) O
and
f(u,v) = afi(u,v)+ bfy(u,v) (1.30)
with divergences
1
V-fi(u,v) = —/——(l—v), (++.31)
9(u,v)
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[Figure 4.6: First-order rooftop basis functions defined on the (u,v) parametric

space.

V-fi(u,v) = ;v (4.32)

g(u, v)
and
1

V- -flu,v) = ——==(a(l—v hv),
(v, v) \/m( (1 )+ bv)

respectively, on the same parametric domain. They are depicted in Fig 1.6.

(4.33)

The above definitions are for hall of the LinRT BI'. By properly pairing two
subdomains the LinRT BI associated with the common edge can be formed on
them. Further continuity constraints can be imposed to force a PW continuous
current approximation in the direction transverse to the direction of current

flow.

These BI's are implemented for the scattering problem involving a flat patch
as outlined in Chapter 5. The results obtained and presented in Chapter 5 are
incorrect. A close investigation of these BI's using the topological properties
of the rectangular mesh of the flat patch reveals that the LinRT BIl's are not
capable of properly modeling the induced surface charge, which is implicitly

modeled by the divergence of the BF. This leads to a very important and
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intuitive idea: The basis functions used must also be capable of representing
the induced surface charge density modeled by the divergence of the BFs, along
with the induced surface current density. Due to this observation, these BFs

are not used in the formulations and implementations for scattering problems

involving arbitrary geometries.

Other higher-order BFs on triangular and rectangular subdomains are re-
ported in the literature [1, 21, 22, 23, 24]. Some of them are proven not to
be capable of representing the surface charge density properly [9]. In this the-
sis only CRT BFs and CRWG BFs are employed in the MoM formulations of

scattering problems involving arbitrary scatterers.
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Chapter 5

Scattering from Canonical and

Complicated Targets

The Mol and the I'MM formulations of the electromagnetic scattering prob-
lems using quadratic triangular patch modeling and Bézier patch modeling are
implemented. Also the MoM solutions of scattering [rom a perfect-electric-
conductor (PEC) sphere are implemented using the exact model of the sphere
with CRWG BI's and CRT BI's. The results obtained are compared on the ba-
sis of geometry modeling. It is shown that accurate geometry models mcrease
the solution accuracy, hence the problem size can be reduced using better ge-

ometry models for the scatterers.

In this chapter, the solutions of some sample scattering problems will be
presented. For sample problems involving curved surfaces, the results ol dif-

ferent geometry-modeling techniques will be compared. Analytical results will



also be given when possible. All sample problems are solved for different dis-
cretizations in order to ensure the convergence of the solutions. Mostly three
geometry-modeling schemes, namely, flat triangulations, quadratic triangula-
tions, and Bézier-patch formulation will be contrasted for the sphere. Espe-
cially, the problem of scattering from a PEC sphere constitutes a benchmark
in order to investigate the effect of the geometry model on the solution. It is
a doubly-curved canonical scatterer for which the exact parametric geometry
model exists. The closed-form solution to the problem also exists, therefore,
the results obtained, including the induced surface currents and the scattered
far-fields, can be compared with the analytical results. or these reasons, this

problem is investigated in detail.

The implementation of quadratic triangular patch formulation is integrated
with the commercially available CAGD program, MSC/ARIES. The triangu-
lation of the scatterer is obtained from this program and the induced surface
current results obtained by executing the code that were developed are input

back to the program where the user can visualize the solution.

The MoM and the I'MM solutions will also be compared on the basis of
accuracy, solution time, and memory requirements. Some of the problems are
solved for large number of unknowns in order to demonstrate the capabilities

of the FMM.

5.1 Flat Patch

This is the first sample problem studied because of the simplicity of the gecom-

etry. The scatterer is an infinitely thin flat square patch lying on the a-y plance
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Figure 5.1: Flat PEC patch illuminated by a plane wave.

centered at the origin as depicted in Fig. 5.1. The patch is illuminated by a

plane wave propagating in the negative 2 direction.

The surface current density induced on the patch and the scattered far-held
are investigated using the RT BFs, the LinRT BFs, and (he CRWG BFs, which
become identical to flat RWG BFs for this geometry. Using the LinRT BFs
seems to be legitimate choice for the current expansion, but we will present
some interesting results obtained with them later in this section. Also, the

current results obtained using flat RWG BFs are given. The discretization

scheme for RT BFs is depicted in Figure 5.2.

Figure 5.3(a) shows the component of the induced surface current that is
in the same direction as the incident electric held, which may be called the
copolar current. The result is obtained using the RT BFs and normalized
with the magnitude of the incident magnetic held. Figure 5.3(b) shows the
crosspolar component of the induced surface current, whose direction ol flow

is perpendicular to the incident held polarization. The edge singularities in
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Figure 5.2: Discretization of the flat patch.

both components are resolved. The decoupling of the two perpendicular com-
ponents by the RT BF's also turned out to be desirable for this problemn since
the magnitudes of the two current components are very different. This feature
does not exist in the (flat or curved) RWG BF's, i.e., on one triangular subdo-
‘main of the BIF, the BF is designed to be a vector function with two nonzero
components. As seen in I'ig. 5.3, near the y = 0 and y = A edges, the copolar
current takes large values in magnitude, and the crosspolar current is smaller
compared to the copolar current. In the middle region of the patch, again
the copolar current has large values and crosspolar current has smaller values.
The RT BFs, by decoupling these two components, can resolve the copolar and
crosspolar currents very well. Fligure 5.3(¢) and (d) show the variation of the
total induced surface charge, which is calculated with the aid of the continuity
cquation. It should be noted that the RT BI's used to model the induced sur-
face current density results in a PW constant modeling of the induced surface

charge density.

In Figs. 5.4(a) and (b) the induced surface current computed using flat
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Figure 5.3: The induced current and charge densities on the flat patch. The
patch is discretized into 10 x 10 divisions and the RT BFs on the internal edges
are used for the expansion. (a) Magnitude of the copolar induced current.
(b) Magnitude of the crosspolar current. (¢) Real part of the divergence of the
induced current. (d) Imaginary part of the divergence of the induced current.
The current results are normalized with the magnitude of the incident magnetic
field, and the divergence of the current is presented as the charge distribution.



RWG BFs is shown. Figure 5.4(c) and (d) depict the induced surface charge
density. The resemblance to the RT BF solutions is very well, except for the
crosspolar-current result. The irregularities in the solution obtained using the
RWG BFs can be expalined using the above argument. Each RWG BF is
defined over two triangular subdomains. On the subdomains they are defined,
they have two nonzero components. If one component of the induced current
tends to large values and the other to small values in one subdomain, the
MoM solution. inevitably results in such irregular current solutions, because
the solution is an optimization procedure which minimizes the average error
on the patch and the basis function does its job as good as it can. The MoM
solution makes a trade-off between the two components of the BF, one of which
tends to get larger and the other tends to get smaller, both of which cannot
be satisfied at the same time. Although the crosspolar current seems very
noisy, the RWG BI's are shown to perform as good as the RT BIF when the

boundary-condition error on the patch is considered [25].

RWG BFs also approximate the induced surface charge density by a PW
constant distribution as depicted in Figs. 5.4(c) and (d). The results agree

with the RT BF solutions.

