
A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 142–157, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automated Web Services Composition with the
Event Calculus*

Onur Aydın1, Nihan Kesim Cicekli2, and Ilyas Cicekli3

1 Microsoft Corporation, Seattle, USA
2 Department of Computer Engineering, METU, Ankara, Turkey

3 Department of Computer Engineering, Bilkent University, Ankara, Turkey
onura@microsoft.com, nihan@ceng.metu.edu.tr,

ilyas@cs.bilkent.edu.tr

Abstract. As the web services proliferate and complicate it is becoming an
overwhelming job to manually prepare the web service compositions which de-
scribe the communication and integration between web services. This paper
analyzes the usage of the Event Calculus, which is one of the logical action-
effect definition languages, for the automated preparation and execution of web
service compositions. In this context, abductive planning capabilities of the
Event Calculus are utilized. It is shown that composite process definitions in
OWL-S can be translated into Event Calculus axioms so that planning with ge-
neric process definitions is possible within this framework.

Keywords: Event Calculus, Web Service Composition, Planning.

1 Introduction

Web services can be described as a set of related functionalities that can be program-
matically accessed through the web protocols [2]. The distribution of the functions of
the business through web services helped a lot to integrate services of different com-
panies. However as the web applications flourished and the number of web services
increase another difficulty appeared in the horizon. Application integrators now are
concerned with finding the correct web service that meets the demands of the
customer while building the applications. In such a dynamic domain, automatic inte-
gration or composition of web services would be helpful since the unknowns of the
demands are too much or too diverse. This brings us to the problem of automatic web
services composition.

Given a repository of service descriptions and a service request, the web service com-
position problem involves finding multiple web services that can be put together in cor-
rect order of execution to obtain the desired service. Finding a web service that can fulfill
the request alone is referred to as web service discovery problem. When it is impossible
for one web service to fully satisfy the request, one the other hand, one has to compose
multiple web services, in sequential or parallel, preferably in an automated fashion.

* This work is supported by the Scientific and Technical Research Council of Turkey, METU-

ISTEC Project No: EEEAG 105E068.

 Automated Web Services Composition with the Event Calculus 143

However, automated composition of services is a hard problem and it is not en-
tirely clear which techniques serve the problem best. One family of techniques that
has been proposed for this task is AI planning. The general assumption of such kind
of methods is that each Web service can be specified by its preconditions and effects
in the planning context. The preconditions and effects are the input and the output pa-
rameters of the service respectively. In general, if the user can specify the precondi-
tions and effects required by the composite service, a plan or process is generated
automatically by logical theorem prover or AI planners. The automation of web ser-
vices composition may mean two things: either the method can generate the process
model automatically, or the method can locate the correct services if an abstract proc-
ess model is given [18]. In this paper we are concerned with defining an abstract
process model.

Recently, a considerable amount of work has investigated the potentials and
boundaries of applying AI planning techniques to derive web service processes that
achieve the desired goals [7,10,12,15,17,18,24]. As mentioned in [17], the event cal-
culus [6] is one of the convenient techniques for the automated composition of web
services. In this paper we aim to demonstrate how the event calculus can be used in
the solution of this problem. Our goal is to show that the event calculus can be used to
define an abstract composite process model and produce a user specific composition
(plan). Abductive planning of the event calculus [21] is used to show that when
atomic services are available, the composition of services that would yield the desired
effect is possible. The problem of matching the input/output parameters to find a web
service in a given repository is out of the scope of this work. We assume that these
matching tasks are pre-processed and selected.

The idea of using the event calculus in the context of web services and interactions
in multiagent systems is not new [4,19,23,25]. In [4], an event calculus based planner
is used in an architecture for automatic workflow generation on the Web/Grid. This
work is closely related to our work, however since the details of the formalism is not
given it is not possible to compare it with ours. In [19] the event calculus has been
used in verifying composed web services, which are coordinated by a composition
process expressed in WSBPEL. Here the aim is to verify a composed service, not
generating the composition itself. The work in [23] attempts to establish a link be-
tween agent societies and semantic web-services, but uses another version of the
event calculus which avoids abduction and stick to normal logic programs. In [25] an
approach for formally representing and reasoning about commitments in the event
calculus is developed. This approach is applied and evaluated in the context of proto-
cols, which represent the interactions allowed among communicating agents.

In this paper our aim is to contribute the research along this direction by presenting
a formal framework that shows how generic composition procedures are described in
the event calculus to produce specific plans for the requested goals. Our main contri-
bution is the translation of OWL-S to event calculus and demonstrating how planning
with complex actions is done within this framework. We present the event calculus
framework as an alternative approach for building agent technology, based on the no-
tion of generic procedures and customizing user constraints.

The rest of the paper is organized as follows. Section 2 gives insight information
about current technologies, the web service composition problem and techniques used to
solve the problem. In Section 3, the event calculus as a logical formalism and its abduc-

144 O. Aydın, N.K. Cicekli, and I. Cicekli

tive implementation are explained. In Section 4, we present the use of abductive event
calculus in the solution of automated web services composition problem. Section 5
presents a translation of OWL-S service descriptions to the event calculus and how the
abductive event calculus can be used to define abstract process model needed for com-
position. Finally, Section 6 presents conclusions and possible future work.

