IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997 593

Efficient Use of Closed-Form Green’s Functions
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with Vertical Connections
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Abstract—An efficient and rigorous method for the analysis of the Green’s functions of vector and scalar potentials in a
of planarly layered geometries with vertical metallizations is multilayer medium. Then, the integral equation is discretized

presented. The method is based on the use of the closed-formy, o, 5anding the unknown current densities in terms of known
spatial-domain Green’s functions in conjunction with the method

of moments (MoM). It has already been demonstrated that the _baSiS functions and by applying. the boundary conditions in
introduction of the closed-form Green’s functions into the MoM  integral sense through the testing procedure of the MoM.
formulation results in significant computational improvement This formulation has the advantage of employing the MPIE,
for the analysis of planar geometries. However, in cases of \yhose kernel shows a weak surface integrable singularity

vertical metallizations, such as shorting pin’s, via holes, etc., there | e the electric-field integral equation involves stronger
are some difficulties in incorporating the closed-form Green’s

functions into the MoM formulation. In this paper, these dif- Singularity, but it requires the Green’s functions in the spatial
ficulties are discussed and their remedies are proposed. The domain. The spatial-domain Green’s functions are obtained
proposed approach is compared to traditional approaches from from the spectral-domain Green’s functions via the Hankel
f‘tge%rgggﬁgt%‘g“tth?c‘;uViﬁV‘go?r:‘g g)‘(‘:\r;‘“lrgse”?’;‘]'ei“r“eps'ﬁlr]:ser:fgi(gl‘sotransformation, in which the spectral-domain Green’s func-
csomf)ared to those ob?ained from thepcommercial softwareem t'ons are known_ in closed forms for layered media [_6]’ [71
by SONNET. This transformation, also known as the Sommerfeld integral,

Index Terms—Closed-form Green’s functions, generalized pen- contam; 0§C|Ilatory mtggrand over an mflr.“te_ domain whose
cil of function method, method of moments, planarly layered evaluathn is computationally ve.ry expeQS|ve, hence, the ap-
media. parent disadvantage of the spatial-domain MoM.

It was recently demonstrated that the computational burden
in the calculation of the spatial-domain Green’'s functions
can be circumvented by approximating the spectral-domain

ECENT advances in monolithic microwave integrateGreen’s functions in terms of complex exponentials whose

circuits (MMIC’s) and ever-increasing speed of digitaHankel transforms can be analytically obtained via the Som-
circuits have prompted the need for a rigorous and efficiemierfeld identity [8]. Hence, the spatial-domain Green’s func-
electromagnetic (EM) modeling technique. Therefore, thetions for vector and scalar potentials can be cast into so-called
have been a flurry of activities in the area of computaiosed forms which are finite sums of complex images. In this
tional electromagnetics to develop computationally efficieafpproach, the crucial step is the numerical implementation
and accurate numerical techniques for modeling and simsf exponential approximation, which can be performed by
lating the electrical performances of such circuits. There afiging Prony’s techniques [9] or techniques based on the
basically three numerical techniques, used commonly for Epgncil of functions [10], [11]. The original derivation of the
simulations, that have attracted considerable interest; namelysed-form Green’s functions, as proposed in [8], employed
the method of moments (MoM) and its variants [1], théne original Prony method and was limited in use to thick
finite-element method (FEM) [2], and the finite-differenceind single layer structures, which was due to inadequacy of
time-domain (FDTD) method [3]. Among these approachege original Prony method. This problem was eliminated by
the spatial-domain MoM is widely regarded as one of thémploying the least squares Prony method [12], and then the
most popular techniques for the solution of the mixed-potentighproximation was further improved by using the generalized
integral equation (MPIE) for printed geometries in planarlpencil-of-functions method (GPOF) [7], which is less noise
layered media [4], [5]. sensitive and more robust as compared to the Prony methods.

Formulation of the spatial-domain MoM for the analysigiowever, the algorithm for the exponential approximation was
of printed geometries begins with writing the MPIE in termsyjj| computationally expensive, because Prony’s methods and

_ _ _ _ the GPOF method require uniform sampling of the function
Manuscript received May 6, 1996; revised January 24, 1997. This work w,

S . . . .
supported in part by NATO's Scientific Affairs Division in the framework of_tao be appmx'm_ated along the range of approximation. This,
the Science for Stability Program and in part by the Scientific and Technid#l turn, makes it necessary to take a large number of samples

Research Council of Turkey (TUBITAK) under Contract EEEAG-132.  for functions with local oscillations and fast variations, like

I. INTRODUCTION

The authors are with the Department of Electrical and Electronics En%- I-d in G s f . . | deri h
neering, Bilkent University, 06533 Ankara, Turkey. pect_ra -domain 'feen S unctlons In general, rendering the
Publisher Item Identifier S 0018-9480(97)02896-2. algorithm computationally expensive and not robust. Recently,

0018-9480/97$10.0Q1 1997 IEEE



594 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

a two-level approach that requires piecewise uniform sam- ATmmmrTsrrer——— rrrmssreerre
pling has been introduced to eliminate this problem, and e el
is demonstrated to be much more efficient and robust [13]. e : ol ;
Hence, the spatial-domain closed-form Green’s functions car i :
be employed efficiently in the solution of MPIE for planar, e r——

multiayer geometries.