[Figure 5.5 shows the current and charge solutions for the flat-patch problem
obtained with a finer discretization of the geometry using the RT BI's. The

convergence of the solutions can be observed. Another point to notice is the

better resolution of the edge singularities.

The RT BFs model the unknown surface current density in a PW continuous
fashion in the direction of the current flow and in a PW constant fashion. in

the transverse direction. Can better BFs be used for the current expansion
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IFigure 5.4 The induced current and charge densities on the flat patch. The
patch is triangulated into 200 subdomains and the RWG BFs on the internal
edges are used for the expansion. (a) Magnitude of the copolar induced current.
(b) Magnitude of the crosspolar current. (¢) Real part of the divergence of the
induced current. (d) Imaginary part of the divergence of the induced current.
The current results are normalized with the magnitude of the incident magnetic
field, and the divergence of the current is presented as the charge distribution.
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Figure 5.5: The induced current and charge densities on the flat patch. The
patch is discretized into 20 x 20 divisions and the RT BF's on the internal edges
are used for the expansion. (a) Magnitude of the copolar induced current.
(b) Magnitude of the crosspolar current. (c) Real part of the divergence of the
induced current. (d) Imaginary part of the divergence of the induced current.
The current results are normalized with the magnitude of the incident magnetic
field, and the divergence of the current is presented as the charge distribution.
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so that more continuity constraints be imposed to get better results? Some
higher-order BF's are reported in the literature [4, 21, 22, 23, 24]. The LinRT
BFs defined in Chapter 4 are implemented. These LinRT BFs model the
current PW bilinearly and they model the charge PW linearly. If continuity
of the tangential component of the BF on the internal vertices of the patch
is imposed, a new group of BFs is obtained which we called linear continuous
rooftop (LinContRT) BFs. They are identically the same basis ful_lctions as the

pyramidal basis functions defined on quadruples of rectangular subdomains.

Figure 5.6 depicts the induced surface current density computed using the
LinContRT BF's and the induced surface charge density calculated thereafter.
The copolar current seems to be acceptable, but the crosspolar component is
unexpectedly incorrect. The situation obtained with a finer discretization is
no hetter (Fig. 5.7). Figures 5.8 and 5.9 show the results obtained by using
LinRT BFs. The results are even worse. A close investigation of the
problem resulted in a very important and intuitive idea: The basis [unction
chosen for the expansion of the surface current density must also be capable
of representing the surface charge distribution. Considering the degrees of
freedom (DoF's) supplied by the current expansion and the Dol's needed by
the charge approximation, it is proven [9] that the LinRT BFs and LinContRT

BI's are not suitable basis functions for this problem.

In Figure 5.10, the copolar and crosspolar components of the boundary-
condition error (BCE), on the patch for two different solutions belonging to
two different discretizations are plotted. The BCE is seen to be satisfied over
the surface of the patch except at the @ = 0 and @ = A edges for the copolar

BCE and at the other two edges for the crosspolar BCIL. This is because the
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Iigure 5.6: The induced current and charge densities on the flat patch. The
patch is discretized into 10 x 10 divisions and two LinRT BF's on the internal
edges are used for the expansion. Transverse continuity is imposed at each
internal vertex. (a) Magnitude of the copolar induced current. (b) Magnitude
of the crosspolar current. (c¢) Real part of the divergence of the induced current.
(d) Imaginary part of the divergence of the induced current. The current
results are normalized with the magnitude of the incident magnetic field, and
the divergence of the current is presented as the charge distribution.
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Figure 5.7: The induced current and charge densities on the flat patch. The
patch is discretized into 20 x 20 divisions and two LinRT BIFs on the internal
edges are used for the expansion. Transverse continuity is imposed at each
internal vertex. (a) Magnitude of the copolar induced current. (b) Magnitude
of the crosspolar current. (c) Real part of the divergence of the induced current.
(d) Imaginary part of the divergence of the induced current. The current
results are normalized with the magnitude ol the incident magnetic field, and
the divergence of the current is presented as the charge distribution.
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IYigure 5.8: The induced current and charge densities on the flat patch. The
patch is discretized into 10 x 10 divisions and two LinRT BFs on the internal
edges are used for the expansion. (a) Magnitude of the copolar induced current.
(b) Magnitude of the crosspolar current. (c) Real part of the divergence of the
induced current. (d) Imaginary part of the divergence of the induced current.
The current results are normalized with the magnitude of the incident magnetic
field, and the divergence of the current is presented as the charge distribution.
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[Figure 5.9: The induced current and charge densities on the flat patch. The
patch is discretized into 20 x 20 divisions and two LinRT BI's on the internal
edges are used for the expansion. (a) Magnitude of the copolar induced current.
(b) Magnitude of the crosspolar current. (c) Real part of the divergence of the
induced current. (d) Imaginary part of the divergence of the induced current.
The current results are normalized with the magnitude of the incident magnetic
field, and the divergence of the current is presented as the charge distribution.



x/wavelength

Figure 5.10: Boundary-condition error on the flat patch. The solution is ob-
tained using the RT BFs. (a) Copolar BCE for 10 x 10 discretization. (b) Copo-
lar BCE for 20 x 20 discretization. (c) Crosspolar BCE for 10x 10 discretization.
(d) Crosspolar BCE for 20 x 20 discretization.

copolar and crosspolar unit vectors are not tangential to z = 0, A and y = 0, A

edges, respectively. Discretizing the original problem can be thought of as

enlarging those edges in space, on which the boundary condition need not be

satisfied.

Giiven for comparison and for the demonstration of the incapabilities of the
LinRT BFs and LinContRT BFs, Figs. 5.11 and 5.12 depict the BCE for two

different discretizations and for copolar and crosspolar components.
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Figure 5.11: Boundary-condition error on the flat patch. The solution is ob-
tained using the transversely continuous LinRT BFs. (a) Copolar BCE for
10 x 10 discretization. (b) Copolar BCE for 20 x 20 discretization. (c¢) Crosspo-
lar BCE for 10x 10 discretization. (d) Crosspolar BCE for 20x 20 discretization.
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Iligure 5.12: Boundary-condition error on the flat patch. The solution is ob-
tained using the LinRT BFs. (a) Copolar BCE for 10 x 10 discretization.
(b) Copolar BCE for 20 x. 20 discretization. (c¢) Crosspolar BCE for 10 x 10
discretization. (d) Crosspolar BCL for 20 x 20 discretization.
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A triangulation with the quadratic triangular subdomains obtained from
the MSC/ARIES is used with the CRWG BFs ! and the solution for the induced
surface current density is visualized in the MSC/ARIES. This program can
make color plots of the magnitude of the induced surface current when the
values at the vertices of the triangulation are given. Figure 5.13 shows the
magnitudes of the copolar and crosspolar components of the induced surface

current as plotted by the MSC/ARIES.

Also, as a comparison between RT BFs and RWG BF's on the patch, the
bistatic RCS of a 2X x 2) patch for the same incident field and on the ¢ = 0
cut ijs shown in Fig. 5.14. The two results are indistinguishable meaning that
both the RT BI's and the RWG BI's perform equally well on the flat patch for

RCS calculations although there exists differences between the current solutions

using the two BI's.

