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Abstract. As the web services proliferate and complicate it is becoming an 
overwhelming job to manually prepare the web service compositions which de-
scribe the communication and integration between web services. This paper 
analyzes the usage of the Event Calculus, which is one of the logical action-
effect definition languages, for the automated preparation and execution of web 
service compositions. In this context, abductive planning capabilities of the 
Event Calculus are utilized. It is shown that composite process definitions in 
OWL-S can be translated into Event Calculus axioms so that planning with ge-
neric process definitions is possible within this framework.  
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1   Introduction 

Web services can be described as a set of related functionalities that can be program-
matically accessed through the web protocols [2]. The distribution of the functions of 
the business through web services helped a lot to integrate services of different com-
panies. However as the web applications flourished and the number of web services 
increase another difficulty appeared in the horizon. Application integrators now are 
concerned with finding the correct web service that meets the demands of the  
customer while building the applications. In such a dynamic domain, automatic inte-
gration or composition of web services would be helpful since the unknowns of the 
demands are too much or too diverse. This brings us to the problem of automatic web 
services composition. 

Given a repository of service descriptions and a service request, the web service com-
position problem involves finding multiple web services that can be put together in cor-
rect order of execution to obtain the desired service. Finding a web service that can fulfill 
the request alone is referred to as web service discovery problem. When it is impossible 
for one web service to fully satisfy the request, one the other hand, one has to compose 
multiple web services, in sequential or parallel, preferably in an automated fashion. 
_________________________________________________________ 
* This work is supported by the Scientific and Technical Research Council of Turkey, METU-

ISTEC Project No: EEEAG 105E068. 
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However, automated composition of services is a hard problem and it is not en-
tirely clear which techniques serve the problem best. One family of techniques that 
has been proposed for this task is AI planning. The general assumption of such kind 
of methods is that each Web service can be specified by its preconditions and effects 
in the planning context. The preconditions and effects are the input and the output pa-
rameters of the service respectively. In general, if the user can specify the precondi-
tions and effects required by the composite service, a plan or process is generated 
automatically by logical theorem prover or AI planners. The automation of web ser-
vices composition may mean two things: either the method can generate the process 
model automatically, or the method can locate the correct services if an abstract proc-
ess model is given [18]. In this paper we are concerned with defining an abstract 
process model.  

Recently, a considerable amount of work has investigated the potentials and 
boundaries of applying AI planning techniques to derive web service processes that 
achieve the desired goals [7,10,12,15,17,18,24].  As mentioned in [17], the event cal-
culus [6] is one of the convenient techniques for the automated composition of web 
services. In this paper we aim to demonstrate how the event calculus can be used in 
the solution of this problem. Our goal is to show that the event calculus can be used to 
define an abstract composite process model and produce a user specific composition 
(plan). Abductive planning of the event calculus [21] is used to show that when 
atomic services are available, the composition of services that would yield the desired 
effect is possible. The problem of matching the input/output parameters to find a web 
service in a given repository is out of the scope of this work. We assume that these 
matching tasks are pre-processed and selected. 

The idea of using the event calculus in the context of web services and interactions 
in multiagent systems is not new [4,19,23,25]. In [4], an event calculus based planner 
is used in an architecture for automatic workflow generation on the Web/Grid. This 
work is closely related to our work, however since the details of the formalism is not 
given it is not possible to compare it with ours. In [19] the event calculus has been 
used in verifying composed web services, which are coordinated by a composition 
process expressed in WSBPEL. Here the aim is to verify a composed service, not 
generating the composition itself. The work in [23] attempts to establish a link be-
tween agent societies and semantic web-services, but uses another version of the 
event calculus which avoids abduction and stick to normal logic programs. In [25] an 
approach for formally representing and reasoning about commitments in the event 
calculus is developed. This approach is applied and evaluated in the context of proto-
cols, which represent the interactions allowed among communicating agents. 

In this paper our aim is to contribute the research along this direction by presenting 
a formal framework that shows how generic composition procedures are described in 
the event calculus to produce specific plans for the requested goals. Our main contri-
bution is the translation of OWL-S to event calculus and demonstrating how planning 
with complex actions is done within this framework. We present the event calculus 
framework as an alternative approach for building agent technology, based on the no-
tion of generic procedures and customizing user constraints. 

The rest of the paper is organized as follows. Section 2 gives insight information 
about current technologies, the web service composition problem and techniques used to 
solve the problem. In Section 3, the event calculus as a logical formalism and its abduc-
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tive implementation are explained. In Section 4, we present the use of abductive event 
calculus in the solution of automated web services composition problem. Section 5  
presents a translation of OWL-S service descriptions to the event calculus and how the 
abductive event calculus can be used to define abstract process model needed for com-
position. Finally, Section 6 presents conclusions and possible future work. 