2 Related Work

Building composite Web services with an automated or semi-automated tool is a criti-
cal and hard task. This problem has received a lot of attention recently [18]. In the lit-
erature, AI planning algorithms have been widely used to automatically compose web
services [9,10,17,24]. Most apparent reason behind this preference is the great simi-
larities between these two fields.

Both the planning problem and composition problem seek a (possibly partially) or-
dered set of operations that would lead to the goal starting from an initial state (or
situation). Operations of the planning domain are actions (or events) and operations of
the composition domain are the web services. Like actions, Web services have pa-
rameters, preconditions, results and effects hence they are very attractive to be used in
conventional planning algorithms.

Viewing the composition problem as an AI planning problem, different planners
are employed for the solution. An excellent survey of modern planning algorithms
and their application to web service composition problem can be found in [17]. Here
we highlight some of the existing work that is most relevant to our approach.

Estimated-regression is a planning technique in which the situation space is
searched with the guide of a heuristic that makes use of backward chaining in a re-
laxed problem space [10]. In this approach, the composition problem is seen as a
PDDL planning problem and efforts are condensed to solve the problem in PDDL
domain referring to the common difficulties of Web Services domain. In fact, a trans-
lator [11] has been written which converts DAML-S (former version of OWL-S) and
PDDL into each other. This shows that the composition problem can be (informally)
reduced to a planning problem and in that sense working in PDDL domain is not
much different indeed.

In [12], web service composition problem is assumed to be the execution of
generic compositions with customizable user constraints. GOLOG [8], which is a
situation calculus implementation with complex actions, is used to write the generic
processs model (complex action). It is said to be generic since it is not executable
without user constraints. After the user specifies the constraints, it is executed and the
solver tries to generate the plan according to the runtime behavior of the services. The
output of this method is a running application which satisfies the user requests.

Hierarchical Task Network (HTN) planning has been applied to the composition
problem to develop software to automatically manipulate DAML-S process defini-
tions and find a collection of atomic processes that achieve the task [24]. SHOP2, an
HTN planner, is used to generate plans in the order of its execution. This work has re-
cently been extended into another planning algorithm called Enquirer, which provides
information gathering facilities during planning [7].

 Automated Web Services Composition with the Event Calculus 145

In [15], a taxonomy is presented for the classification of the web service composi-
tion problem. This taxonomy is used to help select the right solution for the composi-
tion problem at hand. According to this classification, the Event Calculus based
approach falls in the category of AI planning methods that best suits to the solution of
small scale and simple operator based automated web service compositions.

3 Event Calculus

Event calculus [6] is a general logic programming treatment of time and change. The
formulation of the event calculus is defined in first order predicate logic like the situa-
tion calculus. Likewise, there are actions and effected fluents. Fluents are changing
their valuations according to effect axioms defined in the theory of the problem do-
main. However there are also big differences between both formalisms. The most im-
portant one is that in the event calculus, narratives and fluent valuations are relative to
time points instead of successive situations. The most appearing advantage of this ap-
proach is the inherent support for concurrent events. Events occurring in overlapping
time intervals can be deduced. Inertia is an assumption, which accounts a solution to
the frame problem together with other techniques and it is saying that a fluent pre-
serves its valuation unless an event specified to affect (directly or indirectly) the flu-
ent occurs.

Each event calculus theory is composed of axioms1. A fluent that holds since the
time of the initial state can be described by the following axioms [20]:

holdsAt(F, T) ← initially(F) ∧ ¬clipped(t0, F, T)
holdsAt(¬F, T) ← initially(¬F) ∧ ¬declipped(t0, F, T)

Axioms below are used to deduce whether a fluent holds or not at a specific time.

holdsAt(F, T) ←
 happens(E, T1, T2) ∧ initiates(E, F, T1) ∧ ¬clipped(T1, F, T) ∧ T2 < T
holdsAt(¬F, T) ←
 happens(E, T1, T2) ∧ terminates(E, F, T1) ∧ ¬declipped(T1, F, T) ∧ T2 < T

The predicate clipped defines a time frame for a fluent that is overlapping with the time
frame of an event which terminates this fluent. Similarly declipped defines a time
frame for a fluent which overlaps with the time frame of an event that initiates this flu-
ent. The formula initiates(E, F, T) means that fluent F holds after event E at time T.
The formula terminates(E, F, T) denotes that fluent F does not hold after event E at
time T. The formula happens(E, T1, T2) indicates that event E starts at time T1 and end
at time T2. The instantaneous events are described as happens(E, T1, T1).

clipped(T1, F, T4) ↔ (∃ E,T2, T3) [happens(E, T2, T3) ∧
 terminates(E, F, T2) ∧ T1 < T3 ∧ T2 < T4]

declipped(T1, F, T4) ↔ (∃ E,T2, T3) [happens(F, T2, T3) ∧
 initiates(E, F, T2) ∧ T1 < T3 ∧ T2 < T4]

1 Variables begin with upper-case letters, while function and predicate symbols begin with

lower-case letters. All variables are universally quantified with maximum possible scope
unless otherwise indicated.