[Migure 5.15(a) shows the matrix solution times of the MloM and the I'NIM.
the MoM matrix is solved using direct LU decomposition and using conjugate
gradient squared method (CGS). For the 'MM solutions the CGS is utilized.
For unknown sizes around a few hundreds the 'MM outperforms both the
MoM solved with LU decomposition and the MoM solved with the CGS. Fig-
ure 5.15(b) shows the total problem solution times including the matrix filling
times. When total solution timeis considered, the F'MM is observed to be faster
than the standart MoM solution for problem sizes above 200, which is a fairly
low number for scattering problems. Figure 5.16 shows the time consumed
per iteration for the Mol and the FMM algorithms. The MoM complexity

dominates for problem sizes larger than 1000.

L1t should be noted that neither the triangular subdomains nor the BI's are curved for

this geometry.
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Figure 5.17 depicts the memory required to solve the problem using the
MoM and the FMM. The O(N'%) memory requirement order of the FMM and
O(N?) memory requirement order of the MoM is clearly observed. For problem

sizes above 1000, the MoM memory requirement dominates.

To demonstrate the accuracy and the efficiency of the FMM, Fig. 5.18
depicts two solutions obtained by solving the same problem both with the
MoM and with the FMM using the quadratic-triangular-patch models and the.
Bézier-patch models of the scatterers. The MoM result using the CRWG BFs,
shown in [ig. 5.18(a) is obtained in 364 seconds, whereas the FMM solution is
obtained in 163 seconds using an iterative solver. The solution of the Bézier-
patch model of the flat patch shown in Fig. 5.18(b) is obtained in 433 seconds

using the MoM and in 251 seconds using the FMM.

[igure 5.19 shows the bistatic RCS of a 10A x 10X flat patch illuminated by
a 0-directed plane wave incident from the direction § = 135°, ¢ = 180°. About
6.5 unknowns per wavelength are used. This result is obtained using the I'MM
with the RT BIs and curved RWG BF's, and is presented here to demonstrate
the efficiency of the F'MM. Note that the direct application of the Mo would
result in an 8000 x 8000 system of equations, which would require more than
[ GBytes of memory for its storage and solution. The dillerence between the

RI and the RWG solutions is expected to drop for finer discretizations.
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Figure 5.13: (a) Magnitude of the copolar induced current on a Ax A flat patch,
(b) Magnitude of the crosspolar induced current on a A x A flat patch. The

color plots are generated using the MSC/ARIES.
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I'5gure 5.1-1: Histatic RCS of a 2A x 2A flat patch. — 15 x 15 division with 120
KV BFs, — MSC/ARIES triangulation with 560 RWG BFs.
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[igure 5.15: Timing comparisons of the MoM and the FMM. (a) The matrix
solution times using the MoM with LU decomposition, the MoM with CGS,
and the FMM with CGS , (b) The problem solution times using the MoM with
LU decomposition, the MoM with CGS, and the FMM with CGS .
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Figure 5.16: CPU time consumed per one iteration of MoM anf FMM algo-

rithms. The iterative solution method is CGS.
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Memory Required by MoM and FMM Algorithms
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Figure 5.17: Approximate memory requirements of the MoM and the FMM
algorithms.
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Figure 5.18: Validations of the FMM solutions. (a) Bistatic RCS of a 2X x 2A
flat patch using 736 CRWG BI's, — the MoMl solution, —— the FMM solution.
(b) Bistatic RCS of a 2X x 2\ flat patch using 760 CRT BI's, — the MoM
solution, —— the I'MM solution.
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Figure 5.19: Bistatic RCS of a 10A x 10X flat patch. — 65 x 65 division with
8320 RT BFs, —— MSC/ARIES triangulation with 8008 RWG BF's.
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5.2 Sphere

This is the most important one of the sample problems investigated. The
geometry is canonical and doubly curved. It is an excellent sample to compare
various geometry-approximation techniques, since the closed-form solution to
the problem also exists. The solution of this problem is obtained using the
exact model, flat triangulation, and quadratic triangulation of the sphere. It
should be noted that rational Bézier patches can model the sphere exactly. On
these models, CRT BFs and flat and CRWG BFs are used. Solutions of the

induced current density and the scattered electric field are compared.

[n Fig. 5.20, the problem configuration is depicted. The sphere is centered
at the origin and the x-polarized incident plane wave is propagating in the
positive = direction. Mie-series technique [26] is used to obtain a closed-form
relerence solution for the induced surface current density and the scattered
clectric field in the far zone. The scattered far-field results are normalized with
respect to spherical spread and phase factors. In most of the plots, the refer-
ence solution is plotted with a solid line. This solution satisfies the boundary
condition on the sphere with an accuracy of one part in thousand. The results
are observed and presented on the three principle cuts of the sphere, namely,
the 0 = 90° , ¢ = 0°, and ¢ = 90° cuts. Some components of the induced cur-

rent and the far fields are not given on some cuts because they ave identically

equal to zero on those cuts.

In the following subsections, the results obtained for the sphere by applying

different geometry-approximation techniques are presented.
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Figure 5.20: A PEC sphere illuminated by a plane wave.

5.2.1 Flat Triangulation with RWG BFs

The 0.2X-vadius sphere is approximated using flat triangles as shown in I%ig 5.21
and the flat RWG BI's are used on pairs of triangles for the expansion of the
surface current density. Figure 5.22 shows the solution of the induced surface
current for different numbers of BI's used. The convergence of the solutions as
the number of unknowns is increased can be observed from the figures. The
spikes in the current solution in Fig. 5.22(a) are due to the coupling of the two
components of the RWG BF on each triangular subdomain, as mentioned in

Scection H.1.

Figure 5.23 shows the scattered field results in the far zone for the same
discretizations used to obtain the current results shown in I'ig. 5.22. It should
be noted that the rapid variations in the current solution is swept out by the

far-field transformation and the far-field results are, although not very close to
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Figure 5.21: Flat triangulation of the sphere.

the exact solution, quite smooth. The error in the scattered far-field results
15 due in part to the fact that the flat cell model was inscribed within the
desired sphere. As observed {rom the results, to obtain the solution accurately
using flat triangulations, one must use a fairly fine triangulation to model the
geometry properly. Since the BFs used are defined on these subdomains, this

results in the increase of the size of the problem, which is undesirable.

5.2.2 Exact Model with CRWG BFs

By projecting each triangular subdomain of the flat triangulation on the sphere
surface, a triangulation formed of curved triangular subdomains on the exact
model of the sphere can be obtained [27]. This projection can be accomplished
by normalizing the position vector r, on the flat triangle with its amplitude.
Multiplication of this unit vector by the radius of the sphere gives the position

vector r which is now on the surface of the sphere, thus the flat triangular
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Figure 5.22: Magnitude of the surface current induced on the 0.2A-radius
sphere. Flat triangulation of the sphere is used with the flat RWG basis func-
tions. The results are normalized with the magnitude of incident magnetic field
and are given on the three principle cuts of the sphere for different discretiza-
tions and different numbers of unknowns. — Mie series, - -
114 unknowns, —- — 9 x 10 divisions and 240 unknowns, —— 11 x 16 divisions

and 480 unknowns.
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Figure 5.23: Magnitude of the electric field scattered by the 0.2X-radius sphere.
Flat triangulation ol the sphere is used with the flat RWG basis [unctions.
The results are given on the three principle cuts of the sphere for different
discretizations and different numbers of unknowns. — Mie servies, -+ 7 X 8
divisions and 144 unknowns, — - — 9 x 10 divisions and 240 unknowns, ——

11 x L6 divisions and 480 unknowns.



subdomain is projected on the sphere to form the curved triangular subdomain.
The CRWG BFI's are used on pairs of curved triangular subdomains. The
induced surface current results are shown in Fig. 5.24. The current results
seem noisier than the flat triangulation results. This is due to the curved
nature of the CRWG BFs, which is a result of the parametric mapping in
their definition. The convergence towards the exact solution is observed as the

number of BF's used is increased.