2   Related Work 

Building composite Web services with an automated or semi-automated tool is a criti-
cal and hard task. This problem has received a lot of attention recently [18]. In the lit-
erature, AI planning algorithms have been widely used to automatically compose web 
services [9,10,17,24]. Most apparent reason behind this preference is the great simi-
larities between these two fields.  

Both the planning problem and composition problem seek a (possibly partially) or-
dered set of operations that would lead to the goal starting from an initial state (or 
situation). Operations of the planning domain are actions (or events) and operations of 
the composition domain are the web services. Like actions, Web services have pa-
rameters, preconditions, results and effects hence they are very attractive to be used in 
conventional planning algorithms.  

Viewing the composition problem as an AI planning problem, different planners 
are employed for the solution. An excellent survey of modern planning algorithms 
and their application to web service composition problem can be found in [17]. Here 
we highlight some of the existing work that is most relevant to our approach. 

Estimated-regression is a planning technique in which the situation space is 
searched with the guide of a heuristic that makes use of backward chaining in a re-
laxed problem space [10]. In this approach, the composition problem is seen as a 
PDDL planning problem and efforts are condensed to solve the problem in PDDL 
domain referring to the common difficulties of Web Services domain. In fact, a trans-
lator [11] has been written which converts DAML-S (former version of OWL-S) and 
PDDL into each other. This shows that the composition problem can be (informally) 
reduced to a planning problem and in that sense working in PDDL domain is not 
much different indeed.  

In [12], web service composition problem is assumed to be the execution of  
generic compositions with customizable user constraints. GOLOG [8], which is a 
situation calculus implementation with complex actions, is used to write the generic 
processs model (complex action). It is said to be generic since it is not executable 
without user constraints. After the user specifies the constraints, it is executed and the 
solver tries to generate the plan according to the runtime behavior of the services. The 
output of this method is a running application which satisfies the user requests. 

Hierarchical Task Network (HTN) planning has been applied to the composition 
problem to develop software to automatically manipulate DAML-S process defini-
tions and find a collection of atomic processes that achieve the task [24]. SHOP2, an 
HTN planner, is used to generate plans in the order of its execution. This work has re-
cently been extended into another planning algorithm called Enquirer, which provides 
information gathering facilities during planning [7]. 
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In [15], a taxonomy is presented for the classification of the web service composi-
tion problem. This taxonomy is used to help select the right solution for the composi-
tion problem at hand. According to this classification, the Event Calculus based  
approach falls in the category of AI planning methods that best suits to the solution of 
small scale and simple operator based automated web service compositions.  

3   Event Calculus 

Event calculus [6] is a general logic programming treatment of time and change. The 
formulation of the event calculus is defined in first order predicate logic like the situa-
tion calculus. Likewise, there are actions and effected fluents. Fluents are changing 
their valuations according to effect axioms defined in the theory of the problem do-
main. However there are also big differences between both formalisms. The most im-
portant one is that in the event calculus, narratives and fluent valuations are relative to 
time points instead of successive situations. The most appearing advantage of this ap-
proach is the inherent support for concurrent events. Events occurring in overlapping 
time intervals can be deduced. Inertia is an assumption, which accounts a solution to 
the frame problem together with other techniques and it is saying that a fluent pre-
serves its valuation unless an event specified to affect (directly or indirectly) the flu-
ent occurs.  

Each event calculus theory is composed of axioms1. A fluent that holds since the 
time of the initial state can be described by the following axioms [20]: 

holdsAt(F, T) ← initially(F) ∧ ¬clipped(t0, F, T)  
holdsAt(¬F, T) ← initially(¬F) ∧ ¬declipped(t0, F, T)  

Axioms below are used to deduce whether a fluent holds or not at a specific time. 

holdsAt(F, T) ←  
 happens(E, T1, T2) ∧ initiates(E, F, T1) ∧ ¬clipped(T1, F, T) ∧ T2 < T  
holdsAt(¬F, T) ←  
 happens(E, T1, T2) ∧ terminates(E, F, T1) ∧ ¬declipped(T1, F, T) ∧ T2 < T  

The predicate clipped defines a time frame for a fluent that is overlapping with the time 
frame of an event which terminates this fluent. Similarly declipped defines a time 
frame for a fluent which overlaps with the time frame of an event that initiates this flu-
ent. The formula initiates(E, F, T) means that fluent F holds after event E at time T. 
The formula terminates(E, F, T) denotes that fluent F does not hold after event E at 
time T. The formula happens(E, T1, T2) indicates that event E starts at time T1 and end 
at time T2. The instantaneous events are described as happens(E, T1, T1). 