146 O. Aydın, N.K. Cicekli, and I. Cicekli

3.1 Abductive Event Calculus

Abduction is logically the inverse of deduction. It is used over the event calculus axi-
oms to obtain partially ordered sets of events. Abduction is handled by a second order
abductive theorem prover (ATP) in [21]. ATP tries to solve the goal list proving the
elements one by one. During the resolution, abducible predicates, i.e. < (temporal or-
dering) and happens, are stored in a residue to keep the record of the narrative. The
narrative is a sequence of time-stamped events, and the residue keeping a record of
the narrative is the plan.

In this paper, the predicate ab is used to denote the theorem prover. It takes a list of
goal clauses and tries to find out a residue that contains the narrative. For each spe-
cific object level axiom of the event calculus, a meta-level ab solver rule is written.
For example an object level axiom in the form:

AH ← AB1 ∧ AB2 ∧ … ∧ ABN

is represented with the predicate axiom in the ATP theory and it is translated to:

axiom(AH, [AB1, AB2, …, ABN])

During the resolution process axiom bodies are resolved by the ab which populates
the abducibles inside the residue. A simplified version of ab solver is as follows.

ab([],RL,RL,NL).
ab([A|GL],CurrRL,RL,NL) ← abducible(A), NewRL = [A|CurrRL],
 consistent(NL,NewRL), ab(GL,NewRL,RL,NL).
ab([A|GL],CurrRL,RL,NL) ← axiom(A,AL), append(AL,GL,NewGL),
 ab(NewGL,CurrRL,RL,NL).
ab([not(A)|GL],CurrRL,RL,NL) ← irresolvable(A,CurrRL),
 ab(GL,CurrRL,RL,[A|NL]).

In this definition GL denotes the goal list, RL represents the residue list, NL repre-
sents the residue of negated literals, A is the axiom head and AL is the axiom body. In-
tuitively, the predicate abducible checks if the axiom is abducible. If it is so, it is
added to the residue. If it is an axiom then its body is inserted into the goal list to be
resolved with other axioms. Negated literals are proven by negation as failure (NAF).
However as the residue grows during the resolution, the negative literals, which were
previously proven, might not be proven anymore. This situation may occur when
negative literals were proven due to the absence of contradicting evidence; however
the newly added literals might now allow the proof of the positive of literals, invali-
dating the previous negative conclusions. For that reason, whenever the residue is
modified, previously proven negated literals should be rechecked. The predicate ir-
resolvable checks whether the negated literal is resolvable with the current residue or
not. The negative literal in question might also mention a non-abducible predicate. In
this case it needs to be resolved with the axioms not the residue. This possibility is
studied in [21]. The predicate consistent checks that none of the negated literals is re-
solvable with the current narrative residue using the predicate irresolvable for each
negated literal.

 Automated Web Services Composition with the Event Calculus 147

4 Web Services Composition with Abductive Planning

The event calculus can be used for planning as it is theoretically explained in [21].
The planning problem in the event calculus is formulated in simple terms as follows:
Given the domain knowledge (i.e. a conjunction of initiates, terminates), the Event
Calculus axioms (i.e. holdsAt, clipped, declipped) and a goal state (e.g. holdsAt(f,t)),
the abductive theorem prover generates the plan which is a conjunction of happens
i.e. the narrative of events, and temporal ordering predicates, giving the partial order-
ing of events.

4.1 Web Services

In the event calculus framework, the web services are modeled as events with input
and output parameters. For instance, if a web service returns the availability of a flight
between two locations, its corresponding event is given in Fig.1.

-- web service description
<message name=’GetFlight_Request’>
<part name=’Origin’ type=’xs:string’>
<part name=’Destination’ type=’xs:string’>
<part name=’Date’ type=’xs:date’>
</message>
<message name=’GetFlight_Response’>
<part name=’FlightNum’ type=’xs:string’>
</message>

-- event
getFlight(Origin, Destination, Date, FlightNum)

Fig. 1. Web Service to Event Translation

The web service operation GetFlight is translated to the event getFlight. The inputs
and outputs of the web service are translated as parameters of the event. The invoca-
tion of the web service is represented with the predicate happens:

happens(getFlight(Origin,Destination,Date,FlightNum), T1, T1) ←
 ex_getFlight(Origin, Destination, Date, FlightNum).

The parameters of the event are populated with help of the predicate ex_getFlight
which is a call to the actual web service. This predicate is used as a precondition for
the event and it is invoked anytime it is added to the plan. In order to resolve literals
which are non-axiomatic assertions such as conditions or external calls ab is extended
to contain the following rule:

ab([L|GL], CL, RL, NL) ← ¬axiom(L) ∧ L ∧ ab(GL, CL, RL, NL)

In this rule L, GL, RL and NL denote, respectively, the non-axiomatic literal, the goal
list, the narrative residue and the negation residue. If a non-axiomatic literal is en-
countered then ab directly tries to prove the literal and if it is successful it continues
with rest of the goal list.