Although the current results seem worse, the scattered field results shown
i Fig. 5.25 obtained using the exact model are superior to the results ob-
tained using flat triangulation shown in Fig. 5.23. To obtain this degree of
accuracy one has to use a large number of BI's with the flat triangulation.
Thus the dependence of the scattered field results on the geometry model is

clearly demonstrated by these results.

5.2.3 Exact Model with CRT BF's

Figure 5.26 shows the discretization of the sphere using the CRT BI's. This
discretization is obtained by dividing the §-¢ parametric domain into a uniform
rectangular grid. The CRT BFs are defined on each pair of subdomains. This
regular gridding results in a better current solution as seen in Iig. 5.27. Due
to this nice gridding of the sphere, accurate far-field results have been obtained
for number of unknowns as low as 54 as shown in Fig. 5.28. T'he accuracy of

the scattered-field results are in the same order as those obtained using CRWG

BI's presented in the previous subsection.
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IYigure 5.24: Magnitude of the surface current induced on the 0.2A-radius
sphere. Curved triangulation of the sphere is used with the CRWG basis func-
tions. The results are normalized with the magnitude of incident magnetic field
and are given on the three principle cuts of the sphere for different discretiza-
tions and different numbers of unknowns. — Mie series, - -+ 7 x 8 divisions and
144 unknowns, — - — 9 x 10 divisions and 240 unknowns, —— L1 x 16 divisions

and 180 unknowns.
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Figure 5.25: Magnitude of the electric field scattered by the 0.2A-radius sphere.
(‘urved triangulation of the sphere is used with the CRWG basis functions.
The results are given on the three principle cuts of the sphere lor different

discretizations and different numbers of unknowns. - Mie series, -+- 7 X 8
divisions and 14+ unknowns., — - — 9 x 10 divisions and 210 unknowns, ——

11 x 16 divisions and 480 unknowns.
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Figure 5.26: Rooftop basis and testing functions on the sphere.

5.2.4 Quadratic Triangulation with CRWG BFs

In real-lile electromagnetic scattering probleins, the exact geometry model of
the scatierer is almost never available and the scatterer must be approximated
somehow. Finite-difference solution methods mostly approximate the geome-
try by a collection of cubic or rectangular domains. This may be called the
zeroth-order approximation of the geometry. A better approximation is the
(lat triangulation of the scatterer surface, as presented hefore, which we may
call the first-order approximation of the geometry. The degree of the poly-
nomial approximation can be further increased. In this section, the solution
of the same scattering problem outlined before using a higher-order geonmetry
model, namely, the quadratic triangulation of the sphere, is presented. lor
the expansion of the induced surface current. the CRWG BIs defined on pairs
ol quadratic triangular subdomains are used. The triangulation ol the sphere

is directly obtained from a commercial CAGD program: MSC/ARIES. The
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Figure 5.27: Magnitude of the surface current induced on the 0.2X-radius
sphere. Curved rectangular meshing of the sphere is used with the CRT basis
[unctions. The results are normalized with the magnitude of incident mag-
netic field and are given on the three principle cuts of the sphere for dilferent
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discretizations and different numbers of unknowns. — Mie series, ---

divisions and 54 unknowns, — - — 7 x 8 divisions and 104 unknowns, —— 9 x 13

divisions and 3006 unknowns.
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Figure 5.28: Magnitude of the electric field scattered by the 0.2A radius sphere.
Curved rectangular meshing of the sphere is used with the CRT basis functions.
The results are given on the three principle cuts of the sphere for different

discretizations and different numbers of unknowns. -— Nie series, ---

Hhx 6

divisions and 54 unknowns, — - — 7 x 8 divisions and 104 unknowns, —— 9 x I8

civisions and 306 unknowns.
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Figure 5.29: Magnitude of the induced surface current on a 0.2A-radius spliere.
The spliere is discretized using quadratic triangles and the EFiE is solved using
the CRVVG BEs defined on these triangular subdomains. The color plot was

generated using the MSC/ARIES.

i(sults on the vertices of the triangulation are input back to tlie program for

the visualization of the solution.

The magnitude of the induced surface current on the 0.2A-radius sphere is
seen in Fig. 5.29 from 8 dilTerent views. The scattered-field results arc given
in Fig. 5.30 for a 0.2A-radius sphere and in Fhg. 5.31 for a 0.5A-radiiis sphere,
‘riie results are very close to the exact, solution, meaning that the quadratic

l.riangular patch approximation [lerforms significantly better than the flat patch

model.
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Figure 5.30: Magnitude of the electric field scattered by the 0.2A-radius sphere.
C'urved triangulation of the sphere, obtained from the MSC/ARIES, is used
with the CRWG BIs. The results are given on the three principle cuts of the
156 curved RWG BFs, — - — 318 curved RWG Bls.

sphere. — Mie sernies, - - -
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Figure 5.31: Magnitude of the electric field scattered by the 0.5A-radius sphere.
(‘urved triangulation of the sphere, obtained from the MSC/ARIES, is used
with the CRWG basis functions. The results are given on the three principle
cuts of the sphere. — Mie series, - - - 480 curved RWG BI's, — - — 831 curved
RWG BFs, —— 1020 curved RWG BI's.
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5.2.5 Bezier-Patch Model with CRT BF's

If available CAGD programs are examined, it will be observed that nearly all
of them are based on NURBS meshes. The NURBS surfaces are defined and
explained in Chapter 3. Their advantage is that they allow complex shapes,
including conic sections, to be defined precisely by means of a small number of
NURBS surfaces, which are defined by a small number of control points. For
Instance, a sphere can be described by only one NURBS. Any NURBS can also
be written in terms of piecewice rational Bézier patches. It is quite fast and
easy to obtain the Bézier mesh form of a NURBS representation by applying

the Cox-de Boor transformation algorithm [17].

A code that uses the Bézier patch model of the scatterer geometry with CRT
BI's defined on them is implemented for the solution of scattering problems
involving arbitrary curved scatterers. 8-patch Bézier model of the sphere is
used along with the CRT BFEFs to check the performance of the code and the
modeling technique. The discretization is performed in the parametric space
of each patch by dividing the definition domain of the patch uniformly mto
rectangular subdomains. Figure 5.32 depicts the far-fields scattered from a
0.2)-radius sphere. The agreement with the analytical result is good for all
discretizations. The results of the 0.5A-radius sphere are also in good agreement

with the closed-form solutions as depicted in I'ig. 5.33.