clipped(T1, F, T4) ↔ (∃ E,T2, T3) [ happens(E, T2, T3) ∧  
 terminates(E, F, T2) ∧ T1 < T3 ∧ T2 < T4 ]   

declipped(T1, F, T4) ↔ (∃ E,T2, T3) [ happens(F, T2, T3) ∧  
 initiates(E, F, T2)  ∧  T1 < T3 ∧ T2 < T4 ] 

_________________________________________________________ 
1 Variables begin with upper-case letters, while function and predicate symbols begin with 

lower-case letters. All variables are universally quantified with maximum possible scope 
unless otherwise indicated. 
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3.1   Abductive Event Calculus 

Abduction is logically the inverse of deduction. It is used over the event calculus axi-
oms to obtain partially ordered sets of events. Abduction is handled by a second order 
abductive theorem prover (ATP) in [21]. ATP tries to solve the goal list proving the 
elements one by one. During the resolution, abducible predicates, i.e. < (temporal or-
dering) and happens, are stored in a residue to keep the record of the narrative. The 
narrative is a sequence of time-stamped events, and the residue keeping a record of 
the narrative is the plan. 

In this paper, the predicate ab is used to denote the theorem prover. It takes a list of 
goal clauses and tries to find out a residue that contains the narrative. For each spe-
cific object level axiom of the event calculus, a meta-level ab solver rule is written. 
For example an object level axiom in the form: 

AH ← AB1 ∧ AB2 ∧ … ∧ ABN 

is represented with the predicate axiom in the ATP theory and it is translated to: 

axiom(AH, [AB1, AB2, …, ABN])  

During the resolution process axiom bodies are resolved by the ab which populates 
the abducibles inside the residue. A simplified version of ab solver is as follows. 

ab([],RL,RL,NL). 
ab([A|GL],CurrRL,RL,NL) ←  abducible(A), NewRL = [A|CurrRL], 
   consistent(NL,NewRL),  ab(GL,NewRL,RL,NL). 
ab([A|GL],CurrRL,RL,NL) ←  axiom(A,AL), append(AL,GL,NewGL), 
   ab(NewGL,CurrRL,RL,NL). 
ab([not(A)|GL],CurrRL,RL,NL) ←  irresolvable(A,CurrRL), 
   ab(GL,CurrRL,RL,[A|NL]). 

In this definition GL denotes the goal list, RL represents the residue list, NL repre-
sents the residue of negated literals, A is the axiom head and AL is the axiom body. In-
tuitively, the predicate abducible checks if the axiom is abducible. If it is so, it is 
added to the residue. If it is an axiom then its body is inserted into the goal list to be 
resolved with other axioms. Negated literals are proven by negation as failure (NAF). 
However as the residue grows during the resolution, the negative literals, which were 
previously proven, might not be proven anymore. This situation may occur when 
negative literals were proven due to the absence of contradicting evidence; however 
the newly added literals might now allow the proof of the positive of literals, invali-
dating the previous negative conclusions. For that reason, whenever the residue is 
modified, previously proven negated literals should be rechecked. The predicate ir-
resolvable checks whether the negated literal is resolvable with the current residue or 
not. The negative literal in question might also mention a non-abducible predicate. In 
this case it needs to be resolved with the axioms not the residue. This possibility is 
studied in [21]. The predicate consistent checks that none of the negated literals is re-
solvable with the current narrative residue using the predicate irresolvable for each 
negated literal. 
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4   Web Services Composition with Abductive Planning 

The event calculus can be used for planning as it is theoretically explained in [21]. 
The planning problem in the event calculus is formulated in simple terms as follows: 
Given the domain knowledge (i.e. a conjunction of initiates, terminates), the Event 
Calculus axioms (i.e. holdsAt, clipped, declipped) and a goal state (e.g. holdsAt(f,t)), 
the abductive theorem prover generates the plan which is a conjunction of happens 
i.e. the narrative of events, and temporal ordering predicates, giving the partial order-
ing of events.  

4.1   Web Services 

In the event calculus framework, the web services are modeled as events with input 
and output parameters. For instance, if a web service returns the availability of a flight 
between two locations, its corresponding event is given in Fig.1.  