148 O. Aydın, N.K. Cicekli, and I. Cicekli

In ATP implementation, the external call bindings like the predicate ex_getFlight
are loaded from an external module that is written in C++ programming language. Af-
ter invoking the associated service, flight number is unified with FlightNum, the last
parameter of getFlight event.

Let us assume that we have the following specific axioms for a very simple travel
domain.

axiom(happens(getFlight(Origin,Dest,Date,FlightNum), T, T),

 [ex_getFlight(Origin,Dest,Date,FlightNum)]).

axiom(initiates(getFlight(Origin,Dest,Date,FlightNum),

at_location(Dest),T),

 [holdsAt(at_location(Origin),T), Origin \== Dest]).

axiom(terminates(getFlight(Origin,Dest,Date,FlightNum),

at_location(Origin),T),

 [holds_at(at_location(Origin),T), Origin \== Dest]).

axiom(initially(at_location(ankara)), []).

There are two non-axiomatic literals, namely \== and ex_getFlight in the bodies of
the axioms. The predicate \== checks whether two bound variables are different or
not. The predicate ex_getFlight represents an external web service operation, and it
returns the flight number for the given origin and destination cities. Thus, the parame-
ters of the getFlight event are populated. The initiates and terminates axioms describe
how the fluent at_location is affected by getFlight event. The initially axioms says
that our initial location is the city ankara. Let us assume that, we only have the fol-
lowing three flights in our travel domain, and the predicate ex_getFlight returns these
flights one by one.

getFlight(ankara, izmir, tk101).
getFlight(ankara, istanbul, tk102).
getFlight(istanbul, izmir, tk103).

In order to find the possible plans for the goal of being in izmir, the abductive theorem
prover is invoked with the goal ab([holdsAt(at_location(izmir), t)], [],RL,[]). The
theorem can find the following two plans one by one.

plan1: [happens(getFlight(ankara, izmir, tk101), t1, t1), t1 < t]
plan2: [happens(getFlight(ankara,istanbul,tk102),t2,t2),
 happens(getFlight(istanbul,izmir,tk103), t1, t1), t2 < t1, t1 < t]

Here each plan contains the time stamped happens predicates and temporal order-
ing between these time stamps. The time constants in the plan (t1 and t2) are gener-
ated by the abductive reasoner. The abductive planner binds the given time parameter
to a unique constant if the time parameter is an unbound variable.

4.2 Plan Generation

ATP returns a valid sequence of time stamped events that leads to the goal. If there
are several solutions they are obtained with the help of backtracking of Prolog. Multi-
ple solutions could be thought as different branches of a more general plan. For
instance, assume that the following event sequence is generated after a successful
resolution process.

 Automated Web Services Composition with the Event Calculus 149

happens(E1, T1 , T1). happens(E2, T2, T2). happens(E3, T3 , T3). T1 < T2 < T3

It can be concluded that when executed consecutively, the ordered set {E1, E2, E3}
generates the desired effect to reach the goal. In addition to this plan, alternative solu-
tions could be examined. In order to do such a maneuver, the executer should have a
tree like plan where proceeding with alternative paths is possible. Assume that the fol-
lowing totally ordered sequences of events also reach the same goal.

{E1, E5, E4}, {E1, E2, E4}, {E6, E7}

When these separate plans are combined, a graph which describes several composi-
tions of web services, is formed (see Fig. 2). In this graph the nodes represent the
events (web services) and CS is the start of composition (i.e. the initial state). The
nodes with the label Exclusive-Or-Split (XOr) represent alternative branches among
which only one could be chosen. Also several alternative paths are joined in the nodes
with the label XOr-Join. XOr-Joins mandate that only one of the branches is active at
the joining side. This graph contains all plans (i.e. composite services) generated by
the planner. This graph is used to evaluate the composed services according to the
non-functionality values such as cost, quality and response time, and the best plan can
be chosen afterwards, which will be executed by the execution engine.

CS

E5

E3

E2

E6E1

E7

XOr
Split

XOr
Split

XOr
Join

E4

Goal

Fig. 2. All generated compositions

4.3 Concurrency of Events

The narratives generated by the ATP are partially ordered set of events. Due to the
partial ordering, events, for which a relative ordering is not specified, can be thought
to be concurrent. For instance, assume ATP has generated the following narrative:

happens(E1, T1 ,T1). happens(E2, T2 , T2). happens(E3, T3, T3).
happens(E4, T4 ,T4). T1 < T2 < T4 , T1 < T3 < T4

Since there is no relative ordering between E2 and E3 they are assumed to be concur-
rent. If this is the only narrative generated by the ATP then the plan can be shown as
in Fig. 3.

150 O. Aydın, N.K. Cicekli, and I. Cicekli

CS

E2

E3

E1
And
Split

And
Join E4 Goal

Fig. 3. Concurrent Composition

In this graph, concurrent events are depicted as And-Split since both of the
branches should be taken after the event E1. Before the event E4 And-Join is required
since both of E2 and E3 should be executed.