It has already been demonstrated that the use of the closec :
form Green’s functions in the solution of the MPIE via the
MoM improves the computational efficiency of the method, gt
even before the introduction of the robust, two-level approach ,.,,*
[14]-[17]. In addition, it has recently been shown that MoM jz [ i
matrix entries can be evaluated analytically if the closed- -
form Green'’s functions are employed [18]. Consequently, the
computational efficiency of the spatial-domain MoM is further _ _ _ o _
improved, making this approach a powerful candidate forFe' I1 A typical geometry with a vertical metallization in a multilayer
general computer-aided design (CAD) software. But, it should '
be noted that all the cases studied so far, with the use of
the closed-form Green’s functions, consist of only horizont&. MPIE Formulation and MoM Matrix Entries

planar conductors, except for a few cases in which someThe tangential components of the electric field on the plane
simplifying assumptions, such as electrically short verticgk the patch and on the vertical strips can be written in terms
metallizations and only vertical metallizations in a one- Qf the surface current density, and the associated Green’s

two-layer medium, have been imposed [19], [20]. Furthnctions of vector and scalar potentials as follows:
investigation has shown that the improvement in the compu-
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tational efhmepcy_may not be achieved f(_)r th_ree dlmen5|o_nal By = — jwGh s Jy 4 — 2 (G 5V - J) @
(3-D) geometries in planarly layered media, simply by casting jw Oz
the spatial-domain Green’s functions into closed forms. In A 1 0,
this paper, the authors discuss the difficulties involved in By = —juwly, < Jy + Jw 3—y(G *Ve D) @
usir!g th_e spcf;\tial-domain closed-form Green’s fun_ctions in  p _ij?ac*Jw —ijﬁy*Jy _ij?z*JZ
conjunction with the MoM for 3-D multilayer geometries, and 1 9
propose and demonstrate an efficient technique to improve the + — 3 (G %V -J) 3)

Jw 0z

computational efficiency of the MoM for such geometries.

Since this paper addresses the difficulties of the use of th N . A _ oA
closed-form Green's functions in the MoM for 3-D planar gekgﬁérrzpredszr:]ct);efh;%?éc;ltg:jor\]/ei?gngotem%zy{'ﬂTdhui t;”;
ometries, it would be instructive to present the spatial-domal[féirected electric dipole of unit strength locatedratwhile
MoM formulation, and to briefly discuss the derivation of the,, represents the scalar potential by a unit point charge
closed-form Green'’s functions in Section Il. In Section I, th%

th di the difficulties involved in this f lati ssociated with an electric dipole. Since the traditional form
authors discuss the dimeuties involved In this Tormulaliong e Green’s functions are employed in the formulation [21],
and some remedies are proposed. Section IV presents s

A Green’s function of the scalar potential is not unique

results demonsrating the applications of the formulation ¥8r horizontal and vertical electric dipoles. Hence, the term

georlrget?es;hwnh vstrtl_cal drr;etalhfre]ltlons and c_:olmpa]i:es theﬁf:(‘/olving the Green’s function of the scalar potential, which
resufts to those obtained from the commercial SOIWRME s 5 mon in (1)—(3) can be explicitly written as

by SONNET. In Section V, conclusions are given.

aJ, aJ, 0J.
Ge . = e z Ge Y e c 4
G xV.-J=GE v + Gl *—ay + G % P 4)
[l. FORMULATION OF THE PROBLEM where Gi<(= G%-) and G% denote the Green’s functions

Consider, for the sake of illustration, a general microstriﬁf the scalar potential for a horizontal and vertical electric

structure in a multilayer environment, as shown in Fig. 1. fiPoles, respectively. .
is assumed that all layers and the ground plane extend to'© Solve for the surface current densifyvia the MoM, J

infinity in the horizontal plane, and the conductors are losslei§sexPressed as a linear combination of the sub-domain basis
and infinitesimally thin. The thickness and the permittivity ofunctions
ith layer are denoted by; and¢,.,, respectively. Although

_ (mn) p(mn)
the geometry depicted in Fig. 1 shows only one vertical Jola, y) = Z Z LB (x, y) (5)
metallization, the formulation given here applies to multiple e~ ) i
vertical metallizations, which is demonstrated with an example Jy(z, y) = Z Z —735 )Bg(; )(377 Y) (6)

in the section of results and discussions. A time convention of
¢/~ has been adopted in this paper. J(w,y, 2) =) 1Bz, y, 2) (7
{
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evaluations require the explicit knowledge of these terms:

28 = —ju(T®), G2, B

1 ) 9 aB(rnn)
= {7 L |G .
+jw <TZ o R > ©
(0
20 = 2 gy | e 9B (10)
Tz jw z * Oz # 1571

28m = —jo (1), G4, = BY™)