-- web service description  
<message name=’GetFlight_Request’> 
<part name=’Origin’ type=’xs:string’> 
<part name=’Destination’ type=’xs:string’> 
<part name=’Date’ type=’xs:date’> 
</message> 
<message name=’GetFlight_Response’> 
<part name=’FlightNum’ type=’xs:string’> 
</message> 
 
-- event 
getFlight(Origin, Destination, Date, FlightNum) 

Fig. 1. Web Service to Event Translation 

The web service operation GetFlight is translated to the event getFlight. The inputs 
and outputs of the web service are translated as parameters of the event.  The invoca-
tion of the web service is represented with the predicate happens: 

happens(getFlight(Origin,Destination,Date,FlightNum), T1, T1) ← 
 ex_getFlight(Origin, Destination, Date, FlightNum). 

The parameters of the event are populated with help of the predicate ex_getFlight 
which is a call to the actual web service. This predicate is used as a precondition for 
the event and it is invoked anytime it is added to the plan. In order to resolve literals 
which are non-axiomatic assertions such as conditions or external calls ab is extended 
to contain the following rule: 

ab([L|GL], CL, RL, NL) ← ¬axiom(L) ∧ L ∧ ab(GL, CL, RL, NL)  

In this rule L, GL, RL and NL denote, respectively, the non-axiomatic literal, the goal 
list, the narrative residue and the negation residue. If a non-axiomatic literal is en-
countered then ab directly tries to prove the literal and if it is successful it continues 
with rest of the goal list. 
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In ATP implementation, the external call bindings like the predicate ex_getFlight 
are loaded from an external module that is written in C++ programming language. Af-
ter invoking the associated service, flight number is unified with FlightNum, the last 
parameter of getFlight event. 

Let us assume that we have the following specific axioms for a very simple travel 
domain.  

axiom( happens(getFlight(Origin,Dest,Date,FlightNum), T, T),  

 [ ex_getFlight(Origin,Dest,Date,FlightNum)] ). 

axiom(initiates(getFlight(Origin,Dest,Date,FlightNum), 

at_location(Dest),T),  

 [ holdsAt(at_location(Origin),T), Origin \== Dest ] ). 

axiom(terminates(getFlight(Origin,Dest,Date,FlightNum), 

at_location(Origin),T),  

 [ holds_at(at_location(Origin),T), Origin \== Dest ] ). 

axiom( initially(at_location(ankara)), []). 

There are two non-axiomatic literals, namely \== and ex_getFlight in the bodies of 
the axioms. The predicate \==  checks whether two bound variables are different or 
not. The predicate ex_getFlight  represents an external web service operation, and it 
returns the flight number for the given origin and destination cities. Thus, the parame-
ters of the getFlight event are populated. The initiates and terminates axioms describe 
how the fluent at_location is affected by getFlight event. The initially axioms says 
that our initial location is the city ankara. Let us assume that, we only have the fol-
lowing three flights in our travel domain, and the predicate ex_getFlight  returns these 
flights one by one. 

getFlight(ankara, izmir, tk101). 
getFlight(ankara, istanbul, tk102).  
getFlight(istanbul, izmir, tk103). 

In order to find the possible plans for the goal of being in izmir, the abductive theorem 
prover is invoked with the goal ab([holdsAt(at_location(izmir), t)], [],RL,[]). The 
theorem can find the following two plans one by one. 

plan1:  [ happens(getFlight(ankara, izmir, tk101), t1, t1),  t1 < t ] 
plan2:  [ happens(getFlight(ankara,istanbul,tk102),t2,t2),  
           happens(getFlight(istanbul,izmir,tk103), t1, t1),    t2 < t1,   t1 < t ] 

Here each plan contains the time stamped happens predicates and temporal order-
ing between these time stamps. The time constants in the plan (t1 and t2) are gener-
ated by the abductive reasoner. The abductive planner binds the given time parameter 
to a unique constant if the time parameter is an unbound variable. 

4.2   Plan Generation 

ATP returns a valid sequence of time stamped events that leads to the goal. If there 
are several solutions they are obtained with the help of backtracking of Prolog. Multi-
ple solutions could be thought as different branches of a more general plan. For  
instance, assume that the following event sequence is generated after a successful 
resolution process. 
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happens(E1, T1 , T1).  happens(E2, T2,  T2). happens(E3, T3 ,  T3).  T1 < T2 < T3  

It can be concluded that when executed consecutively, the ordered set {E1, E2, E3} 
generates the desired effect to reach the goal. In addition to this plan, alternative solu-
tions could be examined. In order to do such a maneuver, the executer should have a 
tree like plan where proceeding with alternative paths is possible. Assume that the fol-
lowing totally ordered sequences of events also reach the same goal. 