The advantage of using Bézier patches is that the geometry designed in a
CAGD program using NURBS meshes is directly used in the solution algo-

rithm. Therefore, no geometry modeling error is induced on the solution.
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Figure 5.32: Magnitude of the electric field scattered by the 0.2A-radius sphere.
S-patch Bézier model of the sphere is used with the CRT BI's. The results are
given on the three principle cuts of the sphere. — Mie series, - -+ 132 curved

RT BFs, — - — 240 curved RT BIs.
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Iigure 5.33: Magnitude of the electric field by scattered the 0.5A-radius sphere.
8-patch Bézier model of the sphere is used with the CRT BI's. The results are
given on the three principle cuts of the sphere. — Mie serics, -+ 552 curved

RT BFs, — - — 756 curved RT Bl's, — - — 992 curved RT BI's.
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5.2.6 Comparison of Different Modeling Schemes

The problem of scattering from a 0.5A-radius sphere is solved by using the flat
triangulation, exact curved triangulation, and exact rectangular mesh of the
sphere with the RWG BFs, the CRWG BFs, and the CRT BFs, respectively.
The current results and the scattered-field results are superimposed with the
exact solution for comparison. It is interesting to note in Ifig. 5.34 that the
current solutions obtained with flat and curved triangulations are very close to
each other, both being also close to the exact solution. The reason of the sharp
spikes on the current solution in Fig. 5.34(a) was explained in Section 5.1. The

solution obtained with the CRT BFs does not exhibit such irregularities.

Although the current solutions for the flat RWG BI's and the CRWG BFs
are close to each other, I'ig. 5.35 shows that the scattered-field results are not
as close as may be expected. The reason for this is that the geometries, on
which the flat RWG BEs and the CRWG BI%s are defined, are different. This
difference in the positions of the currents in space, defined by the RWG BE's
and the CRWG BF's, shows itself as a difference in the scattered-field results,
because of the phase term in the far-field transformation. All results are seen

to agree with the exact solution, some showing better agreement.

The scattered-field solutions of the 0.2A-radius sphere problem using the
quadratic triangular patch model and the Bézier patch model for approximately
the same number of unknowns is shown in Fig. 5.36 for comparison. The results
of the 0.5\-radius sphere problem are compared in I'ig. 5.37. The agreement
of both solutions with the exact solution is good. For the 0.5A-radius sphere

problem, quadratic triangular patch solution performs marginally better than
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Figure 5.34: Magnitude of the surface current induced on the 0.5X-radius
sphere. Flat-triangulation, curved-triangulation, and curved-rectangular mesh-
ing of the sphere are used with the RWG, the CRWG, and the CRT BI's, re-
spectively. The results are normalized with the magnitude ol incident magnetic
field and are given on the three principle cuts of the sphere. — Mie serices, - - -
Il x 16 divisions and 660 flat RWG BFs. —-— 11 x 16 divisions and 660 curved
RWG BFs, —— 11 x 22 divisions and 462 curved RT BIs.
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the Bézier patch solution. This performance difference can be attributed to the

degenerations of the surface at the poles of the sphere for the 8-patch Bézier

mmodel.

As a quantitative comparison between various geometry modeling tech-
niques, Fig. 5.38 shows the maximum difference between the far-fields scat-
tered by a 0.5X radius sphere computed using different geometry models for
the sphere. The far-field is sampled at 117 directions chosen uniformly on the
unit sphere, and Mie series solution is used as the reference. The performance
of different geometry modeling techniques can be observed as a {unction of
unknowns. Figure 5.39 depicts the norm of the error obtained as the square-
root of the sum of the squares of the error values at the 117 directions. The
effect of the geometry model on the solution is well observed on this plot as a
function of number of unknowns. It should be noted that both Bézier-patch
models of the sphere are exact but the 8-patch model has surlace degeneracies
at the poles. This degeneracy shows itself in the definition of the basis func-
tions around the two poles. Due to this degeneration the performance of the

S-patch Bézier model is worse than the 6-patch Bézier model which does not

have any surface degeneracies.

[Figure 5.40 depicts two solutions obtained by solving the same problem with
both with the MoM and the FMM using quadratic triangular patch models and
Bézier patch models of the scatterers. The MoM result using the CRWG BEs,
shown in Fig. 5.40(a) is obtained in 155 seconds, whereas the ['MM solution is
obtained in 122 seconds using an iterative solver. The solution obtained using
the Bézier-pateh model of the flat patch shown in Fig. 5.40(b) is obtained in

291 seconds with the MoM and in 180 seconds with the I'NIM.
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IFigure 5.36: Comparison of the different geometry models used in the compu-
tation of the magnitude of the electric field scattered by the 0.2A-radius sphere.
Curved triangulation of the sphere, obtained from the MSC/ARILS, is used
with the CRWG BFs and the 8-patch Bézier model of the sphere is used with
the CRT BFs. The results are given on the three principle cuts ol the sphere.
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IMigure 5.37: Comparison of the different geometry models used in the com-
putation of the magnitude of the electric field scattered by the 0.5A-radius
sphere. Curved triangulation of the sphere, obtained from the MSC/ARIES is
used with the CRWG BI's and 8-patch Bézier model of the sphere is used with
the CRT BI's. The results are given on the three principle cuts of the sphere.
— Mie series, - -+ 480 curved RWG BFs, —— 552 curved RT BI's.
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Figure 5.40: Validations of the I'MM solutions. (a) Bistatic RCS of a
0.5\-radius sphere using 480 CRWG BF's, — the MoM solution, —— the 'MM
solution, (b) Bistatic RCS of a 0.5\ radius sphere using 380 CRT BI's, — the
MoM solution, —— the FMM solution.

5.3 Missile

As an example of a rcal-life scatterer, a generic missile is considered. The mis-
sile is designed using the second-order rational Bézier patches on a commercial
CAGD program: RHINOCEROS. It should be noted that this missile is not
a model of any existing missile. The problem configuration is as follows: The
missile is lying in the z direction with the main wings on the y-z plane. [or
bistatic RCS calculations, the incident field is @ directed and propagating in
the negative = direction (head-on incidence). The scattered far ficld is observed

on the y-z plane. Figure 5.41 shows a typical quadratic triangulation of the

missile.

Figure 5.42 shows the magnitude of the induced surface current on the

missile that is illuminated with a head-on incident r-polarized plane wave.
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bNigurc 5.41: Quadratic triangular mesh of the missile generated using the
MSC/ARIES.

The frequency of the wave is 10 MHz. At this frequency, the length of the
missile is about twice the wavi'length. Ihe variation of the induced surface
current on the missile vaiifies this observation. The solution is obtained using

the curved triangulation of the missile with CRWG BFs. The color plot of the

induced surface current is obtained from MSC/ARIES.

In Figs. 5.43, 5.44, and 5.45, the bistatic RCS results of the missile is
shown. The problem is solved at three different frequencies using the curved
triangulation and the Bezier-patch model of the missile, again for a head-on
incident ,r-polarized plane wave. Also shown in the plots are the rc'sults of the
flat triangulation model of the missile from |I. Kiir8at. Cendur. Ilie scal.lered
fic'ld is observed on the y-z plane. The agreement among the rcsull.s is fairly

good. It should be noted tliat fairly good results are observed using as low as

5 unknowns per wavelength.

95



o
D

1.47fl48E+00
1.41528E4"0
1.36208E"00
1.9070€Ei-00

| ARFESR0
1.14527E+08
1.09107E+30
1.03aBED

9.825B7E-01

7.037RIiIF-3.3;

I'~gure 5.42: Magnitude of the induced surface current on a 6-iueter long missile
at 100 MHz. The missile is discretized using quadratic triangles and the EFIE
is solved using the CRWG BEs defined on these triangular subdomains. The

color plot is generated using the MSC/ARIES.
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Figure 5.43: Comparison of the bistatic RCS of the 6-meter long missile at
100 MHz. Curved and flat triangulations of the missile, obtained from the
MSC/ARIES, is used with the CRWG BFs and flat-RWG BI's respectively,
and 34-patch Bézier model of the missile is used with the CRT BI's. The
results are given on z-z plane, where the main wings of the missile are located.