1 ) 9 aB(rnn)
@) 2| e y 11
+jw<TZ S iy > (11)
L 1 C D oBY
(m'n’, 1) — (m'n") “ qe z 12
Z 7 <Ty oy | e, (12)

Fig. 2. Basis functions representing the current density.
280 =T, G4 + BY)

where B{™™, B{™™, and BY are the basis functions with

Y . (mn) (mn) ) - 1 (1") 9 13
the unknown coefficients;”™, I1,™™, andI.", defined at +j—w I, g (13)
(m, n)th position on the subdivided horizontal conductor and
at [th position on the subdivided vertical conductor. In this

paper, rooftop functions are chosen as the basis functionsgere { , ), andx denote inner product and convolution,
represent:-, -, and z-components of the current density, adespectively. The entries of the array have the same form

shown in Fig. 2. The sources are modeled as current filamer'ﬁé,Cept thg basis function, which is a half-rooftop function with
therefore, it is suitable to use half-rooftop basis functions gplt amplitude to model the current source.

the source terminals, as well as at the sink terminals where @e
shorting pins or via holes are terminated in the ground plane.
At the intersections of vertical and horizontal conductors, Since the efficient evaluation of the MoM matrix entries
half-rooftop and saw-tooth basis functions are employed ¢h @nd V' in (8), requires the efficient calculation of the
the vertical and horizontal conductors, respectively, whoS@atial-domain Green's functior@s andG:s, it would be

amplitudes are related to satisfy the conservation of charglfi§iructive to give a brief description of the spatial-domain
(see Fig. 2) closed-form Green’s functions. Moreover, the steps of the
. I . derivation of the closed-form Green’s functions reveal the
Following the substitution of (5)—(7) into (1)—(3), the bound-,.... "~ .~ . . ) :
.. . . . difficulties involved in the evaluation of the inner-product

ary conditions for the tangential electric fields are implement rms, (9)~(13)

in integral sense through the testing procedure of the MOM, 4 is'\ye|| known that the Green’s functions in planar layered
for which the field expressions multiplied by some testingegia can be obtained analytically in closed forms only in the
functions 72 ™7, Ty™ ™), and X" are integrated on the spectral domain. Therefore, the spatial-domain representation
conductors and are set to zero. This leads to a matrix equatignusually based on the spectral-domain Green's functions
for the unknown coefficients of the basis functions as through the Hankel transformation as

aBY
qe
G oy

Closed-Form Green's Functions in the Spatial Domain

R N TR I A Gh = / iy b HP (k)G (k) (14)
rn’n’ mn rn’n’ mn rn’n’ mn ’nl,n, m

Zzgw,’ ) Z;Sy,’ ) ZZSZ,,I) I‘ISI) :Vy( ,) ) SIP
ZLmm) Zg,’"m) AL Y v whereG and G are the Green’s functions in the spatial- and

(8) spectral-domains, respectiveIHO(Q) is the Hankel function of
the second kind and SIP denotes the Sommerfeld integration

here Z d h I d b h ath [22]. The Hankel transform of a spectral-domain Green’s
where 2 denotes the mutual impedances between the 1estig o cannot be evaluated analytically in general, except

and basis functions, and represents the excitation voltages,, 5 few trivial cases, and numerical implementation is

due to the current source(s). Since the matrix entries corggmputationally expensive because of the oscillatory nature
sponding to horizontal conductors, namély.., Z.,, Zyz  of the kernelH? and the slow-converging nature of some of

and Z,,, have been written explicitly and treated alreadiyhe spectral-domain Green'’s functions. Since the MoM matrix
[16]-{18], for the sake of brevity, they are not given heresntries (8) require convolution integrals over the domains
However, those entries associated with vertical metallizatiogf, the basis functions and require double-integrals over the
Zyzr Zuwr Zy., Ly, Z.., are given here because thelomains of the testing functions, one needs to know the
difficulties involved in, and the solutions proposed for, theialues of the spatial-domain Green'’s functions for hundreds of
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space coordinates, if not thousands. So, it would be inefficient ,}
to numerically implement the Hankel transformation for the
spatial-domain application of the MoM [23]. Based on the fact ®

that the Hankel transform ef 7%= 1%l /.. is known analytically, @ . ®

called the Sommerfeld identity, and given as —— —

k, plane

e_jk,,, 1 e_jk:|zl P max1 kpmax2 P maxa
dk, k,HS? (k,p)

r 2y Jsip =

Chovy et al, recognize_d that if the spectral-domain _Green"gig 3. Three-level GPOF sampling paths.
functions are approximated in terms of exponentials, the