5 Web Services Composition with Generic Process Definition

In the literature, one of the most promising leaps on automating the Web Service
Composition is taken with the OWL-S language [16]. In OWL-S, Web Services are
abstracted, composed and bound to concrete service providers. Web Services are
composed by a series of operations, which atomically provide certain functions. Ser-
vice interactions can be as simple as a single operation invocation (e.g.
http://www.random.org returns random numbers with a single Web Service opera-
tion). They can be as complicated as a multi-department electronic commerce site for
shopping, where catalog browsing, item selection, shipment arrangements and pay-
ment selection are accomplished by invoking a series of operations. (e.g. Amazon
Web Service http://www.amazon.com).

Several atomic processes constitute a Composite Process when connected with the
flow control constructs of OWL-S. If an automated system requires the provided ser-
vice it should execute the composite processes as they are defined in the OWL-S,
supplying the intermediate inputs to the atomic services nested under them.

The Event Calculus framework can be used to define composite processes (i.e.
complex goals) and ATP can be used to generate a plan which corresponds to the user
specific composition of the web service. Composite processes will correspond to
compound events in the Event Calculus [3]. Like the composite processes, compound
events provide the grouping of sub-events. In the following sections, first, an OWL-S
to event calculus translation scheme is presented to show that OWL-S composition
constructs can be expressed as event calculus axioms2. Then an example application
will be presented to illustrate the use of generic process definition and its use in the
abductive event calculus planner.

5.1 OWL-S to Event Calculus Translation

Composite processes are composed of control constructs which closely resemble to
standard workflow constructs. Since further composite processes can be used inside a

2 For readability purposes, we will omit axiom predicate in the rest of the paper and present ob-

ject level axioms only. However, note that they are converted into the axiom predicate in the
implementation.

 Automated Web Services Composition with the Event Calculus 151

composite process, the translation is recursively applied until all composite processes
are replaced with the corresponding axioms that contain atomic processes. Here we
present an OWL-S to event calculus translation scheme. The automatic mapping is
possible, but we have not implemented it yet.

5.1.1 Atomic Processes
Atomic processes are translated into simple events of the Event Calculus. An abstract
representation of an atomic process of OWL-S is given in Fig. 4.

Atomic Process<A, V, P, E, O, EC, OC>
 A : Atomic Process Functor
 V : Set of Inputs: {V1, V2, ..., VN}
 P : Preconditions: Conjunction of Literals (P1 ∧ P2 ∧ ... ∧ PM)
 E : Effects: Conjunction of Literals (E1 ∧ E2 ∧ ... ∧ EK)
 O : Outputs: Set of Outputs {O1, O2, ..., OL}
 EC : Conditional Effects: Set of literals {EC1, E

C
2, ..., E

C
R}

 where each ECi has a condition such as
 ECi ← BECi : BE

C
i are conjunction of literals

 OC : Conditional outputs

Fig. 4. Atomic Process Definition of OWL-S

This definition is translated to the Event Calculus as an event with the same name
as the atomic process A and the effect axioms are defined according to the precondi-
tions and effects. The translation is given in Fig. 5.

initiates(A(V, O), Ei, T) ← holdsAllAt(P, T) ∧ invoke(A, V, O, T)
 where Ei ∈ E+ (positive literals of E)
terminates(A(V, O), Ei, T) ← holdsAllAt(P, T) ∧ invoke(A, V, O, T)
 where Ei ∈ E- (negative literals of E)

initiates(A(V, O), ECi, T) ← holdsAllAt(P, T) ∧
 holdsAllAt(BECi, T) ∧ invoke(A, V, O, T)
 where ECi ∈ EC+
terminates(A(V, O), ECi, T) ← holdsAllAt(P, T) ∧
 holdsAllAt(BECi, T) ∧ invoke(A, V, O, T)
 where ECi ∈ EC-
holdsAllAt({F1, F2, ..., FZ}, T) ↔ holdsAt(F1, T) ∧
 holdsAt(F2, T) ∧ ... ∧ holdsAt(FZ, T)

Fig. 5. Atomic Process Translation

The meta predicate holdsAllAt has an equivalent effect of conjunction of holdsAt
for each fluent that holdsAllAt covers. The predicate invoke is used in the body of ef-
fect axioms to generate the desired outputs (it corresponds to the invocation of exter-
nal calls through the happens clause as illustrated in the example in Section 4.1). It
takes the name of the atomic process, input parameters and unifies the outputs with
the results of the corresponding Web Service operation invocation.

5.1.2 Composite Process Translation
Composite processes combine a set of processes (either atomic or composite) with differ-
ent control constructs. An example composition which is composed of nested structures

152 O. Aydın, N.K. Cicekli, and I. Cicekli

is given in Fig. 6. Split, Join and Repeat-While control constructs are used in this com-
posite process. It is necessary to be able to express such control constructs in the event
calculus framework. This problem has been studied earlier in different contexts [3,5]. For
the purpose of the web services composition problem, OWL-S constructs should be
translated into compound events in the event calculus framework.