-— 1053 flat-RWG BI's, —— 1053 CRWG BFs, --- 1088 CRT BFs.
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Figure 5.44: Comparison of the bistatic RCS of the 6-meter long missile at
200 MHz. Curved and flat triangulation of the missile, obtained from the
MSC/ARIES, is used with the CRWG BFs and flat-RWG BI's respectively,
and 34-patch Bézier model of the missile is used with the CRT BFs. The
results are given on -z plane, where the main wings of the missile are located.

— 2058 flat-RWG BI's, —— 2058 CRWG Bls, - -+ 2448 CRT BI's.
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IMigure 5.45: Comparison of the bistatic RCS of the 6-meter long missile at
300 MHz. Curved and flat triangulation of the missile, obtained from the
MSC/ARIES, is used with the CRWG BFs and flat-RWG BFs respectively,
and 34-patch Bézier model of the missile is used with the CRT BI's. The
results are given on -z plane, where the main wings of the missile are located.

— 7713 flat-RWG BI's, —— 6213 CRWG BFs, - -+ 4352 CRT BI',
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Chapter 6

Conclusions

[n this thesis, a general MoM formulation of electromagnetic scattering prob-
lems involving arbitrarily shaped surface scatterers is presented. The BIs used
in the MoM formulations are defined, and issues concerning the evaluation of
the MoM matrix clements are addressed. Diflerent BI's are investigated and
some seemingly legitimate BI's are demonstrated to be insufficient to model

the unknown functions in the formulations.

Different geometry-modeling techniques, which are used to represent the
scatterer geometry in the solution algorithm, are investigated. The BI's used
in the MoM formulations are modified for geometry models that contain surface
curvature. Curved generalizations of some frequently used BFs to be defined on
curved parametric surfaces are given. The effect of different geometry-modeling
schemes on the solution of the problem is investigated. [t is shown that the
technique used to approximate the scatterer in the solution algorithm influences

the solution more than the type of the BI's used for the approximation of the
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unknown.

Two different algorithms using different geometry-modeling techniques and
different BF's are developed. The first one uses quadratic triangular patches to
approximate the scatterer and the CRWG BF's, defined on these patches, to
approximate the induced surface current density. The second uses the Bézier-
patch model of the scatterer with the CRT BFs. When applied to the same
problems, both are observed to perform equally well. But, due to the simplicity
of its parametric mapping, the quadratic triangular patch algorithm is faster.
Although the parametric mapping of an nth-order rational Bézier patch is
more complicated and time consuming, the representation potential of rational
Bézier patches are superior to quadratic triangular patches. NURBS surfaces,
which are collections of smoothly blended rational Bézier patches, are very
powerful modeling tools that are widely used in CAGD applications. They are
also among the most commonly used geometry-data transfer formats due to
the representation capability of complicated geometries using a small number
of points in space. T'herefore, the geometry of the scatterer designed in a
CAGD tool that uses the NURBS surfaces as the geometry format can be
directly used in the electromagnetic scattering algorithm, which is capable ol
representing geometries in the NURBS format. Hence, no geometry-modeling
errvor is induced in the solution of the problem. Various results for contrasting

the effect of using different geometry models in the solutions are given.

Using higher-order geometry approximations for the scatterers, the error in-
duced by the geometry model is minimized. Therefore, it is possible to reduce
the size of the problem for a demanded accuracy using better geometry models.

This reduction in the size of the problem is of ultimate importance since most
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real-life electromagnetic scattering problems involve electrically large scatter-
ers. When these large problems are discretized using the MoM, the resulting

systems of equations are also large.

The FMM is applied to the scattering problems involving electrically large
scatterers modeled by curved subsurfaces. This combination of the FMM with
curved surface modeling is proposed for the efficient solution of large electro-
magnetic scattering problems. The 'MM reduces the computational cost of the
matrix-vector product at each iteration of the solver to O(N'®). The ordinary
matrix-vector product would take O(/N?) operations and the direct solution of
the system by the Gaussian elimination would require O(N3) operations. The
storage complexity of the FMM is also O(N'®) in contrast to the O(N?) stor-
age complexity of the conventional MoM. Therefore, by employing the FMM,
it is possible to solve larger problems on a given hardware. A sample problem,
scattering from a missile, is solved in order to demonstrate the applicability of

the proposed algorithms to real-life electromagnetic scattering problems.

It is shown that the combination of the FMM with curved-surface modeling
results in an efficient algorithm which requires less memory and CPU time for
the solution of large problems involving 3-D arbitrarily shaped surface scatter-
ers. Iixtensions of the FMM, such as the multilevel FMM, which would further
reduce the computational cost of the solutions are among the future work that

can be carried on on this subject.



Appendix A

Evaluation of the MoM Matrix

Elements

The MoM matrix elements appearing in the lormulations as double surface
infegrals on testing and basis subdomains arve evaluated numerically in two
different ways depending on the distance between the testing and the basis
[unctions. All surface integrals appearing in the formulation are evaluated in
the parametric space on the unit square. Fixed-order Gaussian quadrature [11]
is used for the evaluation of these integrals, which is observed to perform better

than other quadrature rules [28, 29, 11].
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A.1 Singular Integrals Appearing in the For-

mulation

A matrix element in the MoM formulation is rewritten below,

kR

/dbtm /ds [n( )+k,v/ jn(r’)V] % (A1)

where

R=|r—-1"] (A.2)

and t,,, and b, are the testing and basis functions respectively. Using the vector

identity
V-(¢t)=Vo-t+¢V-t (A.3)
and Gauss’ law
/ dsV - (ft) = / dsVe -t + / dsdV - t (A4)
;{q;t-dnc - /(lsV</>-t+/d.s¢V-t (A.5)

where dn, is differential normal vector of the curve ¢, and the f[act that, for

basis functions used in the formulations, t || dn., it is possible to reduce the

expression for the matrix element. Defining V¢ as
1 eikR
— — l . M A
v¢_v[k2/slv in R} (A.6)

and using

¢ | dn. = /(zsw) b= [dspV-t. (A7)

Zmn is simplified to

mn /(1“/ ds |t [ m .]n )_ /\_‘Zv tm( )V/ 'jn(r/)J T (’\8)
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When the matrix element is transformed to the parametric space using
the general definition of the basis functions for curved triangular and curved

rectangular subdomains as,

ferwa(u,v) 1 u | Or 01 or
f(u,v) = = s = (A.9)
forr(u,v) V9 u u v | O
and the divergences as
V)= [ (A.10)
. ’Lt,v = -_— ) e W
V9 \ 2
it can be further simplified to read
Dom, = /\/g_dudv /, ﬁ(ll/dt}' [tm(u,v) Jalu, 0"
1 ekl
— 5V by ) 7" .n. L /’ N . AL
k?V (u, )V ju (2 )J 7 (A.11)

A normalized basis function can be defined to further simplify this expression,

. u d r 0 (j r

f(ll,'l)) = — + - ([’\12)
u | du v dv
with divergence,
. 1 .
V- f(u,v) = , (A.13)
2
so that
L I i Rl
D = /(ludv/ di'dv’ [t,, - 1 — 7‘—2—V .V -j,,} R (A.L4)
s s L 3 t
y [ Il ! {‘ b l 1 C”\‘R \ 1.—
Lmn = ./Sdudv/s, du'dv’ |ty - jn — %] \ R (A.15)

The matrix elements in Eq. (A.15) can now be computed by evaluating the

integrals directly in the parametric space (u.v). For RT BIs the integration
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domain is the square domain bounded by u = 0,1 and v = 0, 1 lines. For RWG
BFs the integration domain is the triangular domain bounded by v = 0, v =0
and u 4+ v = 1 lines. With an auxiliary transformation, this subdomain can
be mapped to the same square domain in an auxiliary (3, () parametric space.