Hankel transformation can be evaluated analytically [8]. This

approach puts the emphasis on the algorithms for exponépllowing parametric equations:
tial approximation, among those can be named the Pron .
the pencil of functions methods, and their variants [9]—[11].%br Caps, bz ==jkillor +Top + 1], 0stsTes
The details of the exponential approximation technique used (19)
throughout this paper, namely the GPOF, are not given hef®r Coyo, k., = —jki[To1 + ], 0<t<Too (20)
because it is both out of the scope of this paper and well- ) t

documented in literature [10]. However, a representative forfi®" Cap1, k= = ki {—Jt + <1 -7 )} 0<t<To

ol

of the spectral-domain Green'’s functions is included to help (1)
explain the procedure for approximating them in terms of
exponentials where ¢ is the running variable sampled uniformly on the

corresponding range¥1, 7.2, and 7.3. This approach is
o« —— [A(k,, #)e™*=% + B(k,, #)e’*:*]  (16) named, hereafter, as the three-level approach, which is an
J2k; extension of the two-level approach introduced recently [13],
so its details are not included in this paper. Because the

are amplitudes of positive- and negative-going waves, whosRectral-domain Green’s functions might have fa_st varia_tions

explicit expressions can be found in [7]. It should be noted thi@cally, and because the GPOF method requires uniform

the coefficients4 and B are the exponential functions of.  S@mpling along the range of approximation, the use of a
The exponential approximation begins with sampling tHaultilevel _approach prevents taking thousands of samples.

function to be approximated, and then the algorithm dowever, it is npt necessary to use the three-level approach

exponential approximation is employed for the sampled valuf® smooth functions, for which one may use the two-level or

of the function. In other words, one needs to know the valu@§€-level approach, simply by settiffy; to zero orT, and

of the function at the points of samples, which requires fixinge3 [© Z€ro, respectively.

the parameters, like andz’ in (16). After having sampled the

spectral-domain Green’s function to be approximated, apart ll. DIFFICULTIES AND SOLUTIONS

from the term1/j2k.,, the GPOF method is used to obtain The use of the closed-form Green’s functions in conjunc-

the exponential approximation of the function, which resulifon with the MoM has been demonstrated to improve the

& 1

where subscript denotes the source region, andand B

in an approximation as follows: computational efficiency of the MoM when applied to simple
N geometries like those consisting of only horizontal conductors,
A, e o —bkz, or geometries with simplifying assumptions. After having
= - Z amC “. (17) . : s
J2ks, —~ improved the computational efficiency and robustness of the

derivation of the closed-form Green’s functions, the natural
Hence, this approximating function can be transformed t@ep toward the goal of developing an accurate and efficient
the spatial domain analytically via the Sommerfeld identitymsimulator is to study this approach for general geometries.
(15), resulting in the following spatial-domain expression, alsq preliminary study shows that the application of the MoM

called the closed-form Green’s functions: in conjunction with the closed-form Green’s functions is
N b not as straightforward as its applications to only horizontal
A, ge e geometries, i.e., there are some difficulties in cases of vertical
G 2o am (18 -
1 Tm metallizations.

These difficulties originates from the way the closed-form
wherer,, = \/p? — b2,. It should be noted that the samplingGreen’s functions are derived, more specific, from the expo-
of the spectral-domain Green’s functions should be performadntial approximation of the spectral-domain Green’s func-
along the SIP or along a path legitimately deformed frorions. In Section II, the representative form of the spectral-
the SIP, details of which can be found in [8], [13]. In thislomain Green’s functions is given and it is stated that the
paper, a deformed path from the SIP as depicted in Fig. 3 hmrametersy and 2/, have to be fixed in order to be able
been employed, consisting of three connected paths dendiedample the function over the range of approximation. In
asCqyp1, Cup2, andCyp3, respectively, and described by theother words, the exponential approximation is valid for only
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those fixed values of the parameters and so is the clos#tk application of the exponential approximation for each term
form Green’s functions. For horizontal conductors, fixiag in the spectral-domain Green’s function. However, it requires
and ' does not pose a problem because the conductors #ire application of exponential approximation as many times as
situated on constant-planes requiring the Green’s functionghe number of testing functions, or number of basis functions,
to be evaluated at these planes only. Therefore, one @nnumber of basis times testing functions on the vertical
fix these parameters prior to the derivation of the closethetallization for the inner-product terms involving or 2’
form Green’s functions, and use these Green’s functions for » and 2/ integrations, respectively. Although the second
those values of the parameters only. However, the evaluatieipproach seems to employ the exponential approximation
of the MoM matrix entries corresponding to the verticahlgorithm more than the first one, it is more efficient for short
metallizations require convolution integrals and inner-produgértical metallizations for which only a few basis functions
integrals (9)—(13), which are to be integrated ovemnd/orz’. are used. For one basis function on the vertical metallization
So, the closed-form Green’s functions, derived as describgflich is usually sufficient for a practical geometry, the number
in the previous section, cannot be used efficiently in thgf exponential approximation in the second approach is less
evaluation of such matrix entries. than that in the first approach, and moreover, it requires less
This difficulty can be eliminated by recognizing that theyumper of exponentials even for several basis functions. Also
amplitudes of the up- and down-going waves in the spectr@pte that some of the commerciamsimulation softwares,
domain Green'’s functions are the exponential functions’of |ijke em from SONNET, use only one basis function along a
that can be factored out (see the Appendix). As an exampl@stical metallization.
the spectral-domain Green’s function for the scalar potentialThe first approach described above is quite straightforward,
due to a vertical electric dipole can be written as where one needs to write the spectral-domain Green’s func-