Composition
Start

Sequence

Split+Join

Atomic
Process 1

Atomic
Process 2

Atomic
Process 3

Atomic
Process 4

Repeat While

Atomic
Process 1

Atomic
Process 5

Composition
End

πCond

¬πCond

Fig. 6. Example of a Composite Process

The translation of some of the flow control constructs into the Event Calculus axi-
oms is summarized in the following. Others can be found in [1]. Constructs are origi-
nally defined in XML (to be more precise in RDF) document structure however since
they are space consuming only their abstract equivalents will be given.

Sequence
The Sequence construct contains the set of all component processes to be executed in
order. The abstract OWL-S definition of the composite process containing a Sequence
control construct and its translation into an Event Calculus axiom is given in Fig 7.
The translation is accomplished through the use of compound events in the Event
Calculus which contains sub-events. The sequence of events are triggered from the
body of the compound event and the ordering between them is ensured with the
predicate < (precedes).

Sequence Composite Process<C, V, P, S>
C : Composite Process Functor
V : Set of Inputs {V1, V2, ..., VN}
P : Preconditions (P1 ∧ P2 ∧ ... ∧ PM)
S : Sequence of Sub-Processes
Ordered set of {S1, S2, ..., SK}

happens(C, T1, TN) ←
holdsAllAt(P, T1) ∧
happens(S1, T2, T3) ∧
happens(S2, T4, T5) ∧ ... ∧
happens(SK, T2K, T2K+1) ∧
T1 < T2 ∧ T3 < T4 ∧ ... ∧
 T2K-1 < T2K ∧ T2K+1 < TN

Fig. 7. Sequence Composite Process

 Automated Web Services Composition with the Event Calculus 153

If-Then-Else
If-Then-Else construct contains two component processes and a condition. Its struc-
ture and translation are given in Fig. 8. Two happens axioms are written for both
cases. With the help of notholdsAllAt which is logically the negation of holdsAllAt,
the second axiom is executed when the else-case holds.

If-Then-Else Composite Process
<C, V, P, π, Sπ, S¬π>

C : Composite Process Functor
V : Set of Inputs {V1, V2, ..., VN}
P : Preconditions (P1 ∧ P2 ∧ ... ∧ PM)
π : If condition (π1 ∧ π2 ∧ ... ∧ πK)
Sπ : If condition Sub-Process
S¬π : Else condition Sub-Process

happens(C, T1, TN) ←
 holdsAllAt(P, T1) ∧
 holdsAllAt(π, T1) ∧
 happens(Sπ, T2, T3) ∧
 T1 < T2 ∧ T3 < TN

happens(C, T1, TN) ←
 holdsAllAt(P, T1) ∧
 notholdsAllAt(π, T1) ∧
 happens(S¬π, T2, T3) ∧
 T1 < T2 ∧ T3 < TN

notholdsAllAt({F1,F2,...,FP},T)
↔ holdsAt(¬F1, T) ∨
 holdsAt(¬F2, T) ∨ ... ∨
 holdsAt(¬FN, T)

Fig. 8. If-Then-Else Composite Process

Repeat-While and Repeat-Until

Repeat-While and Repeat-Until constructs contain one component process and a loop
controlling condition. The loop iterates as long as the condition holds for Repeat-
While and does not hold for Repeat-Until. They have a common structure and it is
given in Fig. 9. The figure presents the translation of Repeat-While only, since the
translation of the other is similar. Two happens_loop axioms are written for both
states of the loop condition. The composite event is triggered when preconditions
hold. The body of the loop is recursively triggered as long as the loop condition per-
mits. The preconditions and the loop condition are checked at time T1. If they hold,
the component process is invoked at a later time T2.

Repeat-While/Unless Composite Proc-
ess <C, V, P, π, Sπ>
 C : Composite Process Functor
 V : Set of Inputs {V1, V2, ..., VN}
 P : Preconditions (P1 ∧ P2 ∧...∧ PM)
 π : Loop condition (π1 ∧ π2 ∧...∧ πK)
 Sπ : Loop Sub-Process

happens(C, T1, TN) ←
holdsAllAt(P, T1) ∧
happens_loop(C, π, T1, TN).

happens_loop(C, π, T1, TN) ←
holdsAllAt(π, T1) ∧
happens(Sπ, T2, T3) ∧
happens_loop(C, π, T4, T5) ∧
T1 < T2 ∧ T3 < T4 ∧ T5 < TN

happens_loop(C, π, T1, T1) ←
notholdsAllAt(π, T1)

Fig. 9. Repeat-While/Unless Composite Process

154 O. Aydın, N.K. Cicekli, and I. Cicekli

In the given abstract translations, it may seem that the set of inputs are not used,
but the actual translations spread out the contents of the set of inputs as the appropri-
ate parameters of the component processes. This is illustrated in the example given in
Section 5.2.

5.2 Example of a Composition

In this section we illustrate the use of the abductive event calculus in generating com-
positions from a given composite procedure. The example illustrates how one can de-
scribe a complex goal and find a plan to achieve that goal.