{E1, E5, E4}, {E1, E2, E4}, {E6, E7}   

When these separate plans are combined, a graph which describes several composi-
tions of web services, is formed (see Fig. 2). In this graph the nodes represent the 
events (web services) and CS is the start of composition (i.e. the initial state). The 
nodes with the label Exclusive-Or-Split (XOr) represent alternative branches among 
which only one could be chosen. Also several alternative paths are joined in the nodes 
with the label XOr-Join. XOr-Joins mandate that only one of the branches is active at 
the joining side. This graph contains all plans (i.e. composite services) generated by 
the planner. This graph is used to evaluate the composed services according to the 
non-functionality values such as cost, quality and response time, and the best plan can 
be chosen afterwards, which will be executed by the execution engine.  

CS

E5

E3

E2

E6E1

E7

XOr
Split

XOr
Split

XOr
Join

E4

Goal
 

Fig. 2. All generated compositions 

4.3   Concurrency of Events 

The narratives generated by the ATP are partially ordered set of events. Due to the 
partial ordering, events, for which a relative ordering is not specified, can be thought 
to be concurrent. For instance, assume ATP has generated the following narrative: 

happens(E1, T1 ,T1).  happens(E2, T2 , T2).  happens(E3, T3, T3).  
happens(E4, T4 ,T4).   T1 < T2 < T4 ,  T1 < T3 < T4 

Since there is no relative ordering between E2 and E3 they are assumed to be concur-
rent. If this is the only narrative generated by the ATP then the plan can be shown as 
in Fig. 3. 
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CS

E2

E3

E1
And
Split

And
Join E4 Goal

  

Fig. 3. Concurrent Composition 

In this graph, concurrent events are depicted as And-Split since both of the 
branches should be taken after the event E1. Before the event E4 And-Join is required 
since both of E2 and E3 should be executed. 

5   Web Services Composition with Generic Process Definition 

In the literature, one of the most promising leaps on automating the Web Service 
Composition is taken with the OWL-S language [16]. In OWL-S, Web Services are 
abstracted, composed and bound to concrete service providers. Web Services are 
composed by a series of operations, which atomically provide certain functions. Ser-
vice interactions can be as simple as a single operation invocation (e.g. 
http://www.random.org returns random numbers with a single Web Service opera-
tion). They can be as complicated as a multi-department electronic commerce site for 
shopping, where catalog browsing, item selection, shipment arrangements and pay-
ment selection are accomplished by invoking a series of operations. (e.g. Amazon 
Web Service http://www.amazon.com). 

Several atomic processes constitute a Composite Process when connected with the 
flow control constructs of OWL-S. If an automated system requires the provided ser-
vice it should execute the composite processes as they are defined in the OWL-S, 
supplying the intermediate inputs to the atomic services nested under them. 

The Event Calculus framework can be used to define composite processes (i.e. 
complex goals) and ATP can be used to generate a plan which corresponds to the user 
specific composition of the web service. Composite processes will correspond to 
compound events in the Event Calculus [3]. Like the composite processes, compound 
events provide the grouping of sub-events. In the following sections, first, an OWL-S 
to event calculus translation scheme is presented to show that OWL-S composition 
constructs can be expressed as event calculus axioms2. Then an example application 
will be presented to illustrate the use of generic process definition and its use in the 
abductive event calculus planner. 

5.1   OWL-S to Event Calculus Translation 

Composite processes are composed of control constructs which closely resemble to 
standard workflow constructs. Since further composite processes can be used inside a 

_________________________________________________________ 
2 For readability purposes, we will omit axiom predicate in the rest of the paper and present ob-

ject level axioms only. However, note that they are converted into the axiom predicate in the 
implementation. 
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composite process, the translation is recursively applied until all composite processes 
are replaced with the corresponding axioms that contain atomic processes. Here we 
present an OWL-S to event calculus translation scheme. The automatic mapping is 
possible, but we have not implemented it yet. 

5.1.1   Atomic Processes 
Atomic processes are translated into simple events of the Event Calculus. An abstract 
representation of an atomic process of OWL-S is given in Fig. 4.  