G — 1 {e—jkzilz—z’l 4 Rhi-lpp™ tions_ i_n terms of exponentials of and ' with complex
T 2k € T™ coefficients and to apply the GPOF method for each complex
e Ihes () | R ik (s 4 2d0)] coefficient. Therefore, there is no need to give further details
™ for this approach. On the other hand, since the application
>t t4+1 3 s TM ’ . ! .
+ Ry M; of the second approach requires some work in the spectral-

[ Gdima=2) | RITL =ik (12424011 (22)  domain, it would be instructive to give the procedure and the
following details:
after having substituted the amplitudes of the up- and down- g . , . .
) 5 T™ : 1) write the spectral-domain Green'’s functions into the sum
going waves. Note thaRkrys and M, ™ are not functions ; ;o - )
of exponentials of: and 2’ with complex coefficients;

f ) - .
pf # and 2, ar_ld their explicit expressions can be found 2) write the spatial-domain Green’s functions in the MoM
in [6], [7].- A brief study of (22) shows that there are two . . .

matrix entries as the inverse transform of the spectral-

approaches to overcome the difficulty, which are 1) applica- domain counterpart using (14);

tion of the exponential approximation to each amplitude and3 luate the int | dlor o iabl |
2) integration overz and z’ performed analytically in the ) tei}(\:lzlll;?e € Integrals overandjorz' variables analy-

spectral domain, after which the exponential approximation4 imate th ltant ion b |
is employed. In the first approach, one needs to deal with ) approximate e resuftant expression by complex expo-
nentials via the GPOF method,;

each term in (22) separately; the first one is the direct term ¢ he whol o h il .
with unity amplitude, so there is no need for approximation, 2) transform the whole expression into the spatial domain
via the Sommerfeld identity (15), getting an auxiliary

and the rest have amplitudes as functionskpf In other _ A _ _
words, approximation of?¢ in terms of complex exponentials function £ 22 ., which has the same form as (18);
with the exponents including and 2’ explicitly requires to ) evaluate the remaining inner-product integrals analyti-

approximate only the amplitude functions of the four expo-  Cally in the spatial domain.
nentials in (22), namel;éir’;{l MIM, Riff\;l MM fgzrﬁrl Exponential approximations of the integrated spectral-

T

and R MM, The cost of having: and 2/ explicitly in domain Green’s functions with the GPOF method (item 4)

T

the approximation of a Green’s function is to apply the GPoO$hould be performed with care because it has been observed
method three times more and use exponentials four times m#tat the functions obtained after evaluatingnd 2’ integrals

as compared to approximating the same Green’s function agay contain peaks for intermediate valued:pf Therefore, to
whole. The second solution is based on the fact thaind capture such behaviors efficiently, the two-level approximation
z dependence of the spectral-domain Green’s functionsSgheme [13] is extended to three levels for these terms.
always in exponential form and analytically integrable ovérence, it is guaranteed that the spectral-domain auxiliary
z and 2’ for most basis functions. Therefore, the integratiofunctions are approximated successfully. It should also be
over z and 2/, which are due to testing and convolutiomoted that addition of multiple vertical strips will not increase
integrals along a vertical metallization, respectively, can e computational cost of this technique, provided that all
evaluated analytically if the spatial-domain Green’s functioreertical strips employ the same number of basis functions.
in the inner-product expressions are written as the inversbis is because the MoM matrix entries corresponding to the
transforms of their spectral-domain representations. Then, thasis functions on a vertical strip are obtained as a function of
exponential approximation procedure is implemented on theand because the domains of integrations along the vertical
resulting spectral-domain function. This approach eliminatetrips are the same. In other words, once the interaction
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between a basis and a testing function on a vertical stripibe derivative of X with respect toz’ is carried over the
calculated, the same expression can be used with a differbasis function by using the chain rule
value ofp for the calculation of the reaction of the same basis
function and. a test'ing funct.ion (or vice versa) located on an% [Bg(cmn)(aj/’ YV FA] = %B;mn)(x/’ J)FA
another vertical strip at a distance of -z €z
To demonstrate this technique on an example, the inner- + B (2! 4f) i/F;; (27)
product term containing an integration efvariable is evalu- Oz
ated as shown in (23) at the bottom of this page. and the inner-product (23) reduces to
The first step of the procedure is to write the spectral-domain
Green’s function@fw (38), in the form of (44), where and <TZ(1’)7 G4« Bg(gmn)>
%' dependences are explicit. Then, the spatial-domain Green’s
function G4, in (23) is replaced by the inverse transform of = —/dy Tz(l,)(y)/d?/ [BS™(a!, o VP2
the spectral-domain Green’s functi@’lﬁrﬁx, (44). Hence, the 28

inner-product term in (23) becomes —i—/dyTZ(l,)(y) // do’ dy' F2: %Bgﬁ"m)(w’, y). (28)
X

U A mn
(I, G2+ BI™) Following the substitutions: — z’ = v andy — ¢ = v, the
_ // dz dy ng’)(y) ng’)(z) // dz’ dyf inner-product expression (28) is further simplified to

1 = ) A (mn)
R
T Jsip

_ A ) (mn) _ _
. B;"l")(a;/’ y/) (24) - /dU sz/dy [Tz (y)Bac (.’L’ u, Yy U)] .