Hence, the same integration routines designed for square integration domains

can be used.

All integrals are hence transformed to integrals of the form

VA = / dudvdu'dv'M
" R(u,v,u',v")

// dudvdu'dv' h(u, v, 0, v"). (A.17)

(A.16)

The outer integrals over the testing subdomain are numerically easy to evalu-
ate and are evaluated with a low-order Gaussian quadrature. Ior each sample
of the outer integral, the inner surface integral must be evaluated. This must
be done carefully since when the domains of the basis and the testing functions
overlap, the kernel of the integral becomes singular at the observation point.
Although this is an integrable singularity, a blindfolded usage of the numerical
integration will result in inaccurate values. When the testing and basis subdo-
mains are far form each other, i.e. the singularity of the Green’s function does
not fall in or near the integration domain, the inner integrals become very easy

to integrate, hence a suitable low order quadrature may be employed.

For a fixed sample of the outer integral. the inner surface integral to be

evaluated is of the form,

I (g, vg) // du'dv’ - ((t' v')) (A.18)
a,.a

where R(u/,v") may become zero at a point (ug, o) in the integration domain if

the testing and basis subdomains overlap. The integral is not singular when the
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two subdomains do not overlap and when a quadrature that does not sample
the inner integral at the edges of its domain is used, but for subdomains that
are close to each other the inner integral becomes quasi-singular meaning that
it has a sharp variation in the integration region. The techniques presented in
the next subsection will be employed for the annihilation of these singularities

and quasi-singularities.

A.2 Techniques to Annihilate the Singularity

The most common technique used for the numerical evaluation of the singular
integrals is to add and subtract a term from the integrand which can be inte-
grated analytically and also renders the integrals well behaved so that standard
numerical integration methods can be applied [30, 30]). This technique works
for problems involving flat discretizations of the geometry with the addition

and subtraction of the well known 1/R term from the integrand in,

I(ug,v0) = //D A(ludv]gz(L’v)). (A.19)

U, v
l'or curved surfaces it is not possible to find such a function which will render
the integrand well behaved and which is analytically integrable. One technique
is to add and subtract a 1/ Ry term that approximates the actual 1/R singular-
ity [2]. This Ry term is found by using the Taylor series approximation ol the
curved subdomain around the observation poiut (ug,vy). This technique was
investigated and it was observed that the 1/Ry eliminates the singularity at
(1. vy), but the resulting integrand is not well behaved. It is not singular but
it has sharp variations around the observation point. So the conclusion is that

this technique is not suitable to use with a numerical integration procedure for
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problems involving curved surfaces.

Using suitable parametric transformations on u and v parameters in
Eq.( A.19), it is possible to annihilate the singularity [31]. Let the trans-

formations be,

v = u(n,() (A.20)

v = v(n,(). (A.21)
The integral on the (u,v) domain is thus transformed to,

/ / dudv f(u, v) = / / dpd¢ f(n,¢)J(n, ¢) (A.22)

where
J(1,¢) = 3;{ 35, (A.23)
oy J¢

is the Jacobian of the transformation.

If one can find a transformation which has a zero at the singularity point
of f(u,v) of the same or higher order as the zero of R(w,v), the integrand of
the transformed integral, namely f(n,()J(n,(), becomes non-singular in the
integration domain with the condition thta the applied transformation does not
increase the order of singularity of R(w,v). Below are some transformations

that can be used for this purpose.

A.2.1 For Triangular Subdomains

A curved triangular patch in real space is the transformation of a (unit) triangle

in the parametric space, seen in Fig A.l. The observation point ry on the
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Figure A.1: Parametric mapping of the unit triangle to the curved triangle in

real space.

surface and in the patch can be considered as the map of (ug,vg) point of the

parametric domain triangle: ro = r(uo, vo).

Method I

Three sub-triangles are formed by connecting the obscrvation point (g, ) to
the three vertices of the triangle depicted in Iig A.2. For each sub-triangle the

[ollowing parameter transformations are used:

[ U3 .| Uues us .
=1 + + (A.24)

v 13 V23 (2}
where w;; = u; —u; and 7,) denote the vertex numbers of the sub-triangles
(See INgs A3= ALS). The translormation is different {or cach sub-triangle since
the triangle vertices denoted by w;’s are different but it is essential that vertex

number 3 be chosen as the (ug, vg) point for each sub-triangle. The Jacobian

of the above transformation mapping the unit triangle in (5, () domain to the
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Figure A.2: Subdivision of the parametric unit triangle for singularity annihi-
lation.
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Figure A.3: Mapping of sub-triangle 1.

u

Figure A.4: Mapping of sub-triangle 2.
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0 u
Figure A.5: Mapping of sub-triangle 3.
sub-triangle in (u,v) domain is,
Uiz Uzs
J(u, ’U) = = U13V23 — U23V13. (A25)

Uiz V23
The singularity point (ug,vo) i1s now at the third vertex of each sub-triangle,
in other words, the origin of each ol the three (7,() parametric domains is
mapped into the singular point (g, vp) in the (u,v) parametric space. The

singular integral can be rewritten as,

/ dudv f(u.v) -—-/ dudv f(u,v) + cludv_/'(u,'v)+/ dudv [(u,v) (A.26)
N o, B2 Ba

where,
/ dudvf(u,v)z/ dnd( fi(n,¢)Ji(n, ¢). (A.27)
A, A
S0,
/ dudv f(u,v) :/ dndCy(n, () (A.28)
A A
where,
‘3 g
9(1,¢) Z UNQEAUNGE (A.29)

Here g(n, ¢) is still singular in the (7, () parametric space but the singularity

is at the origin regardless of the position of (ug,vo) in the (w,v) parametric
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Figure A.6: Mapping defined to annihilate the singularity at the origin.

space. The transformation below annihilates the singularity at the origin,

Fig. A.6 sketches the situation:

n = st (A.30)
¢ = s(1—1) (A.31)
whose Jacobian 1s
{ &
J(s,t) = = —sl —s(l — ) = —s. (A.32)
(1—1¢) —s

Since the origin of (7, () parametric domain is the map of s = 0 line of (s,¢)
domain, the Jacobian has a zero at the origin of (7,() domain which cancels

the singularity there. Hence the integral on (s,t) domain,

/ dudv [(u,v) = / dsdty(s, )] (s,1) (A.33)
J 0O

N
which is now non-singular can be safely evaluated employing standart numer-

ical integration techniques.
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Figure A.7: Mapping of Method IIL
Method 11

Using the last transformation of Method I at the beginning leads to the fol-

lowing situation:

u = 7n¢ (A.34)

0= p(l-() (A.35)
whose Jacobian is

J(1,¢) = ~¢ (4.36)

and the singular integral becomes

/(luduf(u.v) = /([7](1([(‘)],C)J(I],(:) (A.37)
A o
= / dndCy(n, (). (A.38)
a

But ¢(y,¢) is still singular at point (10,¢) of the (y,¢) domain. For the
annihilation of this singularity as seen in I'ig. A.7, one of the methods described

for square subdomains below can be utilized.
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Iigure A.8: Mapping of the parametric unit square to a curved rectangular

patch.