The implementation of the traveling problem given in [12] is formulated in the
Event Calculus. In [12], a generic composition is presented for the traveling arrange-
ment task. In this procedure, the transportation and hotel booking are arranged and then
mail is sent to the customer. Finally an online expense claim is updated. The transpor-
tation via air is selected with the constraint that it should be below the customer’s
specified maximum price. If the destination is close enough to drive by car then instead
of air transportation, car rental is preferred. The customer specifies a maximum drive
time for this purpose. If the air transportation is selected then a car is arranged for local
transportation. Also a hotel is booked for residence at the destination.

Compound events are used to express generic compositions in the Event Calculus
in a similar way that they have been used in OWL-S translation. The whole operation
is decomposed into smaller tasks which are separately captured with other compound
events [1]. The Event Calculus translation is given in Fig. 10.

happens(travel(O, D, D1, D2), T1, TN) ←
 [[happens(bookFlight(O, D, D1, D2), T2, T3) ∧
 happens(bookCar(D, D, D1, D2), T4, T5) ∧ T3 < T4] ∨
 happens(bookCar(O, D, D1, D2), T2, T5)] ∧
 happens(bookHotel(D, D1, D2), T6, T7) ∧
 happens(SendEmail, T8) ∧
 happens(UpdateExpenseClaim, T9) ∧
 T5 < T6 ∧ T7 < T8 ∧ T8 < T9 ∧ T9 < TN

happens(bookFlight(O, D, D1, D2), T1, TN) ←
 ex_GetDriveTime(O, D, Tm) ∧
 Tm > userMaxDriveTime ∧
 ex_SearchForFlight(O, D, D1, D2, Id) ∧
 ex_GetFlightQuote(Id, Pr) ∧
 Pr < UserMaxPrice ∧
 ex_BookFlight(Id)

happens(bookCar(O, D, D1, D2), T1, TN) ←
 [[ex_GetDriveTime(O, D, Tm) ∧
 Tm < userMaxDriveTime] ∨ O = D] ∧
 ex_BookCar(O, D, D1, D2)

where O : Origin, D : Destination, D1 : Traveling Start Date, D2 : Traveling End Date

Fig. 10. Generic Composition in the Event Calculus

 Automated Web Services Composition with the Event Calculus 155

In this translation userMaxDriveTime and userMaxPrice are the user preference
values which alter the flow of operations. Based on traveling inputs and user prefer-
ences the traveling arrangement is accomplished with the help of external Web Ser-
vice calls (in Fig. 10 they are represented with predicates with ex_ prefix). When this
composition is implemented in the ATP, a residue which contains the sequence of
events to arrange a travel will be returned as the plan. For instance let us assume that
we have the definitions of several external web services for the atomic processes like
GetDriveTime, SearchForFlight, GetFlightQuote etc.), and we have the following ini-
tiates axiom:

initiates(travel(O,D,SDate,EDate), travelPlanned(O,D,SDate,EDate),T).

If we want to find a travel plan from Ankara to Athens between the dates October
22 and October 24, we can invoke the ATP with the following goal:

ab([holdsAt(travelPlanned(ankara,athens,october22,october24), t)], R)

The variable R will be bound to a plan, for instance, of the following form:

[hapens(updateExpenseClaim, t7, t7),
 happens(sendEmail, t6, t6),
 happens(bookHotel(athens, october22, october24), t5, t5),
 happens(bookCar(athens, athens, october22, october24), t4, t4),
 happens(bookFlight(ankara, athens, october22), t3, t3),
 happens(travel(ankara, athens, october22, october24), t1, t2)
 t7 < t2, t6 < t7, t5 < t6, t4 < t5, t3 < t4, t1 < t3, t2 < t].

The plan shows which web services must be invoked for the composition and also

the temporal ordering among them.

6 Conclusions

In this paper, the use of the event calculus has been proposed for the solution of web
service composition problem. It is shown that when a goal situation is given, the event
calculus can find proper plans as web service compositions with the use of abduction
technique. It is also shown that if more than one plan is generated, the solutions can
be compiled into a graph so that the best plan can be chosen by the execution engine.

In [24], SHOP2 is used to translate DAML-S process model into SHOP2 operators.
This translation assumes certain constraints for the process model to be converted.
The first assumption in SHOP2 translation is that the atomic processes are assumed to
be either output generating or effect generating but not both. Atomic processes with
conditional effects and outputs are not converted at all. Our translation supports
atomic processes with outputs, effects and conditional effects. Another limitation of
SHOP2 translation is the support for concurrent processes. Since SHOP2 cannot han-
dle parallelism the composite constructs Split and Split+Join cannot be translated. On
the other hand, our translation supports for these constructs since event calculus is in-
herently capable of handling concurrency.

Both the event calculus and GOLOG can be used to express composite process
models. The most important difference between the Event Calculus and GOLOG is
the syntax of the languages. GOLOG provides extra-logical constructs which ease the
definition of the problem space as it is given in [12] for the same example above.

156 O. Aydın, N.K. Cicekli, and I. Cicekli

These constructs can be easily covered with Event Calculus axioms too. Furthermore,
since the event calculus supports time points explicitly, it is easier to model concur-
rency and temporal ordering between actions in the Event Calculus. Therefore it is
more suitable to the nature of web services composition problem with respect to ex-
pressiveness and ease of use.