) / g
where the separability of the basis functions is utilized, +// d“d“szi‘/dyTz(l)(y)@Bé‘mn)(x_“’ y=v)
Tz(l,)(y, z) = Tz(l,)(y) Tz(l,)(z). After changing the order of (29)
integrations, the following auxiliary function is defined and
cast into closed form via the Sommerfeld identity: wherez = z,,,, -coordinate of the vertical metallization and
the integrals over are evaluated analytically. Note that the
oA def /dzT(l,)(z)i / first term in (29) drops for the rooftop basis functions, but
= * 7 Jeip it must be evaluated for the basis functions that are not zero
dk, k,;HSQ)(k,,|p _ p/|)éA (k,, 2) at the boundaries such as half-rooftop functions. Evaluations
1 of the other inner-products given in (9)—(13) are performed

= e dk, k,;HéQ)(k,,|p - similarly, so they are not given here for the sake of brevity.

'GPOF{/dZ T (2)GA, (K, 2)} (25) IV. RESULTS AND DISCUSSIONS

In this section, application of the formulation presented
where GPOF{} designates the approximation process witn this paper is demonstrated on some practical geometries
complex exponentials via the GPOF method. Note tﬁé; and the results are compared with those obtained from the
has a multiplicative term of-jk,, which is equivalent to commercial EM analysis prograem version 3.0 (SONNET
8/dx in the spatial domain. Therefore, the integral of th&oftware, Inc.). The main difference betweem and this
Green’s function under the GP@F operator is approximated formulation is thatem puts the circuit in a conducting box

with complex exponentials without j&, term, resulting in the whose default wall conductivities are infinite [24]. Analyzing
following inner product expression: radiating structures irem requires adding loss to the sys-

tem, but with the formulation presented here these structures
can be characterized better, in the sense of accuracy and

U A mn
(T, G2, « BI™) computational efficiency. One can refer to [25] for general

_ / dy TZ(I,)(y) /da:’ &y informatior_1 or!emsoftware. In all of the geometrie§ showi_ng
the test circuits, the arrows on the port transmission lines
B (g o) iFA (26) show the rgference plqneg used in the calculation and in the
¥ ’ ox! de-embedding of the circuit parameters.

@0, @ v 50 = [[axay . ) [[ar afGie - y=of, 2 7 = cons) B o) @3)
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Fig. 4. Geometry of the microstrip line with shorting strip- (= 4.0, h =
see the text).
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As a first example, a simple microstrip line short-circuited  °%. 2.0 40 6.0 8.0 10.0

with a shorting p-i-n, as shown in Fig. 4, is considered, where Distance from the source (em)
the shorting pin is modeled as a narrow rectangular strip placegl 5. Current distribution on the shorted microstrip liie=£ 8 mil, one
between the microstrip line and the ground plane. Note th&erting pin).
the same model is also used in then simulation for the
purpose of comparison. However, it should be stated that a 2o°
more realistic shorting pin can be modeled by placing the
vertical strips in a form of rectangular cylinder both ém
and in this approach. The dielectric constant of the substrate
is chosen to be 4.0, and two different values of the substrate 1.5
thickness are used in the analysis, 8 and 80 mil. The microstrip
line is excited with a current source from the left end, and
is left open-circuited at the right end. To simulate the unity
current-source excitation iem the values of the voltage
source and the input impedance @&m are selected equal
and very large with respect to the characteristic impedance
of the line, which is the Norton equivalent of the current
source with unity amplitude. The current distributions on the
microstrip line are obtained and shown in Figs. 5 and 6,
with the results obtained from them software, denoted by
em in these figures. As can be seen from the figures, the
results agree very well for a thin substrate case but, as the oo ) , N .
substrate thickness increases, the resuttroftarts to deviate 0.0 2 e e e (om) 8.0 100
becauseemversion 3.0 assumes constant current distributions
on vertical connections [24]. Note that three shorting pins haf#§- 6- Current distribution on the shorted microstrip life £ 80 mil,
been employed for the thick substrate case to demonstratetﬂﬁeée shorting pins).
use of the formulation for multiple vertical metallizations (see
Fig. 6). the normalized position of the shorting post is defined as
The next example is a radiating structure—a microstrip, = (¢ — 3.81)/3.81. The results obtained by the method
patch antenna with a shorting post, printed on a substrate wittesented in this paper are compared to those measured and
the thickness of 0.152 cm and with the relative permittivity db those obtained by the cavity model, and the agreement is
2.43, as shown in Fig. 7. Placing shorting posts in a microstrijuite good considering the different types of feeding structures,
patch antenna shifts the resonant frequency of the antemniarostrip-line feed for this case, and probe feed for the
without effecting the radiation pattern significantly [26]-[28]experimental and cavity model [27]. Note that the unloaded
Therefore, it can be utilized in the design of a dual-frequenecgsonant frequency of the antenna is approximately 1237 MHz,
microstrip antenna. Moreover, if these shorting posts are maated it also corresponds to the position of the shorting post at
by using p-i-n or varactor diodes, then a frequency-agitte middle of the patch. This is because the dominant modes
antenna is obtained by electrically activating the diodes. In this patch antennalMy,; and TM;,, have almost zero
this example, the amount of frequency shift in the resonaslectric field inz-direction at the middle of the patch, hence,
frequency of a patch antenna is assessed, and demonstritedhorting post at this position will have negligible effect on
for several positions of the shorting post in Fig. 8, wherthe resonant frequency.