Atomic Process<A, V, P, E, O, EC, OC> 
 A : Atomic Process Functor 
 V : Set of Inputs: {V1, V2, ..., VN} 
 P : Preconditions: Conjunction of Literals (P1 ∧ P2 ∧ ... ∧ PM) 
 E : Effects: Conjunction of Literals (E1 ∧ E2 ∧ ... ∧ EK) 
 O : Outputs:  Set of Outputs {O1, O2, ..., OL} 
 EC : Conditional Effects: Set of literals {EC1, E

C
2, ..., E

C
R} 

  where each ECi has a condition such as 
  ECi ← BECi : BE

C
i are conjunction of literals 

 OC : Conditional outputs 

Fig. 4. Atomic Process Definition of OWL-S 

This definition is translated to the Event Calculus as an event with the same name 
as the atomic process A and the effect axioms are defined according to the precondi-
tions and effects. The translation is given in Fig. 5. 

initiates(A(V, O), Ei, T) ← holdsAllAt(P, T) ∧ invoke(A, V, O, T)  
 where Ei ∈ E+ (positive literals of E) 
terminates(A(V, O), Ei, T) ← holdsAllAt(P, T) ∧ invoke(A, V, O, T)  
 where Ei ∈ E- (negative literals of E) 

initiates(A(V, O), ECi, T) ← holdsAllAt(P, T) ∧  
  holdsAllAt(BECi, T) ∧ invoke(A, V, O, T) 
 where ECi ∈ EC+ 
terminates(A(V, O), ECi, T) ← holdsAllAt(P, T) ∧  
  holdsAllAt(BECi, T) ∧ invoke(A, V, O, T) 
 where ECi ∈ EC- 
holdsAllAt({F1, F2, ..., FZ}, T) ↔ holdsAt(F1, T) ∧  
  holdsAt(F2, T) ∧ ... ∧ holdsAt(FZ, T) 

Fig. 5. Atomic Process Translation 

The meta predicate holdsAllAt has an equivalent effect of conjunction of holdsAt 
for each fluent that holdsAllAt covers. The predicate invoke is used in the body of ef-
fect axioms to generate the desired outputs (it corresponds to the invocation of exter-
nal calls through the happens clause as illustrated in the example in Section 4.1). It 
takes the name of the atomic process, input parameters and unifies the outputs with 
the results of the corresponding Web Service operation invocation.  

5.1.2   Composite Process Translation 
Composite processes combine a set of processes (either atomic or composite) with differ-
ent control constructs. An example composition which is composed of nested structures 
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is given in Fig. 6. Split, Join and Repeat-While control constructs are used in this com-
posite process. It is necessary to be able to express such control constructs in the event 
calculus framework. This problem has been studied earlier in different contexts [3,5]. For 
the purpose of the web services composition problem, OWL-S constructs should be 
translated into compound events in the event calculus framework. 

Composition
Start

Sequence

Split+Join

Atomic
Process 1

Atomic
Process 2

Atomic
Process 3

Atomic
Process 4

Repeat While

Atomic
Process 1

Atomic
Process 5

Composition
End

πCond

¬πCond

 
Fig. 6. Example of a Composite Process 

The translation of some of the flow control constructs into the Event Calculus axi-
oms is summarized in the following. Others can be found in [1]. Constructs are origi-
nally defined in XML (to be more precise in RDF) document structure however since 
they are space consuming only their abstract equivalents will be given.  

Sequence 
The Sequence construct contains the set of all component processes to be executed in 
order. The abstract OWL-S definition of the composite process containing a Sequence 
control construct and its translation into an Event Calculus axiom is given in Fig 7. 
The translation is accomplished through the use of compound events in the Event 
Calculus which contains sub-events. The sequence of events are triggered from the 
body of the compound event and the ordering between them is ensured with the 
predicate < (precedes). 

Sequence Composite Process<C, V, P, S> 
C : Composite Process Functor 
V : Set of Inputs {V1, V2, ..., VN} 
P : Preconditions (P1 ∧ P2 ∧ ... ∧ PM) 
S : Sequence of Sub-Processes 
Ordered set of {S1, S2, ..., SK} 

happens(C, T1, TN) ←  
holdsAllAt(P, T1) ∧  
happens(S1, T2, T3) ∧    
happens(S2, T4, T5) ∧ ... ∧ 
happens(SK, T2K, T2K+1) ∧  
T1 < T2 ∧ T3 < T4 ∧ ... ∧ 
 T2K-1 < T2K ∧ T2K+1 < TN 

Fig. 7. Sequence Composite Process 
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If-Then-Else 
If-Then-Else construct contains two component processes and a condition. Its struc-
ture and translation are given in Fig. 8. Two happens axioms are written for both 
cases. With the help of notholdsAllAt which is logically the negation of holdsAllAt, 
the second axiom is executed when the else-case holds. 