As a future work, the results that are theoretically expressed in this paper will be
put into action and implemented within a system which works in a real web environ-
ment. It would be helpful if a language is developed for the event calculus framework,
in order to define common control structures of web service compositions in a more
direct way. In fact, there has been already some efforts along this direction, i.e. ex-
tending the event calculus with the notions of processes [3,5].

Evaluation and execution of the generated plans are the final phases of automatic
web service composition. These phases are left out of the scope of this paper. How-
ever, in a realistic implementation, these issues and other aspects like normative ones
need to be studied. It would be interesting to formalise the rights, responsibilities, li-
abilities that are created by composing different web services [9].

As another further work, it is worth trying event calculus planners that employ
SAT solvers for efficiency reasons.

References

1. Aydin, O.: Automated web service composition with the event calculus, M.S. Thesis,
Dept. of Computer Engineering, METU, Ankara (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Maga-
zine (May 2001)

3. Cicekli, N.K., Cicekli, I.: Formalizing the specification and execution of workflows using
the event calculus. Information Sciences (to appear)

4. Chen, L., Yang, X.: Applying AI Planning to Semantic Web Services for workflow Gen-
eration. In: Proc. of the 1st Intl. Conf. on Semantics, Knowledge and Grid (SKG 2005)
(2005)

5. Jacinto, J.D.: REACTIVE PASCAL and the event calculus: A platform to program reac-
tive, rational agents. In: Proc. of the Workshop at FAPR 1995: Reasoning about Actions
and Planning in Complex Environments (1996)

6. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation Com-
puting 4(1), 67–95 (1986)

7. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during planning
for web service composition. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298. Springer, Heidelberg (2004)

8. Levesque, H., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: A Logic program-
ming language for dynamic domains. Journal of Logic Programming 31(1-3), 59–84
(1997)

9. Marjanovic, O.: Managing the normative context of composite e-services. In: ICWS-
Europe, pp. 24–36 (2003)

10. McDermott, D.: Estimated-regression planning for interactions with Web Services. In:
Sixth International Conference on AI Planning and Scheduling. AAAI Press, Menlo Park
(2002)

 Automated Web Services Composition with the Event Calculus 157

11. McDermott, D.V., Dou, D., Qi, P.: PDDAML, An Automatic Translator Between PDDL
and DAML,

 http://www.cs.yale.edu/homes/dvm/daml/pddl_daml_translator1.html
12. McIlraith, S.A., Son, T.: Adapting Golog for composition of semantic Web services. In:

Proceedings of Eight International Conference on Principles of Knowledge Representation
and Reasoning, pp. 482–493 (2002)

13. McIlraith, S.A., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems,
March/April (2001)

14. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the se-
mantic web. The VLDB Journal 12(4), 333–351 (2003)

15. Oh, S.G., Lee, D., Kumara, S.R.T.: A comparative Illustration of AI planning-based web
services composition. ACM SIGecom Exchanges 5, 1–10 (2005)

16. OWL-S: Semantic Markup for Web Services Version 1.1, November 2004. Publish of Se-
mantics Web Services Language (SWSL) Committee (Last Accessed: 17 September
2005), http://www.daml.org/services/owl-s/1.1/overview/

17. Peer, J.: Web Service Composition as AI Planning- a Survey*, Technical report, Univ. of
St. Gallen, Switzerland (2005), http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf

18. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Proceed-
ings of First International Workshop on Semantic Web Services and Web Process Compo-
sition (July 2004)

19. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service compo-
sition. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102.
Springer, Heidelberg (2006)

20. Shanahan, M.P.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Hei-
delberg (1999)

21. Shanahan, M.P.: An abductive event calculus planner. Journal of Logic Program-
ming 44(1-3), 207–240 (2000)

22. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic Composition of Web Services using Se-
mantic Descriptions. In: Web Services: Modeling, Architecture and Infrastructure work-
shop in conjunction with ICEIS 2003 (2002)

23. Stathis, K., Lekeas, G., Kloukinas, C.: Competence checking for the global e-service soci-
ety using games. In: O’Hare, G., O’Grady, M., Dikinelli, O., Ricci, A. (eds.) Proceedings
of Engineering Societies in the Agents World (ESAW 2006) (2006)

24. Wu, D., Sirin, E., Parsia, B., Hendler, J., Nau, D.: Automatic web services composition us-
ing SHOP2. In: Proceedings of Planning for Web Services Workshop, ICAPS 2003 (June
2003)

25. Yolum, P., Singh, M.: Reasoning About Commitments in the Event Calculus: An Ap-
proach for Specifying and Executing Protocols. Annals of Mathematics and AI 42(1-3)
(2004)

	Automated Web Services Composition with the Event Calculus
	Introduction
	Related Work
	Event Calculus
	Abductive Event Calculus

	Web Services Composition with Abductive Planning
	Web Services
	Plan Generation
	Concurrency of Events

	Web Services Composition with Generic Process Definition
	OWL-S to Event Calculus Translation
	Example of a Composition

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