--- em
— MPIE T

Magnitude
o

0.5
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Fig. 7. Geometry of the microstrip patch antenna with a shorting pin 50
(g,. = 2.43, h = 0.152 Cm).
&
1400 T T 0 . . . . . .
1000 3000 5000 7000 8000 11000 13000 15000
Frequency (MHz)
Fig. 10. Magnitude ofZ;,, of the MMIC inductor.
1350 B
o 12.9, is analyzed. The magnitude and the phase of the in-
O . .
& put impedance, seen from the reference plane, is calculated

g 8 and the magnitude is plotted in Fig. 10 as a function of
- frequency and the phase is equal t&® 38rough the range

1300 _
of frequency. It is observed that the magnitude of the input

Resonant frequency (MHz)

g impedance deviates from the ideal behavior of an inductor, as
the frequency is increased, because of the self-resonance of
s g §:E:’2§"mem 27 1 the structure. _
avity Model [27] It should be noted that the model employed for vertical
metallizations, namely the planar strip, is not the most accu-
rate one. One can instead use circular cylindrical or square
cylindrical via models within this formulation. But, since the
129%3 0.3 05 07 s main goal of this paper is to demonstrate the use of the
Normalized shorting pin focation closed-form Green’s functions in conjunction with the MoM
Fig. 8. Resonant frequency versus normalized shorting-pin location for tfer geometries with vertical metallizations, the simplest model
patch antenna. is employed to convey the ideas clearly. In addition, although

the examples provided here only employ shorting pins to the
B et e T TR e ot e A ground plane, it is equally easy to implement vias between
any two consecutive layers, like in the case of an inductor
with an air-bridge.
10
V. CONCLUSION
Efficient derivation of the closed-form Green’s functions
in the spatial-domain has improved the computational ef-
ficiency of the MoM for planar geometries in multilayer
media. However, there have been some difficulties in the
use of these closed-form Green’s functions in the analysis
of geometries with vertical metallizations. In this paper, the
authors have discussed these difficulties and have proposed
5 UL .. 8 5 ey o two techniques to overcome these problems. It is observed
Fig. 9. Geometry of the  square-spiral  MMIC inductorthat one of these technique, the first one, is more efficient for
(er = 12.9, h = 100 pm). long vertical metallizations requiring several basis functions,
and the other approach is more efficient for short vertical
Finally, a square—spiral MMIC inductor terminated in anetallizations. Since the implementation of the first one is
short circuit shown in Fig. 9, printed on a substrate withather simple and straightforward, the authors have given
a thickness of 10Qum and with the dielectric constant ofthe formulation of the second approach in detail. The for-

B0 uM

V0 uM
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mulation is applied to some realistic geometries, for whicB. The Green’s Functioﬁ?fz
the scattering parameters and the relevant circuit parame-
ters are extracted and compared to those obtained from a

well-known commercial softwareem from SONNET. The A M
formulation presented here is not limited to thin substrates, ~** ~ 2jk_.
in other words, to short vertical metallizations as in the case . [G—jk;i|z—z’| AS eIk (2= pe ik, (z—z’)]

of emversion 3.0, and is capable of incorporating additional

vertical metallizations with almost no computational cost. (34)
Therefore, this approach is very suitable for the purpose
of optimization of a geometry involving vertical metalliza-Where
tions. o o
AS = R MM =%k Rl L = 2ike i) (35)

. _ Pty i+l g s TM —25k., (di—2 i, i—1 —2jk.. d;
BE = Ryt MM 20ks (dim2) 4 RV o= 2k=idi] | (36)
APPENDIX

SPECTRAL-DOMAIN GREEN'S FUNCTIONS Substituting (35) and (36) into (34), the following expression

As discussed in Section Il, some of the spectral-domalf obtained:
Green’s functions need to be cast into a specific form, where
z and 2’ dependences are factored out. The only Green@?z =
function that does not require this factorizatiorGig,, because
it is always evaluated at constantand 2'-planes. Therefore,