A.2.2 For Square Subdomains

A curved rectangular parametric patch in real space is the transformation of a

(unit) square region in the parametric space as shown in Fig. A.8:

The observation point ry on the surface and in the patch can be considered

as the map of (ug, vy) point of the parametric square vegion: ry = r(ug, vg).

Method I

Method I for triangular domains can also be utilized for square subdomains.
Four sub-triangles are formed by connecting the observation point (wgy. vg) to

the four vertices of the square as shown in Iig. A.9.
For cach sub-triangle the same parameter transformations are used as in
Method [ for triangular subdomains.

U U113 . U3 U3 .
v "3 U3 U3
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Figure A.9: Subdivision of the unit square into sub-triangles.

with Jacobian

J(U, ’U) = U13V23 — U23V)3. (A’IO)
The singular integral is thus transformed into,
/ dudv f(u,v) = / dndCg(n, ¢) (A.41)
o o
where

1
9(m,Q) = > fi(n: ()i, €)- (A42)

i=1

Method I for triangular subdomains is then applied to annihilate the singularity

al the origin of the (1, () parametric space.

Method IT

[n this method the parameters u and v are transformed separately, i.e. w = u(n)
and v = v((). The Jacobian of this transformation is,

Ju dv _
J(s.1) = Effa—‘t (A.13)
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Figure A.10: Transformation applied on each parameter.

This Jacobian should have a zero at (uo(so),vo(t0)) to cancel the singularity

there. This can be achieved by separately setting,

d B
ael I = (A.44)

- and —
ds ot
=59 t=ly

Another constraint that may be imposed on the transformation is: T'he unit

square in (s, !) domain should hbe mapped to the unit square in (w,v) domain.
A function u(s) satisfying the given constraints has the form in Iig A.10.

The lowest possible order polynomial satisfying the above criteria may be
found to be of the form,

with

.- Vo 2
Ou_ Hs=t) (A.16)
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from which sg can be found to be

83 1
U= T > S = (A.47)

g = — Sp =
1 —50)3+s2
(1 —50)° + 53 1+3/i—1
Ug

A similar transformation is applied to the other parameter:

(t—to)’> + 5
t) = 48
v(t) (=t 1 23 (A.48)
dv 3(t — 1p)*
P (A.49)
Vg = % =1 ! (A.50)
00— 77 ; 2 . .3 0~ . .9
1 —t)3 413 [
( 0) 0 L4 1 |
Do
So the Jacobian of the transformation becomes,
. . 9(8 — 50)2(t - t0)2 \
J(s,t) = Js(s) () = , A5l
B A e e [ [y ey N
and the singular integral is translormed into a non-singular integral:
/ dudv f(u,v) = / dsdt f(s,t)J(s,t). (A.52)
o o

It is worth noting that due to the Jacobian factor, the integrand f(s,1).J(s,t)
is zero on ¢ =ty and s = §¢ lines in (s,?) domain, 1.e. the Jacobian has a zero

which is of higher order than the singularity of the original integrand.

Method III

This method can be considered as the mixture of Method I and Method II. The
integration domain (unit square) in (u, v) parameter space is first divided into
[our rectangular subdomains with the aid of w = g and v = vy lines as depicted

in Fig. A.11. Then, each subdomain is considered to be the mapping ol the
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Iligure A.11: The subdivision of the unit square [or Method III.
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Figure A.12: The transformation for the first subdomain.
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unit square in a (7, () parametric space. Figure A.12 depicts the situation for

the first rectangular subdomain. The transformation and the Jacobian of the

transformation for the first sub-rectangle are

u
v

J1 (777 4)

= wup(l — 1),
= Uo(]. —C)’

= UpVo,

and for the other subdomain the transformations are

vo=

J-l(”)() =

(1 = o),
(1 —¢),
(L- o o,
(1 — o),
(1 = wo)C,
(L —wo)(t = vo),
uo(l — 1),
(1 = vo)¢,

(A.56)

uo(l — vo).

After these transformations the singular integral appears as another singular

integral in (1.¢) domain, but the singularity always appears at the origin.

At this step one can use the transformations described in Method I1

(Egs.(A.45) and (A.18)) which simplily to,
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J(t) = 3t (A.57)

n(s) = s
) = ¢
J(s) = 2s
J(t) = ot (A.58)

This leads to a non-singular integrand. However, for numerical integration
purposes the cubic transformation was observed to perform better than the
quadratic transformation. One can also increase the order of these transfor-

mations but numerical instabilities should be expected for large orders.

Method IV

This method is another variation of Method III. The first transformation is
exactly the same as in Method III. i.e. the four subdomains are mapped to a
single square in (7, () space. This square domain is divided into two triangular
subdomains by the n = ( line as shown m Fig. A.13. Each triangular sub-
domain can be considered as the map of a unit triangle on (a, ) parametric

domain defined by the transformations of Method I [or triangular subdomains:

] Mz N n:
L DN B L R T (A.59)

q C13 (23 (s

with Jacobian

J(a, B) = matas — n23Cas. (A.60)
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I'igure A.13: The subdivision of the unit square for Method IV.

So the singular integral whose singularity is at the origin of the (1, () parameter

space becomes,

2
/D(/I/(l(_(/(n,g") :/A(l(r(//i'fZg,:(n..f),/[((m.;.:‘)'). (A.G1)
' =1

Then using the same procedure of Method I for triangular subdomains, this
singular integrand in the («,8) parameter space is transformed into a non-

singular integrand in (s,¢) parameter space. The transformation is,

a = st (A.62)
g = s(1-t), (A.63)
with the Jacobian J(a, ) = —s.

Other variations of the techniques to annihilate the singularity of the
Gireen’s function for integral evaluations on curved subdomains are also possi-
ble. Our experience with all of the above techniques resulted in our conclusion

that for triangular subdomains Method I performs best and for square (can be
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generalized for rectangular subdomains) subdomains, Method I performs best

on the basis of numerical integration.

A.3 Numerical Integration

For the evaluation of both the testing and the basis integrals on the associated
subdomains 2-dimensional Gaussian quadrature (GQ) was used. An adaptive
N-point Cartesian product GQ was implemented. Techniques to annihilate the
singularity in the inner integral presented in the previous subsection produce
non-singular integrands but these integrands are still not suitable for integra-
tion with an adaptive quadrature routine. They may have sharp variations
for positions of the observation point near the edges of the basis subdomain
when Method I of both triangular and square subdomains are used. The other
methods also produce sharply varying integrands. Another disadvantage of
adaptive quadrature is that the evaluated values of the integrand that does
not satisfy the given error criteria are discarded, which results in loss of time.
The adaptive quadrature implemented was observed to take impractically long
time due to the sharp changes in the integrand. For those reasons, fixed point
GQ was used for the evaluation of the matrix elements. The number of points

to be used is input to the routine by an external file which provides user control

on the process.
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