 
If-Then-Else Composite Process 
<C, V, P, π, Sπ, S¬π> 
 
C : Composite Process Functor 
V : Set of Inputs {V1, V2, ..., VN} 
P : Preconditions (P1 ∧ P2 ∧ ... ∧ PM) 
π : If condition (π1 ∧ π2 ∧ ... ∧ πK) 
Sπ : If condition Sub-Process 
S¬π : Else condition Sub-Process 
 

happens(C, T1, TN) ←  
  holdsAllAt(P, T1) ∧  
   holdsAllAt(π, T1) ∧  
  happens(Sπ, T2, T3) ∧  
   T1 < T2 ∧ T3 < TN 
 
happens(C, T1, TN) ←  
  holdsAllAt(P, T1) ∧  
   notholdsAllAt(π, T1) ∧  
  happens(S¬π, T2, T3) ∧  
   T1 < T2 ∧ T3 < TN 
 
notholdsAllAt({F1,F2,...,FP},T) 
↔ holdsAt(¬F1, T) ∨  
   holdsAt(¬F2, T) ∨ ... ∨  
  holdsAt(¬FN, T) 

Fig. 8. If-Then-Else Composite Process 

Repeat-While and Repeat-Until 

Repeat-While and Repeat-Until constructs contain one component process and a loop 
controlling condition. The loop iterates as long as the condition holds for Repeat-
While and does not hold for Repeat-Until. They have a common structure and it is 
given in Fig. 9. The figure presents the translation of Repeat-While only, since the 
translation of the other is similar. Two happens_loop axioms are written for both 
states of the loop condition. The composite event is triggered when preconditions 
hold. The body of the loop is recursively triggered as long as the loop condition per-
mits. The preconditions and the loop condition are checked at time T1. If they hold, 
the component process is invoked at a later time T2.  

 
 

Repeat-While/Unless Composite Proc-
ess <C, V, P, π, Sπ> 
 C : Composite Process Functor 
 V : Set of Inputs {V1, V2, ..., VN} 
 P : Preconditions (P1 ∧ P2 ∧...∧ PM) 
 π : Loop condition (π1 ∧ π2 ∧...∧ πK) 
 Sπ : Loop Sub-Process 

 

happens(C, T1, TN) ←  
holdsAllAt(P, T1) ∧  
happens_loop(C, π, T1, TN ). 

happens_loop(C, π, T1, TN ) ←  
holdsAllAt(π, T1) ∧   
happens(Sπ, T2, T3) ∧  
happens_loop(C, π, T4, T5) ∧  
T1 < T2 ∧ T3 < T4 ∧ T5 < TN 

happens_loop(C, π, T1, T1) ←  
notholdsAllAt(π, T1) 

 

Fig. 9. Repeat-While/Unless Composite Process 
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In the given abstract translations, it may seem that the set of inputs are not used, 
but the actual translations spread out the contents of the set of inputs as the appropri-
ate parameters of the component processes. This is illustrated in the example given in 
Section 5.2. 

5.2   Example of a Composition 

In this section we illustrate the use of the abductive event calculus in generating com-
positions from a given composite procedure. The example illustrates how one can de-
scribe a complex goal and find a plan to achieve that goal. 

The implementation of the traveling problem given in [12] is formulated in the 
Event Calculus. In [12], a generic composition is presented for the traveling arrange-
ment task. In this procedure, the transportation and hotel booking are arranged and then 
mail is sent to the customer. Finally an online expense claim is updated. The transpor-
tation via air is selected with the constraint that it should be below the customer’s 
specified maximum price. If the destination is close enough to drive by car then instead 
of air transportation, car rental is preferred. The customer specifies a maximum drive 
time for this purpose. If the air transportation is selected then a car is arranged for local 
transportation. Also a hotel is booked for residence at the destination. 

Compound events are used to express generic compositions in the Event Calculus 
in a similar way that they have been used in OWL-S translation. The whole operation 
is decomposed into smaller tasks which are separately captured with other compound 
events [1]. The Event Calculus translation is given in Fig. 10. 

 
happens(travel(O, D, D1, D2), T1, TN) ← 
 [[happens(bookFlight(O, D, D1, D2), T2, T3) ∧ 
 happens(bookCar(D, D, D1, D2), T4, T5) ∧ T3 < T4] ∨ 
 happens(bookCar(O, D, D1, D2), T2, T5)] ∧ 
 happens(bookHotel(D, D1, D2), T6, T7) ∧ 
 happens(SendEmail, T8) ∧ 
 happens(UpdateExpenseClaim, T9) ∧ 
 T5 < T6 ∧ T7 < T8 ∧ T8 < T9 ∧ T9 < TN 
 
happens(bookFlight(O, D, D1, D2), T1, TN) ← 
 ex_GetDriveTime(O, D, Tm) ∧ 
 Tm > userMaxDriveTime ∧ 
 ex_SearchForFlight(O, D, D1, D2, Id) ∧ 
 ex_GetFlightQuote(Id, Pr) ∧ 
 Pr < UserMaxPrice ∧ 
 ex_BookFlight(Id) 
 
happens(bookCar(O, D, D1, D2), T1, TN) ← 
 [[ex_GetDriveTime(O, D, Tm) ∧ 
 Tm < userMaxDriveTime] ∨ O = D] ∧ 
 ex_BookCar(O, D, D1, D2) 
 

where O : Origin, D : Destination, D1 : Traveling Start  Date, D2 : Traveling End Date 