Hi —jk., |z—2" i, i—1 3 rTM
i (e e R

[e—dks, (z42") Dt i+l —jk., (z—z'+2d;)
[e + Ry e ]

the components of the spectral-domain Green’s functions, + R MM
exceptG;}xz are cast into the suitable form for the formulation [T @ima=) it =ik (Z,_ZJFM)]} (37)
presented in the paper, and are given here for convenience. For ™ ’

a detailed derivation of the spectral-domain Green'’s functions,

one can refer to [7]. Since the origin is located at the bottom @f The Green’s Functioﬁ?ﬁx
the source layer (denoted by the subsc#jiior the application

of the MoM, the coordinates used in the derivation of the

Green'’s functions in [7] is transformed fromto » — 2/, and é?ac _ _ uz /fmlzzi( ¢ 1 BS)edk (2—2")
h to 2. 29k, | K2
kﬂ?kz' —jks. (2—2
. + (D = G () (39)
A. The Green’s Functio? p
where
Gt =5 o= R MEP e 7 4 g em2ia ] (39)
JRz; € e _ il g s M —25ks, (di—2') _ poini—1 —2jk..d;
,[e—jk;ilz—z’l —i—C,f.’e‘iji (z—2") +D§;ejk‘f (z—z’)] By, _‘I?TM lMi e . T ‘?TM 'k@ ] ] (40)
oy O =R M R )
Dj, = Ring "M [=em ¥R 4 Rigflemha] (42)
where
Substituting (39)—(42) into (38), the following expression is
obtained:
C¢ = RoiT MM [—em %k 4 Rl bl p=2iks;di) (31)
e _ pi i+l TM_ —2jk.. (di—2') | firi—l_—2jk..d; s i [ kake, i
D =Ry M [—e + Ry e ]. (32) GA = _ N = (R b MPE
2jkz, \ K
o ) ) ) . [@_jk:i (2d;—2'—2) + Ri,i—le—jk;i (2di+z’—z)]
Substituting (31) and (32) into (30), the following expression i TE
is obtained; + Ry MM
. [C—jk;i (2d;—2"—z) _ R%i;le_jk” (2di+z’—z)])
kxkz- i, 1—1 TM™M
~ 1 b e L miie , + - (R M;
G = 25k, €; {6 eil=# g Rt M Ky
Zi 1' o ' . [—e_jk:i (z+2") + Ri7i+1@_jk:i (2di+Z—z’)]
. [_e—]k;i (Z+Z,) + Rz, Z+16_]k:i (Z—Z,+2di)] TM
- TM _ frisi—1/TE
+ RZfIGHMzTM TE %

. ’ ~a : ’ —jk., (242 i, v+l —ik.. (2d;+2—2
[T i) L R (201 (33) e R G g Rpggem bl >1>}. (43)
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Then, rearranging the terms results in
Hi _jkzi

© 2k, k2

. (Rz z—l—lMTE + Rz Z+1MiTM)

te jk;.(2d7+4 —z)

. (RiT,]z;]—l—le z—lMTE

+ @_jk:i (2d;+2—2")
i i1 g il 1 miiel

H(Riyy Rz M = Rpg

+ e—jk;. (Z+2)

~A —jk., (2d;i—2 —z
Ga, = - [emiti )

(1]
(2]
(3]

A S B

T

Z Z+1MTE) [5]

i ( RZ Z—lMTE szf]ii_leTl\I)} (44) [6]
(71

D. The Green’s Function¢
[8]
@ 2jeikzi = [o]
k.? k.? 10
g T T ke (=), (45)

P

Substituting (39)—(42) into (45), the following expression i§1]
obtained:
~ 1
Ga— = ) ik la=
‘ 2j6ikzi { "

. [e_jk:i (2d;—2'—2)

2 [12]

k?
_ R%K;le_jk:i (2di+z’—z)]

R

T

[13]

k?
PR i T

- [14]

et (2di—2'—2) szé_le—jk;i (2di4= _z)] [15]
2

1 I{}ZQ Rz z—lMTE [16]

k/’ .

. [C—Jk;it(z-l—z ) 4 Rfr’g"le_]k‘f (2ditz—z )] (17]
2
Z:i i, i—1 3 rTM

- k_% Ry M; (18]

. [_e—jk;i (z+2") _i_RiT,lGI—le—jk;i (2di+Z—Z,)]}'(46) [19]

Then, rearranging the terms results in

Ga—_ 1 {e—jk:ilz—z’l+e—jkzz-<2dz-—z’—z>

¥ 2j6¢/€4
qu Pty i+1 3 rTM 1%2 i, i+l 3 s TE
.<k2 Rig{ MM + 5 o™ M )
P P
+ @_jk:i (2d;+2" —=)
k2

[20]

[21]

[22]

Zi 1o, t+1 R~i, i—1 MV [23]

’ < k2 TM TM % M
If -7, o 24
kQRz z—l—le @ ln( E) _]k:i(gdi_kj_j) E %

[26]

k2 Y Y
Z; 2, t+1 e, e—1 TM
: <_ 2 RTM RTM Mz
4

+kiz RZ i—1 i, z+1MTE> + ik, (2 42) [27]
k ?

(28]

k? i, t—1 T]\T k2 i—1 2 s TE
(T R i B )} @
4
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