Fig. 10. Generic Composition in the Event Calculus 
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In this translation userMaxDriveTime and userMaxPrice are the user preference 
values which alter the flow of operations. Based on traveling inputs and user prefer-
ences the traveling arrangement is accomplished with the help of external Web Ser-
vice calls (in Fig. 10 they are represented with predicates with ex_ prefix). When this 
composition is implemented in the ATP, a residue which contains the sequence of 
events to arrange a travel will be returned as the plan. For instance let us assume that 
we have the definitions of several external web services for the atomic processes like 
GetDriveTime, SearchForFlight, GetFlightQuote etc.), and we have the following ini-
tiates axiom: 

initiates(travel(O,D,SDate,EDate), travelPlanned(O,D,SDate,EDate),T). 

If we want to find a travel plan from Ankara to Athens between the dates October 
22 and October 24, we can invoke the ATP with the following goal: 

ab([holdsAt(travelPlanned(ankara,athens,october22,october24), t)], R) 

The variable R will be bound to a plan, for instance, of the following form: 

[ hapens(updateExpenseClaim, t7, t7),  
  happens(sendEmail, t6, t6), 
  happens(bookHotel(athens, october22, october24), t5, t5),  
  happens(bookCar(athens, athens, october22, october24), t4, t4),  
  happens(bookFlight(ankara, athens, october22), t3, t3),  
  happens(travel(ankara, athens, october22, october24), t1, t2) 
  t7 < t2,  t6 < t7,  t5  < t6,  t4 < t5,  t3 < t4,  t1 < t3,  t2 < t ]. 

 
The plan shows which web services must be invoked for the composition and also 

the temporal ordering among them. 

6   Conclusions 

In this paper, the use of the event calculus has been proposed for the solution of web 
service composition problem. It is shown that when a goal situation is given, the event 
calculus can find proper plans as web service compositions with the use of abduction 
technique. It is also shown that if more than one plan is generated, the solutions can 
be compiled into a graph so that the best plan can be chosen by the execution engine.  

In [24], SHOP2 is used to translate DAML-S process model into SHOP2 operators. 
This translation assumes certain constraints for the process model to be converted. 
The first assumption in SHOP2 translation is that the atomic processes are assumed to 
be either output generating or effect generating but not both. Atomic processes with 
conditional effects and outputs are not converted at all. Our translation supports 
atomic processes with outputs, effects and conditional effects. Another limitation of 
SHOP2 translation is the support for concurrent processes. Since SHOP2 cannot han-
dle parallelism the composite constructs Split and Split+Join cannot be translated. On 
the other hand, our translation supports for these constructs since event calculus is in-
herently capable of handling concurrency. 

Both the event calculus and GOLOG can be used to express composite process 
models. The most important difference between the Event Calculus and GOLOG is 
the syntax of the languages. GOLOG provides extra-logical constructs which ease the 
definition of the problem space as it is given in [12] for the same example above. 
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These constructs can be easily covered with Event Calculus axioms too. Furthermore, 
since the event calculus supports time points explicitly, it is easier to model concur-
rency and temporal ordering between actions in the Event Calculus. Therefore it is 
more suitable to the nature of web services composition problem with respect to ex-
pressiveness and ease of use. 

As a future work, the results that are theoretically expressed in this paper will be 
put into action and implemented within a system which works in a real web environ-
ment. It would be helpful if a language is developed for the event calculus framework, 
in order to define common control structures of web service compositions in a more 
direct way. In fact, there has been already some efforts along this direction, i.e. ex-
tending the event calculus with the notions of processes [3,5].  

Evaluation and execution of the generated plans are the final phases of automatic 
web service composition. These phases are left out of the scope of this paper. How-
ever, in a realistic implementation, these issues and other aspects like normative ones 
need to be studied. It would be interesting to formalise the rights, responsibilities, li-
abilities that are created by composing different web services [9]. 

As another further work, it is worth trying event calculus planners that employ 
SAT solvers for efficiency reasons. 
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